
Navigation and Ancillary Information Facility

N IF

Introduction to Kernels

January 2017

Navigation and Ancillary Information Facility

N IF Agenda

• Overview
• Kernel architecture
• Producing kernels
• Using kernels

Introduction to Kernels 2

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 3

What is a SPICE “Kernel”

“Kernel” means file
“Kernel” means a file containing ancillary data

“Kernel” means a file containing "low level" ancillary data that may be used,
along with other data and SPICE Toolkit software, to determine higher level

observation geometry parameters of use to scientists and engineers in planning
and carrying out space missions, and analyzing data returned from missions.

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 4

SPICE Kernels Family

• SPK
– Spacecraft and Planet Ephemeris

• PCK
– Planetary Constants, for natural bodies

» Orientation
» Size and shape

• IK
– Instrument

• CK
– Pointing (“C-matrix”)

• EK
– Events, up to three distinct components

» ESP: science plan
» ESQ: sequence
» ENB: experimenter’s notebook

• FK
– Reference frame specifications

• SCLK
– Spacecraft clock correlation data

• LSK
– Leapseconds

• MK
– Meta-Kernel (a.k.a. “FURNSH kernel”)
– Mechanism for aggregating and easily

loading a collection of kernel files

• DSK
– Digital shape kernel

» Tesselated plate model
» Digital elevation model

• DBK
– Database mechanism

» Primarily used to support the ESQ
EK is rarely used

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 5

Text and Binary Kernels

SPICE text kernels are:
– text PCK (the most common

type of PCK)
– IK
– FK
– LSK
– SCLK
– MK

SPICE binary kernels are:
– SPK
– binary PCK (has been used only

for Earth, moon and Eros)
– CK
– DSK

– ESQ (part of the E-kernel)
– DBK (database kernel)

Rarely
used

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 6

• Binary form: SPK, binary PCK, CK, EK/ESQ1, DSK
– A file mostly containing data encoded in binary form
– Binary kernels are not human-readable; they require the use of Toolkit

software to examine the data contents

• Text form: text PCK, IK, FK, LSK, SCLK, MK
– Plain text files containing only printing characters (ASCII values 32-126),

i.e. human-readable text.

• “Transfer” form of a binary kernel
– This is an ASCII representation of a binary kernel
– Was used for porting the file between computers with incompatible

binary representations (e.g. PC and UNIX)
– Use of the transfer format is no longer needed for porting due to the run-

time translation capability added to SPICE long ago
» But it is one way to convert a non-native binary kernel into native

format, needed for modifying the kernel or improving read efficiency

SPICE Kernel Forms

[1] The ESP and ENB components of the EK might be binary,
or text, or html, depending on specific implementation.

Navigation and Ancillary Information Facility

N IF

Kernel Architecture

- Text kernels
- Binary kernels
- Comments in kernels

Introduction to Kernels 7

Navigation and Ancillary Information Facility

N IF Text Kernel Contents

• A text kernel is a plain text file of ASCII data

• It contains assignments of the form:

variable_name = value(s)

• A text kernel should also contain descriptive
comments that describe the assignments

– Comments are sometimes referred to as “meta-data”
» Don’t confuse this usage with the “meta-kernel” described

later in this tutorial

Introduction to Kernels 8

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 9

KPL/<kernel type>
\begindata

NAME = 'Sample text value'
NaMe = 'Keywords are case sensitive'

NUMBERS = (10.123, +151.241, -1D14)
NUMBERS += (1.0, 1, -10)
NUMBERS += (1.542E-12, 1.123125412)

START = @2011-JAN-1

\begintext

< some comments about the data >

\begindata

< more data in keyword = value syntax >

\begintext
< etc., etc. >

• The next several pages describe what you see above
• See the “Kernel Required Reading” document for details

Example Text Kernel

A data block

Another data block

A “comments” block

Another “comments” block

Navigation and Ancillary Information Facility

N IF Text Kernel Formatting

• KPL/<kernel type>
- Its use is optional, but is highly recommended
- Must appear on the first line, starting in column 1
- Tells SPICE software what kind of kernel it is
- Examples of kernel type are FK, IK, PCK, SCLK

• \begindata and \begintext
- Markers, on lines by themselves, which set off the beginning of

data and the beginning of meta-data blocks respectively
- They need not begin in column 1

• <LF> for Unix/Linux/Mac or <CR><LF> for Windows
- End of line marker (usually not visible when displaying a text kernel)
- Must be present on EVERY line in the text kernel

• Max line length, including any white space is 132 characters
Introduction to Kernels 10

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 11

Text Kernel Operators

• An assignment using the “=” operator associates one or
more values with a variable name.

• An assignment using the “+=” operator associates additional
values with an existing variable name.

• An assignment using the “@” symbol associates a calendar
date with a variable name.

– The string will be parsed and converted to an internal double precision
representation of that epoch as seconds past the J2000 epoch

» There is no time system implied
» This conversion does not need a leap seconds kernel

Navigation and Ancillary Information Facility

N IF

Using Kernels

Introduction to Kernels 18

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 19

• To make kernels available to a program you “load” them

• When you load a text kernel:
– the file is opened
– the kernel contents are read into memory

» variable names and associated values are stored in a data structure
called the “kernel pool”

– the file is closed

• When you load a binary kernel:
– the file is opened
– for SPK, CK, and binary PCK files, no data are read until a read request is

made by Toolkit software
– for ESQ files, the schema description is read, checked, and stored in memory

at load time, but no data are read until a query/fetch is made
– for all practical purposes the binary file remains open unless specifically

unloaded by you

Loading Kernels - 1

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 20

• Use the FURNSH routine to load all kernels–text and binary
– CALL FURNSH ('name.ext') (Fortran)
– furnsh_c (″name.ext″); (C)
– cspice_furnsh, 'name.ext' (IDL)
– cspice_furnsh ('name.ext') (MATLAB)

• Best practice: don’t hard code filenames–list these in a
“meta-kernel” and load the meta-kernel using FURNSH
– CALL FURNSH ('meta-kernel_name') (Fortran example)
– See the next page for more information on meta-kernels

• Caution: “Transfer format” versions of binary kernels can
not be loaded; they must first be converted to binary with
the Toolkit utility program tobin or spacit

Loading Kernels - 2

Navigation and Ancillary Information Facility

N IF

Meta-Kernels

Introduction to Kernels 22

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 23

What is a “Meta-Kernel”

• A meta-kernel is a file that lists names (and locations) of a
collection of SPICE kernels that are to be used together in a
SPICE-based application

– You can simply load the meta-kernel, causing all of the kernels listed in
it to be loaded

• Using a meta-kernel makes it easy to manage which SPICE
files are loaded into your program

• A meta-kernel is implemented using the SPICE text kernel
standards

– Refer to the Kernel Required Reading technical reference for details

• The terms “meta-kernel” and “FURNSH kernel” are used
synonymously

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 24

KPL/MK
\begindata

KERNELS_TO_LOAD = (
'/home/mydir/kernels/lowest_priority.bsp',
'/home/mydir/kernels/next_priority.bsp',
'/home/mydir/kernels/highest_priority.bsp',
'/home/mydir/kernels/leapseconds.tls',
'/home/mydir/kernels/sclk.tsc',
'/home/mydir/kernels/c-kernel.bc',
'/home/mydir/kernels+’,
'/custom/kernel_data/p_constants.tpc’,

)

Sample Meta-Kernel

The commas
are optional

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 25

KPL/MK
\begindata

KERNELS_TO_LOAD = (
'/home/mydir/kernels/lowest_priority.bsp',
'/home/mydir/kernels/next_priority.bsp',
'/home/mydir/kernels/highest_priority.bsp',
'/home/mydir/kernels/leapseconds.tls',
'/home/mydir/kernels/sclk.tsc',
'/home/mydir/kernels/c-kernel.bc',
'/home/mydir/kernels+’,
'/custom/kernel_data/p_constants.tpc’,

)

• The last file listed in this example (p_constants.tpc) demonstrates how
to use the continuation character, ‘+’, to work around the 80 character
limitation imposed on string sizes by the text kernel standards.

• See the next two pages for some important OS-specific details!

Sample Meta-Kernel

The commas
are optional

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 26

• This meta-kernel uses the PATH_VALUES and PATH_SYMBOLS
keywords to specify the directory where the kernels are located.

KPL/MK
\begindata

PATH_VALUES = ('/home/mydir/kernels')
PATH_SYMBOLS = ('KERNELS')
KERNELS_TO_LOAD = (

'$KERNELS/lowest_priority.bsp',
'$KERNELS/next_priority.bsp',
'$KERNELS/highest_priority.bsp',
'$KERNELS/leapseconds.tls',
'$KERNELS/sclk.tsc',
'$KERNELS/c-kernel.bc',
'$KERNELS/custom/kernel_data/p_constants.tpc'

)
• Although the OS environment variable notation $<name> is used to refer to the
symbols specified using the PATH_VALUES and PATH_SYMBOLS keywords,
these symbols are NOT operating system environment variables and are set and
used for substitution by SPICE only in the context of this particular meta-kernel.
• The ‘+’ continuation character described on the previous page may be used to
handle path strings that exceed 80 characters.

Unix/Mac
Sample Meta-Kernel

UNIX/MAC style path
notation
(forward slashes)

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 27

• This meta-kernel uses the PATH_VALUES and PATH_SYMBOLS
keywords to specify the directory where the kernels are located.

KPL/MK
\begindata

PATH_VALUES = (‘\home\mydir\kernels')
PATH_SYMBOLS = ('KERNELS')
KERNELS_TO_LOAD = (

'$KERNELS\lowest_priority.bsp',
'$KERNELS\next_priority.bsp',
'$KERNELS\highest_priority.bsp',
'$KERNELS\leapseconds.tls',
'$KERNELS\sclk.tsc',
'$KERNELS\c-kernel.bc',
'$KERNELS\custom\kernel_data\p_constants.tpc'

)
• Although the OS environment variable notation $<name> is used to refer to the
symbols specified using the PATH_VALUES and PATH_SYMBOLS keywords,
these symbols are NOT operating system environment variables and are set and
used for substitution by SPICE only in the context of this particular meta-kernel.
• The ‘+’ continuation character described previously may be used to handle path
strings that exceed 80 characters.

Windows
Sample Meta-Kernel

Windows style path
notation
(backwards slashes)

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 29

• The order in which SPICE kernels are loaded at
run-time determines their priority when requests
for data are made

– For binary kernels, data from a higher priority file will be used
in the case when two or more files contain data overlapping in
time for a given object.

» For SPKs, CKs and binary PCKs the file loaded last takes
precedence (has higher priority).
» Priority doesn’t apply to ESQ files – all data from all loaded
files are available.

– If two (or more) text kernels assign value(s) to a single keyword
using the “=” operator, the data value(s) associated with the last
loaded occurrence of the keyword are used–all earlier values
have been replaced with the last loaded value(s).
– Orientation data from a binary PCK always supersedes
orientation data (for the same object) obtained from a text PCK,
no matter the order in which the kernels are loaded.

Kernel Precedence Rule

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 30

• The unloading of a kernel is infrequently needed for
FORTRAN or CSPICE applications but is essential for Icy
and Mice scripts

– Because of the way IDL and MATLAB interact with external shared
object libraries any kernels loaded during an IDL or MATLAB session
will stay loaded until the end of the session unless they are specifically
unloaded

• The routines KCLEAR and UNLOAD may be used to unload
kernels containing data you wish to be no longer available
to your program.

– KCLEAR unloads all kernels and clears the kernel pool
– UNLOAD unloads specified kernels
– KCLEAR and UNLOAD are only capable of unloading kernels that have

been loaded with the routine FURNSH. They will not unload any files
that have been loaded with older load routines such as SPKLEF (those
used prior to availability of FURNSH).

• Caution: unloading text kernels with UNLOAD will also
remove any kernel pool data provided through the kernel
pool APIs (PCPOOL, PDPOOL, PIPOOL)

Unloading Kernels

