
Navigation and Ancillary Information Facility

N IF

Writing an Mice (MATLAB)
Based Program

January 2012

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 2

Undefined variables are displayed in red
Results are displayed in blue

Viewing This Tutorial

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 3

First, let's go over the important steps in the process of writing a Mice-based
program and putting it to work:

•  Understand the geometry problem.
•  Identify the set of SPICE kernels that contain the data needed to perform the

computation.
•  Formulate an algorithm to compute the quantities of interest using SPICE.
•  Write and compile the program.
•  Get actual kernel files and verify that they contain the data needed to support

the computation for the time(s) of interest.
•  Run the program.

To illustrate these steps, let's write a program that computes the apparent

intersection of the boresight ray of a given CASSINI science instrument with the
surface of a given Saturnian satellite. The program will compute:

•  Planetocentric and planetodetic (geodetic) latitudes and longitudes of the

intercept point.
•  Range from spacecraft to intercept point.
•  Illumination angles (phase, solar incidence, and emission) at the intercept point.

Introduction

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 4

on-board clock ephemeris time UTC time

inertial frame

spacecraft
 frame

instrument
 frame

instrument
 boresight

body-fixed
 frame

 surface
intersection

spacecraft
 position

planetocentric
 latitude planetocentric

 longitude

Using what model?

We want the boresight
intercept on the surface, range
from s/c to intercept, and
illumination angles at
the intercept point.

When?

On what object?

For which instrument?

For what spacecraft?

TIME (UTC, TDB or TT)

satnm

 instnm

scnm

setupf

Observation geometry

Phase angle

solar incidence angle

surface normal

emission angle

In what frame? fixref

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 5

Needed Data

on-board clock ephemeris time UTC time

inertial frame

spacecraft
 frame

instrument
 frame

instrument
 boresight

body-fixed
 frame

 surface
intersection

spacecraft
 position

planetocentric
 latitude planetocentric

 longitude

Time transformation kernels

Orientation models

Instrument descriptions

Shapes of satellites, planets

Ephemerides for spacecraft,
Saturn barycenter and satellites.

surface normal

solar incidence angle

emission angle

Phase angle

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 6

Data required to compute vectors, rotations and other parameters shown in
the picture are stored in the SPICE kernels listed below.

 Note: these kernels have been selected to support this presentation; they should not be assumed to be
appropriate for user applications.

 Parameter Kernel Type File name
 ----------------------- -------------- ------------
 time conversions generic LSK naif0009.tls
 CASSINI SCLK cas00084.tsc
 satellite orientation CASSINI PCK cpck05Mar2004.tpc
 satellite shape CASSINI PCK cpck05Mar2004.tpc
 satellite position planet/sat
 ephemeris SPK 020514_SE_SAT105.bsp
 planet barycenter position planet SPK 981005_PLTEPH-DE405S.bsp
 spacecraft position spacecraft SPK 030201AP_SK_SM546_T45.bsp
 spacecraft orientation spacecraft CK 04135_04171pc_psiv2.bc
 instrument alignment CASSINI FK cas_v37.tf
 instrument boresight Instrument IK cas_iss_v09.ti

 Which Kernels are Needed?

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 7

The easiest and most flexible way to make these kernels available to the program is
via cspice_furnsh. For this example we make a setup file (also called a “metakernel”
or “furnsh kernel”) containing a list of kernels to be loaded:

\begindata

 KERNELS_TO_LOAD = ('naif0009.tls', 'cas00084.tsc', 'cpck05Mar2004.tpc',!
 '020514_SE_SAT105.bsp', '981005_PLTEPH-DE405S.bsp', !
 '030201AP_SK_SM546_T45.bsp', '04135_04171pc_psiv2.bc',!
 'cas_v37.tf', 'cas_iss_v09.ti')!
\begintext

 and we make the program prompt for the name of this setup file:

 setupf = input('Enter setup file name > ', 's');
 cspice_furnsh(setupf)

Load kernels

Note: these kernels have been selected to support this presentation; they
should not be assumed to be appropriate for user applications.

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 8

Programming Solution

•  Prompt for setup file (“metakernel”) name; load kernels specified via setup
file. (Done on previous chart.)

•  Prompt for user inputs required to completely specify problem. Obtain

further inputs required by geometry routines via Mice calls.

•  Compute the intersection of the boresight direction ray with the surface of

the satellite, presented as a triaxial ellipsoid.

•  If there is an intersection:
•  Convert Cartesian coordinates of the intersection point to
planetocentric latitudinal and planetodetic coordinates
•  Compute spacecraft-to-intercept point range
•  Find the illumination angles (phase, solar incidence, and emission) at
the intercept point

•  Display the results.

We discuss the geometric portion of the problem first.

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 9

Compute the intercept point (point) of the boresight vector (insite) specified in
the instrument frame (iframe) of the instrument mounted on the spacecraft (scnm)
with the surface of the satellite (satnm) at the TDB time of interest (et) in the
satellite’s body-fixed frame (fixref). This call also returns the light-time
corrected epoch at the intercept point (trgepc), the spacecraft-to-intercept point
vector (srfvec), and a flag indicating whether the intercept was found (found).
We use "converged Newtonian" light time plus stellar aberration corrections to
produce the most accurate surface intercept solution possible. We model the
surface of the satellite as an ellipsoid.

 [point, trgepc, srfvec, found] = cspice_sincpt(...
 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, iframe, insite);

Compute surface intercept

The range we want is obtained from the outputs of cspice_sincpt. These
outputs are defined only if a surface intercept is found. If found is true, the
spacecraft-to-surface intercept range is the norm of the output argument srfvec.
Units are km. We use the MATLAB function norm to obtain the norm:

norm(srfvec)

We'll write out the range data along with the other program results.

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 10

Compute Lat/Lon and Illumination Angles

Compute the planetocentric latitude (pclat) and longitude (pclon), as well as
the planetodetic latitude (pdlat) and longitude (pdlon) of the intersection
point.

if (found)
 [r, pclon, pclat] = cspice_reclat(point);

 % Let re, rp, and f be the satellite's longer equatorial
% radius, polar radius, and flattening factor.
re = radii(1);
rp = radii(3);
f = (re - rp) / re;

[pdlat, pdlat, alt] = cspice_recgeo(point, re, f);

The illumination angles we want are the outputs of cspice_ilumin. Units are
radians.

 [trgepc, srfvec, phase, solar, emissn] = cspice_ilumin(...
 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, point);

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 11

Geometry Calculations: Summary

 % Compute the boresight ray intersection with the surface of the
 % target body.
 [point, trgepc, srfvec, found] = cspice_sincpt(...
 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, iframe, insite);
 % If an intercept is found, compute planetocentric and planetodetic
 % latitude and longitude of the point.
 if (found)
 [r, pclon, pclat] = cspice_reclat(point);
 % Let re, rp, and f be the satellite's longer equatorial
 % radius, polar radius, and flattening factor.
 re = radii(1);
 rp = radii(3);
 f = (re - rp) / re;
 [pdlon, pdlat, alt] = cspice_recgeo(point, re, f);
 % Compute illumination angles at the surface point.
 [trgepc, srfvec, phase, solar, emissn] = cspice_ilumin(...
 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, point);
 ...
 else
 ...

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 12

The code above used quite a few inputs that we don't have yet:

•  TDB epoch of interest (et);
•  satellite and s/c names (satnm, scnm);
•  satellite body-fixed frame name (fixref);
•  satellite ellipsoid radii (radii);
•  instrument fixed frame name (iframe);
•  instrument boresight vector in the instrument frame (insite);

Some of these values are user inputs; others can be obtained via CSPICE calls
once the required kernels have been loaded.

Let's prompt for the satellite name (satnm), satellite frame name (fixref),
spacecraft name (scnm), instrument name (instnm) and time of interest (time):

 satnm = input('Enter satellite name > ', 's');
 fixref = input('Enter satellite frame > ', 's');
 scnm = input('Enter spacecraft name > ', 's');
 instnm = input('Enter instrument name > ', 's');
 time = input('Enter time > ', 's');

Get inputs - 1

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 13

Get Inputs - 2

Then we can get the rest of the inputs from Mice calls:

To get the TDB epoch (et) from the user-supplied time string (which may
refer to the UTC, TDB or TT time systems):

 et = cspice_str2et(time);

To get the satellite’s ellipsoid radii (radii):

 radii = cspice_bodvrd(satnm, 'RADII', 3);	

To get the instrument boresight direction (insite) and the name of the
 instrument frame (iframe) in which it is defined:

 [instid, found] = cspice_bodn2c(instnm);
 if (~found)
 txt = sprintf('Unable to determine ID for instrument: %d', ...
 instnm);
 error(txt)
 end

 [shape, iframe, insite, bundry] = cspice_getfov(instid, ROOM);	

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 14

Getting inputs: summary

 % Prompt for the user-supplied inputs for our program.
 setupf = input('Enter setup file name > ', 's');
 cspice_furnsh(setupf)
 satnm = input('Enter satellite name > ', 's');
 fixref = input('Enter satellite frame > ', 's');
 scnm = input('Enter spacecraft name > ', 's');
 instnm = input('Enter instrument name > ', 's');
 time = input('Enter time > ', 's');

 % Get the epoch corresponding to the input time:
 et = cspice_str2et(time);

 % Get the radii of the satellite.
 radii = cspice_bodvrd(satnm, 'RADII', 3);

 % Get the instrument boresight and frame name.
 [instid, found] = cspice_bodn2c(instnm);
 if (~found)
 txt = sprintf('Unable to determine ID for instrument: %d', ...
 instnm);
 error(txt)
 end
 [shape, iframe, insite, bundry] = cspice_getfov(instid, ROOM);

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 15

Display results

 ...
 % Display results. Convert angles from radians to degrees
 % for output.	
 fprintf('Intercept planetocentric longitude (deg): %11.6f\n', ...
 R2D*pclon)
 fprintf('Intercept planetocentric latitude (deg): %11.6f\n', ...
 R2D*pclat)
 fprintf('Intercept planetodetic longitude (deg): %11.6f\n', ...

 R2D*pdlon)
 fprintf('Intercept planetodetic latitude (deg): %11.6f\n', ...

 R2D*pdlat)
 fprintf('Range from spacecraft to intercept point (km): %11.6f\n', ...
 norm(srfvec))
 fprintf('Intercept phase angle (deg): %11.6f\n', ...

 R2D*phase)
 fprintf('Intercept solar incidence angle (deg): %11.6f\n', ...

 R2D*solar)
 fprintf('Intercept emission angle (deg): %11.6f\n', ...
 R2D*emissn)

 else
 disp(['No intercept point found at ' time])
 end	

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 16

To finish up the program we need to declare the variables we've used.

•  We'll highlight techniques used by NAIF programmers
•  Add remaining MATLAB code required to make a syntactically valid

program

Complete the program

 ABCORR = 'CN+S';
 ROOM = 10;
 R2D = cspice_dpr;

 % Prompt for the user-supplied inputs for our program.
 setupf = input('Enter setup file name > ', 's');
 cspice_furnsh(setupf)

 satnm = input('Enter satellite name > ', 's');
 fixref = input('Enter satellite frame > ', 's');
 scnm = input('Enter spacecraft name > ', 's');
 instnm = input('Enter instrument name > ', 's');
 time = input('Enter time > ', 's');

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 17

Complete source code - 1

 % Get the epoch corresponding to the input time:
 et = cspice_str2et(time);

 % Get the radii of the satellite.
 radii = cspice_bodvrd(satnm, 'RADII', 3);

 % Get the instrument boresight and frame name.
 [instid, found] = cspice_bodn2c(instnm);

 if (~found)
 txt = sprintf('Unable to determine ID for instrument: %d', ...
 instnm);
 error(txt)
 end

 [shape, iframe, insite, bundry] = cspice_getfov(instid, ROOM);

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 18

Complete source code - 2

 % Compute the boresight ray intersection with the surface of the
 % target body.
 [point, trgepc, srfvec, found] = cspice_sincpt(...
 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, iframe, insite);

 % If an intercept is found, compute planetocentric and planetodetic
 % latitude and longitude of the point.
 if (found)
 [r, pclon, pclat] = cspice_reclat(point);

 % Let re, rp, and f be the satellite's longer equatorial
 % radius, polar radius, and flattening factor.
 re = radii(1);
 rp = radii(3);
 f = (re - rp) / re;

 [pdlon, pdlat, alt] = cspice_recgeo(point, re, f);

 % Compute illumination angles at the surface point.
 [trgepc, srfvec, phase, solar, emissn] = cspice_ilumin(...
 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, point);

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 19

Complete source code - 3

 % Display results. Convert angles from radians to degrees
 % for output.
 fprintf('Intercept planetocentric longitude (deg): %11.6f\n',...
 R2D*pclon)
 fprintf('Intercept planetocentric latitude (deg): %11.6f\n',...
 R2D*pclat)
 fprintf('Intercept planetodetic longitude (deg): %11.6f\n',...

 R2D*pdlon)
 fprintf('Intercept planetodetic latitude (deg): %11.6f\n',...

 R2D*pdlat)
 fprintf('Range from spacecraft to intercept point (km): %11.6f\n',...

 norm(srfvec))
 fprintf('Intercept phase angle (deg): %11.6f\n',...

 R2D*phase)
 fprintf('Intercept solar incidence angle (deg): %11.6f\n',...

 R2D*solar)
 fprintf('Intercept emission angle (deg): %11.6f\n’,...
 R2D*emissn)
 else
 disp(['No intercept point found at ' time]
 end

 % Unload the kernels and clear the kernel pool
 cspice_kclear

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 20

It looks like we have everything taken care of:

•  We have all necessary kernels

•  We made a setup file (metakernel) pointing to them

•  We wrote the program

Let's run it.

Running the program

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 21

Running the program

Terminal Window

>>
Enter setup file name > setup.ker
Enter satellite name > PHOEBE
Enter satellite frame > IAU_PHOEBE
Enter spacecraft name > CASSINI
Enter instrument name > CASSINI_ISS_NAC
Enter time > 2004 jun 11 19:32:00

Intercept planetocentric longitude (deg): 39.843719
Intercept planetocentric latitude (deg): 4.195878
Intercept planetodetic longitude (deg): 39.843719
Intercept planetodetic latitude (deg): 5.048011
Range from spacecraft to intercept point (km): 2089.169724
Intercept phase angle (deg): 28.139479
Intercept solar incidence angle (deg): 18.247220
Intercept emission angle (deg): 17.858309

prog_geometry

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 22

•  Latitude definitions:
–  Planetocentric latitude of a point P: angle between segment from

origin to point and x-y plane (red arc in diagram).
–  Planetodetic latitude of a point P: angle between x-y plane and

extension of ellipsoid normal vector N that connects x-y plane and
P (blue arc in diagram).

Backup

P

O

Reference ellipsoid

x-y plane

z-axis
N

Planetocentric
latitude Planetodetic

latitude

