

Navigation and Ancillary Information Facility

Geometric Event Finding Programming Lesson (MEX)

October 2017

Navigation and Ancillary Information Facility

- Problem statement:
 - Determine when the Mars Express orbiter (MEX) is visible from the DSN station DSS-14, within the time interval

2004 May 2 TDB 2004 May 6 TDB

- For the spacecraft to be considered visible, the apparent spacecraft position relative to DSS-14 must have elevation of at least 6 degrees in the DSS-14 topocentric reference frame DSS-14_TOPO.
 - » Use light time and stellar aberration corrections to compute the spacecraft position relative to DSS-14.
- Account for possible occultation of the spacecraft by Mars, using an ellipsoidal shape model and a DSK shape model.
- Compute a SPICE window representing the visibility period.
- Display the start and stop times of each time interval in this SPICE window.

Mars Shape

Navigation and Ancillary Information Facility

Spacecraft occultation ingress and egress times computed for Mars modeled as a triaxial ellipsoid and as a triangular plate model provided in a DSK differ noticeably due to the Mars topography differing from the ellipsoidal surface for some areas by many kilometers, as illustrated by the animation/view below.

Visibility Geometry

Navigation and Ancillary Information Facility

