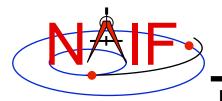
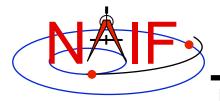


Navigation and Ancillary Information Facility


Making a CK file

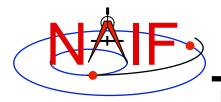
January 2012


Summary

- SPICE provides means to create CK files, either by packaging orientation computed elsewhere or by first computing orientation and then packaging it in a CK file
- Packaging of <u>already existing</u> orientation data can be done in two ways:
 - Use SPICE CK writer routines by calling them from within your own SPICE-based application
 - Convert a text file containing attitude data to a CK using the Toolkit's msopck program
- <u>Computing as well as packaging</u> orientation can be done in two ways:
 - Use SPICE geometry routines and CK writer routines by calling them from within your own SPICE-based application
 - » Constructing attitude using SPICE routines is not discussed here
 - Convert orientation rules and schedules to a CK using the *prediCkt* program available at the NAIF website

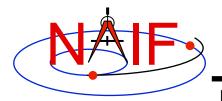
CK Writer Routines

- The SPICE toolkit provides the following CK writer routines for the FORTRAN, C, IDL and MATLAB toolkits, respectively:
 - For Type 1 CK
 - » CKW01 / ckw01_c / cspice_ckw01
 - For Type 2 CK
 - » CKW02 / ckw02_c / cspice_ckw02
 - For Type 3 CK
 - » CKW03 / ckw03_c / cspice_ckw03
 - For Type 4 CK
 - » CKW04B, CKW04A, CKW04E (no CSPICE, Icy, or Mice wrappers)
 - For Type 5 CK
 - » CKW05 / ckw05_c (no lcy or Mice wrapper)
- Only the Type 3 writer is discussed in this tutorial
 - Writers for Types 1 and 2 have very similar interfaces
 - Types 4 and 5 are are not commonly used



Type 3 Writer Example - 1

Navigation and Ancillary Information Facility


 The following C-language code fragment illustrates the creation of a Type 3 C-kernel having a single segment.

```
ckcls_c ( handle );
```


Type 3 Writer Example - 2

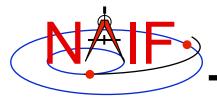
- handle file handle for the newly created C-kernel.
- begtim, endtim start and stop times in SCLK ticks for the segment.
- inst ID code for the instrument for which the Ckernel is being made.
- ref name of the base reference frame. Must be one known to SPICE during your program execution.
- avflag a SpiceBoolean indicating whether or not to include angular velocity in the segment.
- segid a string identifying the segment. It must be no more than 40 characters in length.

Type 3 Writer Example - 3

- nrec number of records in sclkdp, quats, and avvs.
- sclkdp monotonically increasing list of times, given in SCLK ticks, that identify when quats and avvs were sampled.
- quats a list of SPICE quaternions that rotate vectors from the base frame specified by the ref argument to the inst frame.

```
- m2q_c ( C_matrix, quaternion );
```

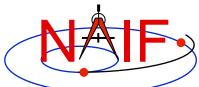
- avvs angular rate vectors given in the base frame specified by the ref argument.
- starts a list of SCLK ticks indicating the start of interpolation intervals. They must correspond to entries in sclkdp.
- nints number of entries in starts.



 One of the easiest ways to accomplish this is to assume a constant rotation rate between subsequent quaternions:

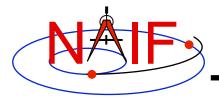
• Then copy the (nrec-1) value of avvs into the last element of avvs.

- Constructing angular rates in this fashion assumes that no more than a 180-degree rotation has occurred between adjacent quaternions.
 raxisa_c chooses the smallest angle that performs the rotation encapsulated in the input matrix.
- Other techniques exist, including differentiating quaternions. Care must be exercised when taking that particular approach, however.



Navigation and Ancillary Information Facility

- msopck is a program for making CK files from orientation provided as a time tagged, space-delimited table in a text file
- msopck can process quaternions (SPICE and non-SPICE flavors), Euler angles, or matrixes, tagged with UTC, SCLK, or ET
- msopck requires all program directives be provided in a setup file that follows the SPICE text kernel syntax
- msopck has a simple command line interface with the following usage


```
msopck setup_file input_data_file output_ck_file
```

 If the specified output CK already exists, new segment(s) are appended to it

MSOPCK List of Setup File Keywords

	Navigation and Ancillary	Information Facility
Supporting	LSK_FILE_NAME	= 'LSK file'
	SCLK_FILE_NAME	<pre>= 'SCLK file' (or MAKE_FAKE_SCLK=`new SCLK file')</pre>
Kernels/Files	FRAMES_FILE_NAME	= 'FRAMES file'
	COMMENTS_FILE_NAME	= 'file containing comments'
	PRODUCER_ID	= 'producer group/person name'
	INTERNAL_FILE_NAME	<pre>= 'internal file name string'</pre>
Output CK	CK_SEGMENT_ID	= 'segment ID string'
Output CK	CK_TYPE	= 1, 2, or 3
Specifications	INSTRUMENT_ID	= CK ID
	REFERENCE_FRAME_NAME	= 'reference frame name'
	MAXIMUM VALID INTERVAL	<pre>= interval length, seconds</pre>
	INPUT_TIME_TYPE	= 'SCLK', 'UTC', 'TICKS', 'DPSCLK', or 'ET'
	TIME_CORRECTION	= bias to be applied to input times, seconds
	INPUT_DATA_TYPE	<pre>= 'MSOP QUATERNIONS', 'SPICE QUATERNIONS',</pre>
		'EULER ANGLES', or 'MATRICES'
	QUATERNION_NORM_ERROR	= maximum normalization error
	EULER_ANGLE_UNITS	= 'DEGREES' or 'RADIANS'
	EULER_ROTATIONS_ORDER	= ('axis3', 'axis2', 'axis1')
Input data	EULER_ROTATIONS_TYPE	= 'BODY' or 'SPACE'
Specifications	ANGULAR_RATE_PRESENT	= 'YES', 'NO', 'MAKE UP', 'MAKE UP/NO AVERAGING'
	ANGULAR_RATE_FRAME	= 'REFERENCE' or 'INSTRUMENT'
	ANGULAR_RATE_THRESHOLD	= (max X rate, max Y rate, max Z rate)
Optional and	OFFSET_ROTATION_ANGLES	<pre>= (angle3, angle2, angle1)</pre>
conditional	OFFSET_ROTATION_AXES	= ('axis3', 'axis2', 'axis1')
keywords are	OFFSET_ROTATION_UNITS	= 'DEGREES' or 'RADIANS'
shown in green	DOWN_SAMPLE_TOLERANCE	<pre>= down sampling tolerance, radians</pre>
	INCLUDE_INTERVAL_TABLE	= 'YES' or 'NO' (default 'YES')

MSOPCK - Input Details (1)

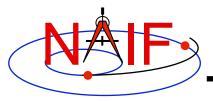
Navigation and Ancillary Information Facility

Four Examples

INPUT DATA TYPE = 'SPICE QUATERNIONS'

Input file:TIME1 [TIME2] QCOS QSIN1 QSIN2 QSIN3 [ARX ARY ARZ]..........TIME1 [TIME2] QCOS QSIN1 QSIN2 QSIN3 [ARX ARY ARZ]

INPUT DATA TYPE = 'MSOP QUATERNIONS'


Input file:	TIME1	[TIME2]	-QSIN1	-QSIN2	-QSIN3	QCOS	[ARX	ARY	ARZ]
	• • • • •		• • • • •	• • • • •	• • • • •	• • • •	• • •	• • •	• • •	
	TIME1	[TIME2]	-QSIN1	-QSIN2	-QSIN3	QCOS	[ARX	ARY	ARZ]

INPUT DATA TYPE = 'EULER ANGLES'

Input file:TIME1 [TIME2] ANG3 ANG2 ANG1 [ARX ARY ARZ]..........TIME1 [TIME2] ANG3 ANG2 ANG1 [ARX ARY ARZ]

INPUT DATA TYPE = 'MATRICES'

Input file:	TIME1	[TIME2]	M11	M12	M13	M21	•••	M33	[ARX	ARY	ARZ]
			• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
	TIME1	[TIME2]	M11	M12	M13	M21	•••	M33	[ARX	ARY	ARZ]

MSOPCK - Input Details (2)

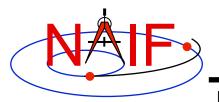
Navigation and Ancillary Information Facility

- Quaternions
 - INPUT_DATA_TYPE = 'SPICE QUATERNIONS' indicates the quaternions being used follow the SPICE formation rules(*)
 - INPUT_DATA_TYPE = 'MSOP QUATERNIONS' indicates the quaternions being used follow the traditional AACS formation rules(*)
 - » Normally quaternions that come in telemetry are of this type
 - QUATERNION_NORM_ERROR keyword may be used to identify and filter out input records with quaternions that are not unit vectors
 - » It is set a tolerance for comparing the norm of the input quaternion with 1

Euler angles

- All three angles must be provided
- For the angles provided on the input as

```
TIME1 [TIME2] ANG3 ANG2 ANG1 [ ARX ARY ARZ ]
```

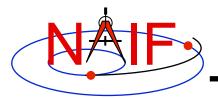

and rotation axes specified in the setup as

EULER_ROTATIONS_ORDER = ('axis3', 'axis2', 'axis1')

the matrix rotating vectors from base to the structure frame is computed as

```
Vinst = [ANG3]axis3 * [ANG2]axis2 * [ANG1]axis1 * Vref
```

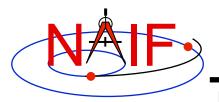
Angles can be provided in degrees or radians



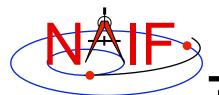
MSOPCK - Input Details (3)

Navigation and Ancillary Information Facility

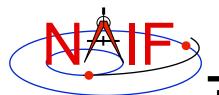
- Angular rates are an optional input. Their presence or absence must be indicated using the ANGULAR_RATE_PRESENT keyword
 - If angular rates are provided (ANGULAR_RATE_PRESENT = 'YES'), they must be in the form of a 3d vector expressed either in the base frame (less common) or instrument frame (more common)
 - » The ANGULAR_RATE_FRAME keyword must be set to indicate which of the two is used
 - If angular rates are not provided, the program can either make a CK without rates (ANGULAR_RATE_PRESENT = 'NO'), or try to compute rates from the orientation data by using uniform rotation algorithm implemented in Type 3 CK, either with averaging (ANGULAR_RATE_PRESENT = 'MAKE UP') or without averaging (ANGULAR_RATE_PRESENT = 'MAKE UP/NO AVERAGING') of the rates computed for adjacent orientation data points
 - ANGULAR_RATE_THRESHOLD may be used to identify and filter out input records with angular rate components that are too large to be real
- Input data can be tagged with UTC, SCLK, SCLK ticks or ET, as specified using the INPUT_TIME_TYPE keyword


- Time tags must not have embedded spaces

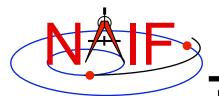
MSOPCK - Output Details (1)


- *msopck* can generate Type 1, 2, or 3 CKs
 - Type 1 is rarely used only in cases when the input contains very few data points that are far apart so that interpolation between them makes no sense
 - Type 2 is also rarely used, primarily to package orientation for spinners
 - » Normally the input for making Type 2 CKs should contain two times and the angular rate in each record
 - Type 3 is the most commonly used type because it provides interpolation between the orientation data points stored in the CK
- Interpolation intervals are determined based on the threshold value specified in the MAXIMUM_VALID_INTERVAL keyword
 - The threshold interval is given in seconds
 - A Type 3 CK will allow interpolation between all input points for which the duration between points is less than or equal to the threshold
- An additional transformation to be combined with the input attitude may be specified using OFFSET_ROTATION_* keywords
 - The convention for specification of the offset rotation angles is the same as for the input Euler angles
 - A vector defined in the base frame is first multiplied by the offset rotation

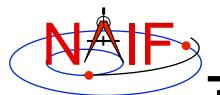
```
Vinst = [ROTinput] * [ROToffset] * Vref
```



MSOPCK - Output Details (2)

- The time tags may be adjusted by a constant value specified in seconds using the TIME_CORRECTION keyword
- The output CK file contains one or more CK segments
 - Multiple segments are generated if the input data volume is large and does not fit into the program's internal buffer (100,000 pointing records)
 - When the output file has many segments, each segment's start time is equal to the stop time of the previous segment, i.e. there are no gaps at the segment boundaries
- The Comment area of the output CK contains the following information:
 - Contents of a comment file, if it was specified using the COMMENT_FILE_NAME keyword
 - Contents of the setup file
 - Summary of coverage for each segment written to the file, including a table listing interpolation intervals for segments of Type 2 or 3


MSOPCK - Example (1)

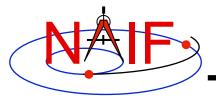
		Terminal Window	X
	<pre>\$ more msopck_setup.exampl MSOPCK setup for predict M </pre>		
	\begindata		
	PRODUCER_ID	= 'NAIF/JPL'	
l	LSK_FILE_NAME	= 'naif0007.tls'	
l	SCLK_FILE_NAME	= 'ORB1_SCLKSCET.00001.tsc'	
l	COMMENTS_FILE_NAME	<pre>= 'msopck_comments.example'</pre>	
L	INTERNAL_FILE_NAME	= 'sample M01 SC Orientation CK File'	
		= 'SAMPLE M01 SC BUS ATTITUDE'	
L	INSTRUMENT_ID		
L	REFERENCE_FRAME_NAME	= 'MARSIAU'	
L	CK_TYPE	= 3	
L	MAXIMUM_VALID_INTERVAL	= 60	
L	INPUT_TIME_TYPE	= 'SCLK'	
	INPUT_DATA_TYPE	= 'MSOP QUATERNIONS'	
	QUATERNION_NORM_ERROR		
	ANGULAR_RATE_PRESENT	= 'MAKE UP'	
	\begintext		
7	\$		


MSOPCK - Example (2)

	Terminal Window	X
	<pre>\$ more msopck_comments.example</pre>	
	Sample Mars Surveyor '01 Orbiter Spacecraft Orientation CK File	
	Orientation Data in the File	
•	This file contains sample orientation for the Mars Surveyor '01 Orbiter (M01) spacecraft frame, 'M01_SPACECRAFT', relative to the Mars Mean Equator and IAU vector of J2000, 'MARSIAU', inertial frame. The NAIF ID code for the 'M01_SPACECRAFT' frame is -53000. Status	
	This file is a special sample C-Kernel file created by NAIF to illustrate MSOPCK program. This file should not be used for any other purposes.	
▼ ▲		

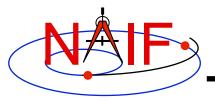
MSOPCK - Example (3)

		Terminal Win	ldow		X
<pre>\$ more msopck_in</pre>	put.example				
0767491368.064	-0.24376335	0.68291384	0.28475901	0.62699316	
0767491372.114	-0.24249471	0.68338563	0.28591829	0.62644323	
0767491373.242	-0.24204185	0.68355329	0.28633291	0.62624605	
0767491374.064	-0.24194814	0.68358228	0.28641744	0.62621196	
0767491380.064	-0.24012676	0.68424169	0.28807922	0.62543010	
0767491386.064	-0.23830473	0.68489895	0.28973563	0.62464193	
0767491392.064	-0.23648008	0.68555126	0.29139303	0.62384833	
0767491398.064	-0.23465389	0.68620253	0.29304524	0.62304745	
0767491404.064	-0.23282999	0.68684150	0.29470173	0.62224580	
0767491404.114	-0.23277293	0.68686688	0.29475362	0.62221455	
0767491405.242	-0.23231585	0.68702790	0.29516507	0.62201253	
0767491410.064	-0.23100059	0.68748174	0.29634561	0.62143935	
0767491416.064	-0.22917353	0.68811325	0.29799308	0.62062853	
0767491422.064	-0.22734161	0.68874177	0.29963482	0.61981412	
0767491428.064	-0.22551078	0.68936246	0.30128030	0.61899473	
0767491434.064	-0.22367453	0.68998299	0.30291779	0.61816987	
0767491436.114	-0.22300583	0.69021050	0.30351804	0.61786298	
0767491438.011	-0.22251770	0.69037871	0.30395477	0.61763631	


MSOPCK - Example (4)

Navigation and Ancillary Information Facility

Terminal Window


<pre>\$ msopck msopck_setup.example msopck_input.example msopck_example_ck.bc</pre>
MSOPCK Utility Program, Version 3.0.0, 2003-05-05; SPICE Toolkit Ver. N0057
<comment contents="" file=""></comment>
<setup contents="" file=""></setup>

RUN-TIME OBTAINED META INFORMATION:

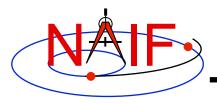
PRODUCT_CREATION_TIME = 2004-04-29T12:17:55
START_TIME = $2004 - 04 - 27T00:00:05.516$
STOP_TIME = 2004-04-27T23:59:56.275

INTERPOLATION INTERVALS IN THE FILE SEGMENTS:

SEG.SUMMARY: ID -53000, COVERG: 2004-04-27T00:00:05.516 2004-04-27T23:59:56.275
2004-04-27T00:00:05.516 2004-04-27T20:05:26.282
2004-04-27T20:11:20.278 2004-04-27T23:59:56.273

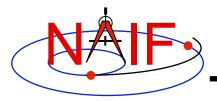
X

- prediCkt is a program for making CK files from a set of orientation specification rules, and schedules defining when these rules are to be followed
- *prediCkt* has a simple command line interface
- prediCkt requires orientation and schedule specification to be provided in a setup file that follows the SPICE text kernel syntax
- prediCkt requires the names of all supporting kernels --SPK, PCK, etc -- be provided in a meta-kernel (a "furnsh kernel")
- prediCkt is available only from the Utilities link of the NAIF webpages



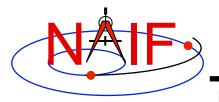
Navigation and Ancillary Information Facility

• *prediCkt* has the following command line arguments


```
prediCkt -furnish support_data
   -spec ck_specs
   -ck outfile
   -tol fit_tolerance [units]
   -<sclk|newsclk> sclk kernel
```

- '-furnish', '-spec' and '-ck' are used to specify the input metakernel, input attitude specification file and output CK file
- '-tol' is used to specify the tolerance to which the orientation stored in the CK should match the specified attitude profile
- '-sclk' or '-newsclk' specify the name of an existing SCLK or the new "fake" SCLK to be created for use with the output CK

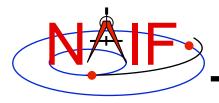
PREDICKT - Furnsh and Spec Files


- A "FURNSH" kernel lists SPICE kernels that are to be used by prediCkt to determine geometry needed to compute orientations
- A prediCkt attitude specification (spec) file following the text kernel syntax is used to provide three types of information:
 - Specification of dynamic directions
 - Specification of orientations based on these directions
 - Specification of the schedules defining when those orientations should be followed
- The contents of the FURNSH kernel and the spec file are included in the comment area of the output CK file

PREDICKT - Directions

- Dynamic directions can be of the following types:
 - Based on ephemeris (position vectors, velocity vectors)
 - Fixed with respect to a reference frame (expressed as a Cartesian vector or specified by RA and DEC)
 - Towards sub-observer point
 - Based on the surface normal and lines of constant latitude or longitude
 - Based on other, already defined directions (rotated from them, computed as cross products using them, etc)
- Example: these two sets of spec file keyword assignments specify nadir and spacecraft velocity directions for the M01 spacecraft

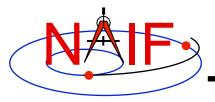
DIRECTION_SPECS	+= ('ToMars	= POSITION OF MARS - ')
DIRECTION_SPECS	+= ('FROM M01 -')
DIRECTION_SPECS	+= ('CORRECTION NONE')
DIRECTION_SPECS	+= ('scVelocity	= VELOCITY OF M01 -')
DIRECTION_SPECS	+= ('FROM MARS -')
DIRECTION_SPECS	+= ('CORRECTION NONE')


PREDICKT - Orientations

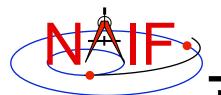
Navigation and Ancillary Information Facility

• An orientation is specified by:

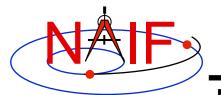
- defining that one of the frame's axes (+X,+Y,+Z,-X,-Y,-Z) points exactly along one of the defined directions
- defining that another of the frame's axes points as closely as possible to another defined direction
 - » The third axis is the cross product of the first two
- specifying the base frame with respect to which the orientation of this "constructed" frame is to be computed
- Example: these spec file keyword assignments specify the nominal nadir orientation for the THEMIS instrument, flown on the M01 spacecraft


ORIENTATION_NAME += 'CameratoMars' PRIMARY += '+Z = ToMars' SECONDARY += '+Y = scVelocity' BASE_FRAME += 'J2000'

PREDICKT - Schedules (1)


- A schedule is defined by specifying a series of time intervals during which a given orientation is to be followed
 - For each interval for a given CK ID the spec file defines the orientation name, start time, and stop time (as Ephemeris Times)
- Example: these spec file keyword assignments specify a schedule with a single window during which M01 (Mars Odyssey) will yield nadir-pointed orientation for the THEMIS instrument

CK-SCLK	= 53
CK-SPK	= -53
CK-FRAMES	+= -53000
CK-53000ORIENTATION	+= 'SOLUTION TO M01_THEMIS_IR = CameratoMars'
CK-53000START	+= @2004-FEB-10-00:00
CK-53000STOP	+= @2004-FEB-15-00:00


PREDICKT - Schedules (2)

- In the example on the previous slide:
 - the CK-FRAMES keyword specifies the CK ID to be used in the output CK
 - » This ID is incorporated into the keywords defining the schedule intervals
 - the CK-SCLK keyword specifies the ID of the SCLK to be used in creating the CK
 - the CK-SPK keyword specifies the ID of the object, the position of which is used in applying light time correction when orientation is computed
 - "SOLUTION TO" construct specifies that although the orientation is sought for the M01 spacecraft frame (ID -53000), it is computed for the camera frame (M01_THEMIS_IR) and then transformed to the spacecraft frame

PREDICKT - Example (1)

	Terminal Window
<pre>\$ cat m01_map_nadir.prediCkt</pre>	
\begindata	
DIRECTION_SPECS	+= ('ToMars = POSITION OF MARS -')
	+= ('FROM M01 -')
DIRECTION_SPECS	+= ('CORRECTION NONE')
DIRECTION_SPECS	+= ('scVelocity = VELOCITY OF M01 -')
DIRECTION_SPECS	+= ('FROM MARS -')
DIRECTION_SPECS	+= ('CORRECTION NONE')
•	
ORIENTATION_NAME	+= 'CameratoMars'
PRIMARY	+= '+Z = ToMars'
SECONDARY	+= '+Y = scVelocity'
BASE_FRAME	+= 'J2000'
	= 53
CK-SPK	
CK-FRAMES	+= -53000
CK-53000ORIENTATION	+= 'SOLUTION TO M01_THEMIS_IR = CameratoMars'
	+= @2004-FEB-10-00:00
CK-53000STOP	+= @2004-FEB-15-00:00
\begintext	

PREDICKT - Example (2)

	Terminal Window
	m01_map_nadir.furnsh
\begin	
KEF	NELS_TO_LOAD = ('naif0007.tls'
	'm01_v26.tf'
	'mar033-5.bsp'
	'm01_map_rec.bsp'
	'm01.tsc')
\begin	
	iCkt -furnish m01_map_nadir.furnsh -spec m01_map_nadir.prediCkt -ck m01_map_nadir.bc -tol egrees -sclk m01.tsc
• Begin	Segment: 1 SOLUTION TO M01_THEMIS_IR = CameratoMars
Constr	ucting Segment
From:	2004 FEB 10 00:00:00.000
To :	2004 FEB 15 00:00:00.000
Per	centage finished: 0.0%
Per	centage finished: 5.0 % (50 quaternions)
····	
	centage finished: 95.0 % (925 quaternions)
Ş	