@ Navigation and Ancillary Information Facility

Introduction to Kernels

June 2019
(Class version)

What is a SPICE “Kernel”

Navigation and Ancillary Information Facility

“Kernel” means file

“Kernel” means a file containing ancillary data

“Kernel” means a file containing "low level” ancillary data that may be used,
along with other data and SPICE Toolkit software, to determine higher level
observation geometry parameters of use to scientists and engineers in planning
and carrying out space missions, and analyzing data returned from missions.

Introduction to Kernels

SPICE Kernels Family

Navigation and Ancillary Information Facility

- SPK

— Spacecraft and Planet Ephemeris

« PCK
— Planetary Constants, for natural bodies
» Orientation
» Size and shape

 IK
— Instrument
« CK
— Orientation (“Camera-matrix”)
« EK
— Events, up to three distinct components
» ESP: science plan
» ESQ: sequence
» ENB: experimenter’s notebook

EK is rarely used

Introduction to Kernels

FK
— Reference frame specifications

SCLK

— Spacecraft clock correlation data

LSK

— Leapseconds

MK

— Meta-Kernel (a.k.a. “FURNSH kernel”)

— Mechanism for aggregating and easily
loading a collection of kernel files

DSK

— Digital shape kernel
» Tesselated plate model

» Digital elevation model (under
development)

DBK

— Database mechanism
» Primarily used to support the ESQ

SPICE Kernel Forms

Navigation and Ancillary Information Facility

« Binary form
— A file mostly containing data encoded in binary form
— Provides rapid access to large amounts of numeric data

— Binary kernels are not human-readable; they require the use of Toolkit
software to examine the data contents

« Text form

— Plain text files containing only printing characters (ASCII values 32-126),
i.e. human-readable text.

Introduction to Kernels

@ Text and Binary Kernels
Navigation and Ancillary Information Facility

Introduction to Kernels

@ Navigation and Ancillary Information Facility

Kernel Architecture

- Text kernels
- Binary kernels
- Comments in kernels

Introduction to Kernels

Text Kernel Contents

Navigation and Ancillary Information Facility

« A text kernel is a plain text file of ASCII data

* It contains assignments of the form:

variable name = value(s)

* A text kernel should also contain descriptive
comments that describe the assignments

— Comments are sometimes referred to as “meta-data”

» Don’t confuse this usage with the “meta-kernel” described
later in this tutorial

Introduction to Kernels

Example Text Kernel

Navigation and Ancillary Information Facility

KPL/<kernel type>

\begindata
NAME = 'Sample text value'
NaMe = 'Keywords are case sensitive'
NUMBERS = (10.123, +151.241, -1D14)
NUMBERS += (1.0, 1, -10)
NUMBERS += (1.542E-12, 1.123125412)
START = @2011-JAN-1
\begintext

< some comments about the data >

\begindata

< more data in keyword = value syntax >

\begintext
< etc., etc.

\/

}
}

A data block

A “comments” block

Another data block

Another “comments” block

 The next several pages describe what you see above
« See the “Kernel Required Reading” document for details

Introduction to Kernels

Text Kernel Formatting

Navigation and Ancillary Information Facility
« KPL/<text kernel type>
- Its use is optional, but is highly recommended
- Must appear on the first line, starting in column 1
- Tells SPICE software what kind of kernel it is
- Text kernel types are FK, IK, PCK, SCLK, MK

« \begindata and \begintext

- Markers, on lines by themselves, which set off the beginning of
data and the beginning of comment (metadata) blocks respectively

- They need not begin in column 1

« <LF> for Unix/Linux/Mac or <CR><LF> for Windows
- End of line marker (usually not visible when displaying a text kernel)
- Must be present on EVERY line in the text kernel

 Max line length, including any white space, is 132 characters

Introduction to Kernels 10

Text Kernel Operators

Navigation and Ancillary Information Facility

 An assignment using the “=" operator associates one or
more values with a variable name.

 An assignment using the “+=" operator associates additional
values with an existing variable name.

« An assignment using the “@” symbol associates a calendar
date with a variable name.

— The string will be parsed and converted to an internal double precision
representation of that epoch as seconds past the J2000 epoch

» There is no time system implied
» This conversion does not need a leap seconds kernel

Introduction to Kernels

1

Variable Names and Values

Navigation and Ancillary Information Facility

« Variable names

Max of 32 characters

Are case sensitive (recommendation: use only upper case)
Cannot include space, period, parenthesis, equals sign or tab
Recommendation: don’t use the “+” sign as the last character

« Values

Numeric: integer, fixed point and scientific notation are allowed
String:
» enclosed in single quotes

» maximum length of 80 characters on a given line

+ SPICE has means to concatenate multiple string values to allow for values exceeding 80
characters

» string values may contain any printing ASCII character, including blank
Time: identified by the “@” character
Any of these three types can be provided as an n-dimensional vector of values
» Components are separated by commas or white space (but not TABSs)
» Parentheses are used to enclose the vector
» Each string value in a vector is contained in single quotes
» Values in a vector must all be of the same type (numeric, string or time)

« See “Kernel Required Reading” for more information

Introduction to Kernels

12

Variable Names and Values

Navigation and Ancillary Information Facility

« A “picture” of the most basic text kernel assignment rules

132 max characters, with the non-printing system-dependent end-of-line indicator at the end*

A

I 32 max characters . , . I
! max characters, not including the single quotes at each end !
! Upper case recommended 80 ma 9 gie g !
: A A :
[| |]!
MY NIFTY TEXT VARIABLE = 'Text, numbers or dates containing no more than 80 characters’ <EOL>

Single quote

/—/

white space, period, parenthesis,

, any printing characters
equals sign, or TAB

Any printing characters except /| A text string, consisting of \

(6378.12 6332.34 6355.8)
(6378.12, 6332.34, 6355.8)

-12.236E5

\| @31-JaN-2012
N

%

*Unix, Linux, OSX EOL symbol: <LF>
*DOS/Windows EOL symbol: <CR><LF>

Introduction to Kernels

Single quote

Character string

Two forms for vectors

Scientific notation

Dates (special handling ensues)

13

Introduction to Kernels

Example Binary Kernel

Navigation and Ancillary Information Facility

A binary kernel contains lots
of non-printing data, usually
interspersed with occasional
occurrences of ASCII
characters.

Includes a “comment area”
where descriptive meta-data
should be placed.

-

14

@ Comments In SPICE Kernels

Navigation and Ancillary Information Facility

 All SPICE kernels should contain comments—

descriptive information about the data contained
in the file.

— “Comments’” are also known as “meta-data”

 See the tutorial on comments for more
information.

Introduction to Kernels

15

Making a Text Kernel

Navigation and Ancillary Information Facility

* Text kernels may be produced using a text editor

— Text kernels must contain only printing characters (ASCII values 32-
126), i.e. human-readable text

» TAB characters are allowed but HIGHLY DISCOURAGED
» Caution: some editors insert non-printing characters

— Text kernels must have each line terminated with the end-of-line
indicator appropriate for the operating system you are using

» For Unix, PC/Linux, Mac OSX: <LF>
» For PC/Windows: <CR><LF>

» Don’t forget to insert the end-of-line indicator on the very last
line of the kernel!

— Fortran toolkit software will detect and warn you if you try to read a
non-native text kernel. (Not needed for other languages.)

— See the BACKUP for information on converting text kernels between
these two line termination techniques

Introduction to Kernels

17

Introduction to Kernels

Navigation and Ancillary Information Facility

Using Kernels

19

Loading Kernels -1

Navigation and Ancillary Information Facility

 To make kernels available to a program you “load” them

 When you load a text kernel:
— the file is opened
— the kernel contents are read into memory

» variable names and associated values are stored in a data structure
called the “kernel pool”

— the file is closed

 When you load a binary kernel:

— the file is opened

— for SPK, CK, binary PCK and DSK files, no data are read until a read request
is made by Toolkit software

— for all practical purposes the binary file remains open unless specifically
unloaded by you

Introduction to Kernels

20

Loading Kernels - 2

Navigation and Ancillary Information Facility

« Use the FURNSH routine to load all kernels — text and binary

— CALL FURNSH ('name.ext') (Fortran)

— furnsh ¢ ("name.ext”); (C)

— cspice furnsh, 'name.ext' (IDL)

— cspice furnsh ('name.ext') (MATLAB)

— spiceypy.furnsh ('name.ext') (Python using SpiceyPy)

» Best practice: don’t hard code filenames—list these in a
“meta-kernel” and load the meta-kernel using FURNSH

— CALL FURNSH ('meta-kernel name’) (Fortran example)
— Look further down for more information on meta-kernels

Introduction to Kernels

21

@ Navigation and Ancillary Information Facility

Meta-Kernels

These help make using SPICE easy!

Introduction to Kernels

23

@ What is a “Meta-Kernel”
Navigation and Ancillary Information Facility

* A meta-kernel is a file that lists names (and locations) of a
collection of SPICE kernels that are to be used together in a
SPICE-based application

— :.oe:jdi(rjlg the meta-kernel causes all of the kernels listed in it to be
oade

« Using a meta-kernel makes it easy to manage which SPICE
files are loaded into your program-you don’t need to revise
your code

* A meta-kernel is implemented using the SPICE text kernel
standards

— Refer to the Kernel Required Reading technical reference for details

e The terms “meta-kernel” and “FURNSH kernel” are used
synonymously

Introduction to Kernels

Sample Meta-Kernel

Navigation and Ancillary Information Facility

KPL/MK
\begindata
KERNELS_TO LOAD = (
'/home/mydir/kernels/lowest priority.bsp',
'/home/mydir/kernels/next priority.bsp',
'/home/mydir/kernels/highest priority.bsp’',

'/home/mydir/kernels/leapseconds.tls’', \\
/home/myd?r/kernels/sclk.tsc , ‘\\\\\Anmeammms
' /home/mydir/kernels/c-kernel.bc', are optional

'/home/mydir/kernels+’,
'/custom/kernel data/p constants.tpc’,

)

Introduction to Kernels 25

Sample Meta-Kernel

Navigation and Ancillary Information Facility

KPL /MK
\begindata
KERNELS_TO LOAD = (
'/home/mydir/kernels/lowest priority.bsp',
'/home/mydir/kernels/next priority.bsp',
'/home/mydir/kernels/highest priority.bsp’',

'/home/mydir/kernels/leapseconds.tls’', \\
/home/myd?r/kernels/sclk.tsc , ‘\\\\~Anmeammms
' /home/mydir/kernels/c-kernel.bc', are optional
'/home/mydir/kernels+’,
'/custom/kernel data/p constants.tpc’,

)

* The last file listed in this example (p_constants.tpc) demonstrates how
to use the continuation character, ‘+’, to work around the 80 character
limitation imposed on string lengths by the text kernel standards.

» See the next two pages for some important OS-specific details!

Introduction to Kernels 26

Unix/Mac
Sample Meta-Kernel

Navigation and Ancillary Information Facility

* This meta-kernel uses the PATH_VALUES and PATH_SYM

BOLS

keywords to specify the directory where the kernels are located.

KPL/MK

\begindata
PATH VALUES ('/home/mydir/kernels')

PATH_SYMBOLS ('"KERNELS')

KERNELS TO LOAD (

"$KERNELS/lowest priority.bsp',
' SKERNELS/next priority.bsp',
' SKERNELS/highest priority.bsp',

UNIX/MAC style path
notation, using
forward slashes

' SKERNELS/leapseconds.tls',
'SKERNELS/sclk.tsc',

' SKERNELS/c-kernel.bc',

' SKERNELS/custom/kernel data/p _constants.tpc' |

)
* Although the OS environment variable notation $<name> is used
symbols specified using the PATH_VALUES and PATH_SYMBOLS

to refer to the
keywords,

these symbols are NOT operating system environment variables and are set and
used for substitution by SPICE only in the context of this particular meta-kernel.
* The ‘+’ continuation character described on the previous page may be used to

handle path strings that exceed 80 characters.

Introduction to Kernels

27

Windows

Sample Meta-Kernel

Navigation and Ancillary Information Facility

* This meta-kernel uses the PATH_VALUES and PATH_SYMBOLS
keywords to specify the directory where the kernels are located.

KPL/MK
\begindata
PATH VALUES (‘c:\home\mydir\kernels')

PATH_SYMBOLS ('"KERNELS')
KERNELS TO LOAD (

rgKﬁﬁNELS\lowest_priority.bsp',

' SKERNELS\next priority.bsp',

' SKERNELS\highest priority.bsp',

' SKERNELS\leapseconds.tls',

' SKERNELS\sclk. tsc',

' SKERNELS\c-kernel.bc',

Windows style path
notation, using
backwards slashes

' SKERNELS\custom\kernel data\p constants.tpc' |
)

« Although the OS environment variable notation $<name> is used to refer to the
symbols specified using the PATH_VALUES and PATH_SYMBOLS keywords,
these symbols are NOT operating system environment variables and are set and
used for substitution by SPICE only in the context of this particular meta-kernel.
* The ‘+’ continuation character described previously may be used to handle path

strings that exceed 80 characters.

Introduction to Kernels

28

Kernel Precedence Rule

Navigation and Ancillary Information Facility

* The order in which SPICE kernels are loaded at run-time
determines their priority when requests for data are made

— For binary kernels, data from a higher priority file will be used in the
case when two or more files contain data overlapping in time for a given
object.

» For SPKs, CKs, and binary PCKs the file loaded last takes
precedence (has higher priority).

»For DSKs, use of priority will be specified via API calls
» Not yet supported as of N66 Toolkits

» Priority doesn’t apply to ESQ files — all data from all loaded files
are available.

— If two (or more) text kernels assign value(s) to a single keyword using
the “=" operator, the data value(s) associated with the last loaded
occurrence of the keyword are used-all earlier values are replaced with
the last loaded value(s).

— Orientation data from a binary PCK always supersedes orientation data
(for the same object) obtained from a text PCK, no matter the order in
which the kernels are loaded.

Introduction to Kernels

29

Unloading Kernels

Navigation and Ancillary Information Facility

 The unloading of a kernel is infrequently needed for
FORTRAN or CSPICE applications but is essential for Icy,
Mice, Python and similar interpreter scripts.

— Because of the way IDL and MATLAB interact with external shared
object libraries, any kernels loaded during an IDL or MATLAB session
Wi II stgyo:oaded until the end of the session unless they are specifically
unloaded.

* The routines KCLEAR and UNLOAD may be used to unload
kernels containing data you wish to be no longer available
to your program.

— KCLEAR unloads all kernels and clears the kernel pool
— UNLOAD unloads specified kernels

— KCLEAR and UNLOAD are only capable of unloading kernels that have
been loaded with the routine FURNSH. They will not unload an¥ files
that have been loaded with older load routines such as SPKLEF (those
used prior to availability of FURNSH).

« Caution: unloading text kernels with UNLOAD will also
remove any kernel pool data provided through the kernel
pool run-time data insertion/update APIs (PCPOOL,
PDPOOL, PIPOOL).

Introduction to Kernels 30

