
Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE
“Icy”

How to Access the CSPICE library from the
Interactive Data Language (IDL)©

April 2016

© Exelis

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 2

Topics

• Icy Benefits
• How does it work?
• Distribution
• Icy Operation
• Vectorization
• Simple Use of Icy Functionality

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 3

• Ease of use: Icy operates as an extension to the IDL
language regime.

• Icy supports more than three-hundred CSPICE routines.
• Icy calls usually correspond to the call format of the

underlying CSPICE routine, returning IDL native data types.
• Icy has some capability not available in CSPICE such as

vectorization.
• CSPICE error messages return to IDL in a form usable by the
catch error handler construct.

Icy Benefits

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 4

• The IDL environment includes an intrinsic capability to use
external routines.

– Icy functions as an IDL Dynamically Loadable Module
(DLM). A DLM consists of a shared object library
(icy.so/.dll) and a DLM text definition file (icy.dlm).
» The shared library contains a set of IDL callable C interface routines

that wrap a subset of CSPICE wrapper calls.
» The text definition file lists the routines within the shared library

and the format for the routine’s call parameters.
• Using Icy from IDL requires you register the Icy DLM with IDL

to access the interface routines. Several means exist to do
so.

– On Unix/Linux, start IDL from the directory containing icy.dlm
and icy.so

How Does It Work? (1)

continued on next page

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 5

How Does It Work? (2)

– From the IDL interpreter (or from a command script), execute the
dlm_register command: IDL> dlm_register,’_path_to_directory_containing_icy.dlm_’

» Examples (Unix and Windows):
» IDL> dlm_register, ‘/naif/icy/lib/icy.dlm’
» IDL> dlm_register, ‘c:\naif\icy\lib\icy.dlm’

– Copy icy.dlm and icy.so or icy.dll to IDL's binary directory:
{The IDL install directory}/bin/bin.user_architecture
» Examples (Unix and Windows):

» cp icy.dlm icy.so /Applications/exelis/idl/bin/bin.darwin.x86_64/
» cp icy.dlm icy.dll C:\Program Files\Exelis\idl83\bin\bin.x86_64\

– Append to the IDL_DLM_PATH environment variable the
directory name containing icy.dlm and icy.so or icy.dll:
setenv IDL_DLM_PATH "<IDL_DEFAULT>:_path_to_directory_containing_icy.dlm_”

Caveat: with regards to the Icy source directory, icy/src/icy, do not invoke IDL from the directory,
do not register the directory, and do not append to IDL_DLM_PATH the directory. This directory
contains an “icy.dlm” but no “icy.so.”

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 6

When a user invokes a call to a DLM routine:

1. IDL calls…
2. the interface routine in the shared object

library, linked against…
3. CSPICE, which performs its function and

returns the result…
4. to IDL…

… transparent from the user’s perspective.

How Does It Work? (3)

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 7

Icy Distribution

• NAIF distributes the Icy package as an independent product
analogous to SPICELIB and CSPICE.

• The package includes:
– the CSPICE source files
– the Icy interface source code
– platform specific build scripts for Icy and CSPICE
– IDL versions of the SPICE cookbook programs, states, tictoc,
subpt, and simple

– an HTML based help system for both Icy and CSPICE, with the
Icy help cross-linked to CSPICE

– the Icy shared library and DLM file. The system is ready for use
after installation of these files

• Note: You do not need a C compiler to use Icy.

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 8

Icy Operation (1)

• A user may occasionally encounter an IDL math exception:

% Program caused arithmetic error: Floating underflow

– This warning occurs most often as a consequence of CSPICE
math operations.

• In all known cases, the SIGFPE exceptions caused by
CSPICE can be ignored. CSPICE assumes numeric underflow
as zero.

– A user can adjust IDL’s response to math exceptions by setting
the !EXCEPT variable:
» !EXCEPT = 0 suppresses the SIGFPE messages, and even more

(e.g. a fatal error).
» !EXCEPT = 1, the default, reports math exceptions on return to the

interactive prompt.
• NAIF recommends this be used.

» !EXCEPT = 2 reports exceptions immediately after executing the
command.

continued on next page

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 9

Icy Operation (2)

• A possible irritant exists in loading kernels using
the cspice_furnsh function.

– Kernels are loaded into your IDL session, not into your
IDL scripts. This means:

» loaded binary kernels remain accessible (“active”)
throughout your IDL session

» data from loaded text kernels remain in the kernel pool (in
the IDL memory space) throughout your IDL session

– Consequence: some kernel data may be available to one
of your scripts even though not intended to be so.

» You could get incorrect results!
» (If you run only one script during your IDL session, there’s

no problem.)

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 10

– Mitigation: two approaches
» Load all needed SPICE kernels for your IDL session at

the beginning of the session, paying careful attention
to the files loaded and the loading order (a later
loaded kernel has higher precedence)

• Convince yourself that this approach will provide ALL of the
scripts you will run during this IDL session with the appropriate
SPICE data

» At or near the end of every IDL script you write:
• provide a call to cspice_unload for each kernel loaded

using cspice_furnsh, or
• provide a call to cspice_kclear to remove ALL kernel

data from the kernel pool loaded using cspice_furnsh

Icy Operation (3)

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 11

Icy Vectorization (1)

• Several common Icy functions include use of vectorized
arguments, a capability not available in C or FORTRAN
toolkits.

– Note: IDL indexes arrays using a base value of zero as opposed
to FORTRAN, which uses a base value of one.

» Example: access the first element of an IDL 1xN array using
array[0], the second element using array[1], etc.

• Example: use Icy to retrieve state vectors and light-time
values for 1000 ephemeris times.

– Create an array of 1000 ephemeris times with step size of 10
hours, starting from July 1, 2005.

cspice_str2et, 'July 1, 2005', start
et = dindgen(1000)*36000.d + start

continued on next page

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 12

– Retrieve the state vectors and corresponding light times from
Mars to earth at each et, in the J2000 frame, using LT+S
aberration correction:

cspice_spkezr, 'Earth', et, 'J2000', 'LT+S', 'MARS', state, ltime

– Access the ith state 6-vector corresponding to the ith ephemeris
time with the expression

state_i = state[*,i]

• Convert the ephemeris time vector et from the previous
example to UTC calendar strings with three decimal places
accuracy.

format = 'C'

prec = 3
cspice_et2utc, et, format, prec, utcstr

Icy Vectorization (2)

continued on next page

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 13

– The call returns utcstr, an array of 1000 strings each ith string
the calendar date corresponding to et[i]. Access the ith string of
utcstr corresponding to the ith ephemeris time with the expression

utcstr_i = utcstr[i]

• Convert the position components of the N state vectors to
latitudinal coordinates (the first three components of a state
vector - IDL uses a zero based vector index).

cspice_reclat, state[0:2,*], radius, latitude, longitude

– The call returns three double precision variables of type
Array[1000] (vectorized scalars): radius, latitude, longitude.

Icy Vectorization (3)

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 14

Simple Use of Icy Functionality

• As an example of using Icy with vectorization, calculate and
plot, in the J2000 inertial frame, the trajectory of the Cassini
spacecraft from June 20 2004 to December 1 2005.

;; Construct a meta kernel, "standard.tm”, which will be used to load the needed
;; generic kernels: "naif0011.tls," "de421.bsp,” and "pck00010.tpc.”

;; Load the generic kernels using the meta kernel, and a Cassini spk.

cspice_furnsh, 'standard.tm'
cspice_furnsh, '/kernels/cassini/spk/030201AP_SK_SM546_T45.bsp'

;; Define the number of divisions of the time interval and the time interval.
STEP = 10000
utc = ['Jun 20, 2004', 'Dec 1, 2005']
cspice_str2et, utc, et
times = dindgen(STEP)*(et[1]-et[0])/STEP + et[0]

cspice_spkpos, 'Cassini', times, 'J2000', 'NONE', 'SATURN BARYCENTER', pos, ltime

;; Plot the resulting trajectory.
x = pos[0,*]
y = pos[1,*]
z = pos[2,*]
iplot, x, y, z

cspice_kclear

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 15

Graphic Output using IDL iTool

Trajectory of the Cassini spacecraft, in the J2000 frame, from June 20 2004 to Dec 1 2005

x

y
z

