
Preliminary Agenda January 2010 SPICE Training Class 2/25/10

Who Num Length Running
No. Presents Pages Minutes Time

 Day 1 Mar. 9
8:30 AM Classroom opens

1 Chuck 7 10 9:00 AM Welcome to the SPICE Tutorials
2 Chuck 29 30 9:10 AM SPICE overview
3 Ed 14 20 9:40 AM SPICE conventions
4 Boris 29 35 10:00 AM NAIF IDs and Names
5 Nat 23 30 10:35 AM Intro to kernel files
6 Jorge 7 10 11:05 AM Comments in SPICE kernels

60 11:15 AM Lunch
7 Ed 32 25 12:15 PM Intro to Toolkit: libraries, utilities, applications, documentation
8 Jorge 8 10 12:40 PM Using Module Headers

Boris 0 10 12:50 PM Brief demo of navigating Toolkit documentation
35 1:00 PM Lesson #1 Navigating through the SPICE components

9 Ed 9 10 1:35 PM Preparing for programming
30 1:45 PM Lesson #2 Practice building a program: call TK_Version

10 Boris 11 20 2:15 PM Time: systems, formats and conversions
11 Nat 18 20 2:35 PM LSK and SCLK (Leapseconds and Spacecraft Clock kernels)

0 2:55 PM Starting the Remote Sensing Lessons: 6 parts
45 2:55 PM Lesson #3 Remote Sensing: time conversions

12 Nat 39 45 3:40 PM SPK (Ephemeris information)
4:25 PM End of class

Day 2 Mar. 10
8:30 AM Classroom opens

50 9:00 AM Lesson #4 Remote Sensing: obtaining target states and positions
13 Ed 16 20 9:50 AM PcK (Planetary cartographic and physical constants)
14 Boris 21 30 10:10 AM CK (Orientation information)
15 Boris 18 25 10:40 AM FK (Reference frames information)
16 Boris 8 15 11:05 AM Using the frames kernel in conjunction with other kernels

50 11:20 AM
Lesson #5 Remote Sensing: spacecraft orientation and reference
frames

60 12:10 PM Lunch
17 Nat 21 25 1:10 PM Computing derived quantities

60 1:35 PM
Lesson #6 Remote Sensing: computing sub-s/c and sub-solar
points

18 Ed 22 25 2:35 PM Other useful SPICELIB/CSPICE functions
19 Jorge 28 30 3:00 PM IK (Instrument information)
20 Boris 2 10 3:30 PM Reading FKs and IKs

60 3:40 PM
Lesson #7 Remote Sensing: intersecting vectors with a triaxial
ellipsoid and computing illumination angles

4:40 PM End of class

Preliminary Agenda January 2010 SPICE Training Class 2/25/10

Who Num Length Running
No. Presents Pages Minutes Time

Day 3 Mar. 11
8:30 AM Classroom opens

21 Nat 20 10 9:00 AM Exception handling
22 Ed 6 15 9:10 AM Common Problems - An intro
23 Boris 35 40 9:25 AM Toolkit applications: chronos, spkmerge, mkspk, etc.

50 10:05 AM
Lesson #8 Practice using toolkit apps: e.g. chronos, commnt,
spkdiff, ckbrief, ….

24 Boris 37 35 10:55 AM Other tools (not in generic Toolkit)
25 Nat 47 60 11:30 AM Geometry Finder Subsystem Overview

60 12:30 PM Lunch
26 Boris 10 15 1:30 PM Summary of Key Points (Getting Started)

Ed 5 1:45 PM Overview of "Other Stuff" lesson
Boris 5 1:50 PM Overview of "In-situ" lesson
Nat 5 1:55 PM Overview of "Event finding" lesson
Nat 5 2:00 PM Overview of Shape Model lesson
Nat 5 2:05 PM Overview of "Binary PCK" lesson

Jorge 5 2:10 PM Overview of "Telecomm" lesson
60 2:15 PM Lesson #9 Pick one or more of the above

27 Boris 11 15 3:15 PM The NAIF Server
28 Jorge 7 15 3:30 PM SPICE usage within ESA and the PSA Archive
29 Ed 16 25 3:45 PM Shape model preview
30 Chuck 8 15 4:10 PM SPICE development plans

Chuck/all 20 4:25 PM Summary and class feedback
4:45 PM End of class

559
Backup: included in package but not presented

1 7 Introduction to SPICE
2 7 Motivation for SPICE
3 34 Fundamental concepts of space geometry
4 10 Porting Kernels
5 10 Installing the Toolkit
6 15 IDL interface to CSPICE
7 14 Matlab interface to CSPICE
8 22 Matlab programming example
9 24 IDL programming example
10 26 C programming example
11 26 Fortran programming example
12 9 E-Kernel Overview
13 10 SPICE Documentation Taxonomy
14 33 Lunar/earth binary PCK and FKs
15 56 Dynamic frames: how to define many kinds of reference frames
16 57 Making an SPK file
17 28 Making a CK file

Navigation and Ancillary Information Facility

N IF

Welcome
to the

SPICE Tutorials

March 2010

Navigation and Ancillary Information Facility

N IF

Welcome to tutorials 2

Objectives

•  For you
–  Provide an overview of the entire SPICE system
–  Provide a sense of the purpose and uses of SPICE
–  Provide an introduction to the use of primary SPICE components
–  Provide examples of how to use SPICE software and data files
–  Provide some insight into conventions and common problems
–  Provide a variety of “hands-on” programming exercises
–  Provide a peek at new capabilities being worked on or considered
–  Familiarize you with available SPICE resources

•  For NAIF (if these tutorials are being seen in a class setting)
–  Get student’s feedback on today’s SPICE system

»  Especially what’s hard to understand, hard to use, missing
–  Get student’s suggestions for further development of SPICE
–  Get student’s suggestions for improvements to NAIF support of the space

science community

Navigation and Ancillary Information Facility

N IF

Welcome to tutorials 3

•  Broad coverage
–  Begins at a high level, but quickly drills down to details
–  Touches on many SPICE-related topics that could be of interest to

science and engineering teams
»  Depth of discussion varies somewhat amongst topics

•  Provide information for FORTRAN, C, IDL and
MATLAB programmers

•  Some topics are addressed very little or not at all
–  Archiving SPICE data
–  Kernel production

Scope

Navigation and Ancillary Information Facility

N IF

Welcome to tutorials 4

Repeated Material

•  Some topics will be repeated in two or more
tutorials

–  We’re not trying to bore you, but…
»  we don’t wish to assume people will read all of the tutorials

at the same time
»  we think some items are sufficiently important to mention

them more than once

Navigation and Ancillary Information Facility

N IF

Welcome to tutorials 5

••••

… but it does take a
modest amount of effort
to learn enough about
SPICE to begin to use its
features with good success.

It helps to have some
math skills, some innate sense
of spatial orientation, and
some familiarity with your
computer’s operating
system, a code editor, and a
compiler or Integrated
Development Environment (IDE).

Your SPICE Odyssey Begins Here

It doesn’t take a
rocket scientist…

Navigation and Ancillary Information Facility

N IF

Welcome to tutorials 6

SPICE is a Large Product

•  The generic SPICE Toolkit contains:

–  Well over 1000 individual public modules
»  most customers use only a handful of these

–  about 13 utility and application executables (with User Guides)
–  about 23 subsystem reference documents
–  4 “cookbook” tutorial programs (with User Guides)
and assorted other documents, scripts and libraries.

•  Don’t let this size bother you…
 … just work your way into it bit by bit.

Navigation and Ancillary Information Facility

N IF

Welcome to tutorials 7

The NAIF Team at JPL

Nat Bachman

Ed Wright Boris Semenov

Chuck Acton

Navigation and Ancillary Information Facility

N IF

An Overview of SPICE

March 2010

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 2

SPICE deals with these data to support the
planning for and analysis of these data

Space Science Data: Two Kinds

Science
Instrument

Data

Ancillary
Data

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 3

What are “Ancillary Data?”

Spacecraft

Planet

Earth

Sun

Solar System Barycenter

Time Conversion
Calculations

Logs of Commands
and Events

Other

Instrument
reference frame

Antenna
reference
frame

EME 2000
reference frame
(J2000)

Reference frames

and size/
shape
of planet

and size/
shape
of Earth

Sizes/shapes

Orientation
of spacecraft

Orientations

Orientation

Orientation

Relative positions
of spacecraft and

solar system bodies

Positions

Pointing of
Instrument
field-of-view

Pointing

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 4

What are “Ancillary Data”?

•  “Ancillary data” are those that help scientists and
engineers determine:
–  where the spacecraft was located
–  how the spacecraft and its instruments were oriented (pointed)
–  what was the location, size, shape and orientation of the target being

observed
–  what events were occurring on the spacecraft or ground that might

affect interpretation of science observations

•  In the above we’ve used past tense, but doing the
same functions for future times is equally
applicable

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 5

From Where do Ancillary Data Come?

•  Some come from the spacecraft
•  Some come from the mission control center
•  Some come from the spacecraft and instrument builders
•  Some come from scientists

•  SPICE is used to organize and package these data in a
collection of useful, stable file types–called "kernels."

•  The kernels are made available, along with SPICE Toolkit
software:

–  to help scientists in the planning for and analysis of science observations,
and

–  to help engineers in planning for and analysis of spacecraft and ground
system operations.

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 6

Why SPICE?

•  Knowing observation geometry and events is
an important element:

–  in the design of space missions,
–  in the selection of observations,
–  and in analysis of the science data returned from the

instruments.

•  Having proven, extensive and reusable means
for producing and using ancillary data reduces
cost and risk, and can help scientists and
engineers achieve more substantive, accurate
and timely results.

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 7

•  The principal SPICE system components are:
–  Data files, often called “kernels” or “kernel files”
–  Software, known as the SPICE Toolkit, consisting of:

»  a subroutine/function library
»  a number of programs (executables)

•  Some are “meaty” applications
•  Some are “simple” utilities focused on kernel management

»  a few “cookbook” programs
•  Simple examples of using SPICE toolkit subroutines

–  Documentation
•  User Guides for programs
•  Substantial source code documentation for all subroutines

–  Provided explicitly for those who will use Toolkit subroutines to make their own
application programs

•  Technical reference documents for major families of subroutines
•  A permuted index

–  Tutorials
–  Programming lessons, which focus on using SPICE subroutines

»  Include tips, data, and NAIF’s solution code and numeric results

SPICE System Components

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 8

S

P

I

C

E

Spacecraft

Planet

Instrument

C-matrix

Events

* Coined by Dr. Hugh Kieffer, USGS Astrogeology Branch, Flagstaff AZ

Genesis of the SPICE Acronym*

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 9

Logical versus Physical View
Logical View Physical View

Spacecraft

Planet

Instrument

Camera-matrix

Events

S

P

I

C

E

Software SPICE Toolkit

SPK

PcK

IK

CK

EK
ESP ESQ

S

FK
LSK
SCLK

Space vehicle or target
body trajectory (ephemeris)

Target body size,
shape and orientation

Instrument field-of-view size,
shape and orientation

Orientation of space vehicle or
any articulating structure on it

Events information:
 - Science Plan (ESP)
 - Sequence of events (ESQ)
 - Experimenter’s Notebook (ENB)

Reference frame specifications
Leapseconds tabulation

Spacecraft clock coefficients

API libraries, some application
and utility programs, software
documentation

Others

Content

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 10

SPK

PcK

IK

•  Space vehicle ephemeris (trajectory)
•  Planet, satellite, comet and asteroid

ephemerides
•  More generally, position of something

relative to something else

•  Planet, satellite, comet and asteroid
orientations, sizes, shapes

•  Possibly other similar “constants” such
as parameters for gravitational model,
atmospheric model or rings model

•  Instrument information such as:
–  Field-of-view size, shape, orientation
–  Internal timing

SPICE System Contents - 1

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 11

CK

EK

•  Instrument platform (e.g. spacecraft) attitude
•  More generally, orientation of something relative

to a specified reference frame

•  “Events,” broken into three components:
–  ESP: Science observation plans
–  ESQ: Spacecraft & instrument commands
–  ENB: Experiment “notebooks” and ground data system logs

3 components

SPICE System Contents - 2

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 12

•  Frames
-  Definitions of and specification of relationships

between reference frames (coordinate systems)
-  Both “fixed” and “dynamic” frames are available

Other
Kernels

FK

LSK

SCLK

•  Leapseconds Tabulation
 - Used for UTC <--> TDB (ET) time conversions

•  Spacecraft Clock Coefficients
- Used for SCLK <--> TDB (ET) time conversions

•  Shape models (DEM and tessellated plates) (DSK) 1
•  Star (sky) catalog 2

UTC = Coordinated Universal Time ET = Ephemeris Time SCLK = Spacecraft Clock Time

SPICE System Contents - 3

1 under development
2 development is stalled

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 13

SPICE
Toolkit

•  Library of modules used to:
–  write binary SPICE kernel files
–  read all (binary and text) SPICE kernel files
–  compute quantities derived from SPICE kernel data

•  Example (“cookbook”) programs
•  Utility programs

–  Kernel summarization or characterization
–  Kernel porting

•  Application programs (a few)
–  e.g. “chronos” time conversion application

•  Kernel production programs (a few)
–  e.g. “mkspk” SPK production program

SPICE System Contents - 4

FORTRAN
C

IDL

MATLAB
Under development:
 Java Native Interface
 Python

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 14

Using SPICE in Science Planning

SPK

PcK

IK

CK

FK

SCLK

LSK

EK

User’s Own Modules

User’s Planning Program •  Evaluation of a
planned orbit

 or
•  Instrument

pointing plan
 or

•  Observation
geometry
visualization

 or
•  Analysis of

expected
communications
link performance

Select kernel types and specific kernels as needed

Selected
SPICE Toolkit

Library
Modules

Other
needed
data

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 15

Using SPICE in Science Data Analysis

SPK

PcK

IK

CK

FK

SCLK

LSK

EK

User’s Own Modules

Derived
Observation

Geometry

Instrument
Calibration

Data

Instrument
Data

User’s
Science

Data
Analysis
Program

Spectacular
Science
Results

User’s Geometry Program

Selected
SPICE Toolkit

Library
Modules

Select kernel types and specific kernels as needed

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 16

•  Portable SPICE kernel files
•  Portable NAIF Toolkit software
•  Code is well tested before being released to users
•  New Toolkits are always backwards compatible
•  Extensive user-oriented documentation is provided
•  A set of SPICE tutorials is available
•  “Open book” programming lessons are offered as

a part of each NAIF-provided training class

SPICE System Characteristics - 1

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 17

•  All numeric computations use double precision
•  System includes built-in exception handling

–  Catches most invalid inputs
–  Offers a traceback and configurable action upon detection of a problem

•  Gives you access to most of JPL’s integrated ephemerides for
spacecraft and natural bodies (planets, satellites, comets,
asteroids)

•  Kernel files are separable
–  Use only those you need for a particular application

•  Kernel files are extensible
–  New data “types” can be added within a family
–  New kinds of kernels can be developed as needed

•  Broad applicability, means good value
–  Multi-mission and multi-discipline

» Use it over and over again, no matter which mission you’re working on

SPICE System Characteristics - 2

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 18

SPICE System Characteristics - 3

•  Funding
–  SPICE system development is funded by NASA's Planetary Science Division
–  NASA PSD flight projects fund NAIF or others to deploy and operate SPICE in

support of NASA’s planetary missions
–  Foreign institutions fund their own people for deployment and operation of SPICE

in support of their own projects
–  SPICE Toolkit software is free to individual end users
–  Access to SPICE kernels produced by NAIF is not restricted

»  Includes mission operations kernels as well as those archived in the PDS
–  Support and consultation from NAIF is restricted to paying and paid for users

»  See chart near the end of this tutorial for details

•  Distribution of SPICE software and data is not restricted under
U.S. Government regulations

»  SPICE is classified TSPA (“Technology and Software Publicly Available”)
»  No ITAR restrictions on data, training or consulting

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 19

•  The SPICE Toolkit has been ported to a wide
variety of popular “environments”

–  Each environment is characterized by…
»  Language
»  Hardware type (platform)
»  Operating System
»  Compiler (where applicable)
»  Sometimes even selected compilation options

•  NAIF provides separate, ready-built SPICE
Toolkit packages for each supported
environment

–  If you need to port the Toolkit to a new environment yourself,
consult with NAIF staff

Supported Environments

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 20

•  Mission planning, modeling and visualization

•  Pre-flight mission evaluation from a science
perspective

•  Detailed science observation planning

•  Mission operations engineering functions

•  Science data analysis, including correlation of results
between instruments, and with data obtained from other
missions

•  Data archiving, for future use by others

•  Education and Public outreach

Increasing
mission
maturity

(time)

For What Jobs is SPICE Used ?

The original focus
of SPICE

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 21

Examples - 1
What Can You Do With SPICE ?

•  Mission Design
–  Compute interesting orbit properties; compare these with those of another

design, or of another mission
–  Evaluate possibilities for relay link times and duration

•  Mission Operations (mission engineering)
–  Predict or evaluate telecommunications link performance
–  Analyze spacecraft orientation history
–  Determine elevation and rise/set times of sun and tracking stations
–  Compute location and lighting conditions for a rover
–  Find times or time spans when a particular geometric condition exists, or

when a particular geometric parameter is within a given range
»  Examples

•  Occultation, transit, eclipse, etc.
•  Altitude or phase angle within a specified range, etc.

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 22

Examples - 2
What Can You Do With SPICE ?

•  Science: Planning, Product Generation and Data Analysis
–  Design observations
–  Compute observation geometry needed for science data product labels, to later

be used in searching a catalog for science data of interest
–  Compute observation geometry needed to analyze science data, or to correlate

multiple science data sets
»  Examples of “observation geometry”:

•  Lighting angles (phase, incidence, emission)
•  Location (LAT/LON) of instrument footprint
•  Range and local time
•  Local season

–  Find times or time spans when a particular geometric condition exists, or when
a particular geometric parameter is within a given range

•  Visualization, Education and Public Outreach
–  Provide geometry used to drive web pages giving interesting parameters such

as ranges, velocities, time of day on Mars
–  Provide geometry for animations showing spacecraft location and orientation,

instrument footprint projected on the surface, and locations of surface assets
or natural features of interest

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 23

What “Vehicle” Types Can Be Supported ?

•  Cruise/Flyby
–  Remote sensing
–  In-situ measurement
–  Instrument calibration

•  Orbiters
–  Remote sensing
–  In-situ measurement
–  Communications relay

•  Balloons*
–  Remote sensing
–  In-situ measurements

•  Landers
–  Remote sensing
–  In-situ measurements
–  Rover or balloon relay

•  Rovers
–  Remote sensing
–  In-situ sensing
–  Local terrain characterization

•  Terrestrial applications
–  Ephemerides for observers
–  Tracking station needs

* Not yet demonstrated

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 24

Global SPICE Geometry

UTC to ET mapping
(“generic” LSK file)

ET to orbiter on-board
clock mapping
(”orbiter” SCLK file)

Orbiter position relative to
the center of Mars
(“orbiter” SPK file)

Orbiter frame
orientation relative to
J2000 frame
(“orbiter” CK file)

Earth position relative to
Solar System barycenter
(“planet ephemeris” SPK file)

Rover frame orientation
relative to local level
frame
(“rover” CK file)

Rover position relative to the
landing site (lander)
(“rover” SPK file)

Local level frame
orientation relative to
planet body-fixed frame
(“mission” FK file)

Landing site (lander) position
relative to the Mars center
(“landing site” SPK file)

Mars position relative to the
Solar System barycenter
(“planet ephemeris” SPK file)

Planet body-fixed frame
orientation relative to
J2000 frame
(“generic” PCK file)

Ephemeris
Time (ET)

Universal Time
Coordinated (UTC)

Orbiter on-board
 clock (SCLK)

XM

YM

ZM

XL

YL
ZL

XR
YR

ZR

XJ2000
YJ2000

ZJ2000

XO YO

ZO
XE YE

ZE

Position Vectors Frame Orientations

Time conversions Time conversions

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 25

Orbiter Geometry

Solar array gimbal position
relative to spacecraft center
(“structures” SPK file)

Camera frame orientation
relative to spacecraft frame
(“mission” FK file)

Spacecraft frame
orientation relative to
inertial frame
(“spacecraft” CK file)

Spacecraft position relative
to planet center
(“spacecraft” SPK file)

High gain antenna gimbal
position relative to
spacecraft
(“structures” SPK file)

Solar array gimbal frame
orientation relative to
spacecraft frame
(“solar array” CK file)

Magnetometer position
relative to solar array
gimbal
(“structures” SPK file)

Magnetometer frame
orientation relative to solar
array gimbal frame
(“mission” FK file)

High gain antenna gimbal
frame orientation relative to
spacecraft frame
(“antenna” CK file)

High gain antenna phase
center location relative to
high gain antenna gimbal
(“structures” SPK file)

High gain antenna frame
orientation relative to high
gain antenna gimbal frame
(“mission” FK file)

XM

YM

ZM

ZC

XC

YC

ZA
XA

YA

ZAG

XAG YAG ZSG
YSG

XSG

ZSC YSC

XSC

Position Vectors Frame Orientations

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 26

Lander Geometry

Robotic arm gimbal
frames orientations
relative to each other
(“arm” CK file)

Robotic arm camera
frame orientation relative
to last gimbal frame
(“mission” FK file)

Robotic arm gimbal and
camera relative
positions
(“structures” SPK file)

Lander frame orientation
relative to local level
frame (“lander” CK file)

Descent camera frame
orientation relative to
lander frame
(“mission” FK file)

Descent camera
position relative to
lander
(“structures” SPK file)

Mast camera head frame
orientation relative to
lander frame
(“mast camera” CK file)

Left and right mast
camera frame
orientations relative to
camera head frame
(“mission” FK file)

Left and right mast
camera positions
relative to camera head
(“structures” SPK file)

Meteo sensor positions
relative to lander
(“structures” SPK file)

Lander position relative
to landing site
(“lander” SPK file)

Local level frame
orientation relative to
planet body-fixed frame
(“mission” FK file)

Mast camera head
position relative to
lander
(“structures” SPK file)

Landing site position
relative to planet center
(“landing site” SPK file)

XLL

YLL

ZLL

XDC

YDC

ZDC

XL YL

ZL

ZRC

YRC

XRC

ZRC

XLC

ZCH

YLC

XCH

YCH

YRC

Position Vectors Frame Orientations

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 27

Rover Geometry

YL

ZL(GRAVITY)

XL(NORTH)

XR

YR

ZR

ZT

XT YT

ZE

YE
XE

YRC

ZRC
XRC

YLC

XLC

ZLC

ZS

XS

YS

Frame Orientations Position Vectors

Left and right mast camera
center positions relative to
end of mast
(“structures” SPK file)

End of mast position relative
to elbow gimbal
(“structures” SPK file)

Mast elbow gimbal position
relative to shoulder gimbal
(“structures” SPK file)

Mast shoulder gimbal
position relative to torso
gimbal
(“structures” SPK file)

Mast torso gimbal position
relative to rover
(“structures” SPK file)

Rover position relative to
landing site (“rover” SPK file)

Landing site position relative
to planet center
(“landing site” SPK file)

Left and right mast camera
frames orientation relative to
mast elbow frame
(“mission” FK file)

Mast elbow frame orientation
relative to mast shoulder
frame (“mast” CK file)

Mast shoulder frame
orientation relative to mast
torso frame
(“mast” CK file)

Mast torso frame orientation
relative to rover frame
(“mast” CK file)

Rover frame orientation
relative to local level frame
(“rover” CK file)

Local level frame orientation
relative to planet body-fixed
rotating frame
(“mission” FK file)

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 28

Major SPICE Users

Navigation and Ancillary Information Facility

N IF

Overview of SPICE 29

Building Blocks for Your Applications

The “SPICE” ancillary information system can serve
as a set of blocks for building tools that can help
execute a multi-mission, international space
exploration program

S P
I C E

SPICE: the ancillary information system that NAIF builds and often operates.
NAIF: the JPL entity responsible for development and deployment of SPICE.
NAIF Node of the PDS: one responsibility of the NAIF Group--archiving and providing
long-term access to SPICE data for the worldwide science community.

Navigation and Ancillary Information Facility

N IF

SPICE Conventions

A summary of standards, lingo and
common usage within SPICE

March 2010

Navigation and Ancillary Information Facility

N IF

SPICE Conventions 2

•  The name of this ancillary
information system

•  The name of the team of people
at JPL who lead development of
the SPICE system.

•  Also the name of the ancillary
data node of NASA’s Planetary
Data System (PDS).

SPICE

NAIF

SPICE Lexicon - 1

Navigation and Ancillary Information Facility

N IF

SPICE Conventions 3

•  Names that refer to the principal
collection of software produced by
JPL’s NAIF Team as part of the SPICE
information system. Might include
domain-specific augmentations.

•  A Toolkit that contains no mission-
specific or enterprise-specific
augmentations. This is what is
available from NAIF’s website.

•  The principal user library found within
Fortran versions of the Toolkit.

•  The principal user library found within
C versions of the Toolkit. Also used to
refer to the entire C Toolkit.

•  An IDL interface to CSPICE

•  A MATLAB interface to CSPICE

SPICE Toolkit
NAIF Toolkit
The Toolkit

SPICE Lexicon - 2

Generic Toolkit

SPICELIB

CSPICE

Icy

Mice

Navigation and Ancillary Information Facility

N IF

SPICE Conventions 4

SPICE Lexicon - 3

•  Text kernel
–  Any kernel type consisting entirely of ASCII information, with each line

terminated using the local operating system convention (CR, LF, CR+LF)
–  Text kernel types are FK, IK, text PcK, LSK, SCLK, MK (“Furnsh”)
–  Any and all text kernels could be combined in a single file.

»  But this is certainly not recommended!

•  Binary kernel
–  Any kernel type using a binary file format
–  Binary types are SPK, binary PcK, CK, DBK and DSK
–  Different binary kernel types cannot be combined together

•  Transfer format kernel
–  A hexadecimal (ASCII) version of a binary kernel, used ONLY for porting a

binary kernel between incompatible computers.
–  Not as important as it was prior to the addition of the so-called “binary

kernel run-time translation” capability added in Toolkit N0052 (1/2002).
»  But still has a role in making native binary kernels required for some

operations.

Navigation and Ancillary Information Facility

N IF

SPICE Conventions 5

SPICE Lexicon - 4

•  “Command file”
–  Many SPICE application and utility programs either require, or

optionally accept, an input file containing program directives
and sometimes input data.

–  Unfortunately NAIF has not used a consistent approach for
referring to such files. The following names have been used:

»  setup file
»  preferences file
»  command file
»  specifications file
»  definitions file

•  “Found flag”
–  A Boolean output from a SPICE API that informs your program

whether or not a result was obtained
•  Database Kernel (DBK)

–  A SPICE kernel that, in conjunction with Toolkit DBK software,
provides a self-contained SQL-like database capability.

Navigation and Ancillary Information Facility

N IF

SPICE Conventions 6

SPICE Lexicon - 5

•  Deprecated software
–  Code that, while still useable, has been superseded with a

newer and presumably better version
–  We encourage you to not use deprecated SPICE software

»  (But, for your convenience, we won’t remove it from the
Toolkit packages)

•  Toolkit version naming
–  "Nxxxx" e.g. N0063 is Version 63

»  Often shortened to just Nxx (e.g. N63)

•  “Satellite” is used to refer only to a natural
satellite, never to a spacecraft.

Navigation and Ancillary Information Facility

N IF

SPICE Conventions 7

•  Kernel, SPICE file, SPICE kernel, SPICE kernel file
•  Meta-kernel and Furnsh kernel
•  Module, routine, subroutine, procedure, and function
•  Application, program, utility, executable
•  Metadata, comments
•  Time, Epoch
•  Encoded SCLK, ticks*
•  Frame, Reference Frame**
•  Ephemeris, trajectory
•  Rectangular coordinates, Cartesian coordinates**
•  Geodetic, Planetodetic (coordinate system)
•  Ephemeris time (ET), Barycentric Dynamical Time (TDB)
•  Attitude and orientation
•  International Celestial Reference Frame (ICRF) and Earth Mean Equator and Equinox of 2000

reference frame (J2000)
•  “Body”, “solar system object” and “ephemeris object”

Names used synonymously

SPICE Lexicon - 6

** Outside of SPICE the term “coordinate system” is often used synonymously with “frame”
or “reference frame.” We prefer to use “coordinate system” in the sense of describing how
coordinates are measured (e.g. cylindrical coordinate system, rectangular coordinate system,
polar coordinate system, etc), and to use “frame” in the sense of a set of three orthogonal
vectors.

* Encoded SCLK always refers to absolute time; “ticks” is used to refer to both
durations and absolute times.

Navigation and Ancillary Information Facility

N IF

SPICE Conventions 8

•  SPICE imposes some restrictions on kernel file names
–  No white space allowed within a name
–  Maximum length of a name (including any path specifications) is 255 characters

»  See the tutorial “Intro_to_kernels” for limitations on file name
specifications contained within meta kernels (“furnsh kernels”)

•  NAIF suggests names conform to the PDS standard: “36.3”
–  <1 to 36 alphanumeric characters>.<1 to 3 chars>
–  (Note: This is a change from the old 27.3 standard.)

•  Common usage within NAIF for SPICE kernel file name extensions
is listed on the next page, with the following general style used:

t* text format (e.g. pck00008.tpc)
b* binary format (e.g. de421.bsp)
x* transfer format (e.g. de421.xsp)

Kernel File Names

Navigation and Ancillary Information Facility

N IF

SPICE Conventions 9

SPK:
 .bsp binary SPK file
 .xsp transfer format SPK file
PcK:
 .tpc text PcK file

 (This is the most common type PcK)

 .bpc binary PcK file
 (few instances of this)
 .xpc transfer format PcK file

 (few instances of this)
IK:
 .ti text IK file
FK:
 .tf text FK file
LSK:
 .tls text LSK file
CK:
 .bc binary CK file
 .xc transfer format CK file

SCLK:
 .tsc text SCLK file
MK:
 .tm text meta-kernel file (“FURNSH kernel”)

DSK:
 .bds binary DSK file

 EK Family (ESP, ESQ, ENB)
ESP:
 .tep text Science Plan EK file
ESQ:
 .bes binary Sequence Component EK file
 .xes transfer format Sequence Component EK file
ENB:
 n/a (www interface)

Common SPICE Kernel
File Name Extensions

These are suggestions, not requirements

Navigation and Ancillary Information Facility

N IF

SPICE Conventions 10

•  These extensions are used for plain ASCII
documents included with each Toolkit delivery
 .ug User’s Guide

 .req “Required Reading” reference document
 .txt Used for a few miscellaneous documents
 .idx Used only for the permuted index document

•  All HTML documents included in the Toolkit have
extension .html

•  Alternate formats of some of the Toolkit
documents are available from the NAIF
anonymous ftp server
 .pdf PDF documents

Common Document Name Extensions

Navigation and Ancillary Information Facility

N IF

SPICE Conventions 11

•  All Toolkits include public and private modules
•  Public modules are available for your use

–  Names of public APIs are different in the four SPICE library implementations.
For example, the top level SPK reader SPKEZR has the following names

»  in SPICELIB (FORTRAN) SPKEZR
»  In CSPICE (C) spkezr_c
»  ICY (IDL) cspice_spkezr
»  Mice (MATLAB) cspice_spkezr and mice_spkezr

–  The API Reference Guide included in the Toolkit HMTL documentation
provides the complete list of all public SPICE APIs available in a specific
implementation of the Toolkit

•  Private modules are for NAIF staff use only
–  Names of private modules start with “ZZ”
–  They are present in the Toolkit only to support operations of “public” modules
–  Private APIs are not listed in the API Reference Guide but can be seen in the

source code directories for SPICELIB, CSPICE, and Mice
–  Do not use “private” modules in your code – they may change

Public and Private Modules

Navigation and Ancillary Information Facility

N IF

SPICE Conventions 12

Reference Frame and Coordinate
System Conventions

•  All reference frames used within SPICE are right handed
systems: X cross Y = Z

•  In planetocentric reference frames for planets and satellites
the +Z axis (+90 LAT) always points to the north side of the
invariable plane (the plane whose normal vector is the
angular momentum vector of the solar system)

–  Planetocentric longitude increases positively eastward
–  Planetocentric latitude increases positively northward

•  In planetographic reference frames:
–  Planetographic longitude is usually defined such that the sub-observer

longitude increases with time as seen by a distant, fixed observer in an
inertial reference frame

»  The earth, moon and sun are exceptions; planetographic longitude
is positive east by default

–  Planetographic latitude increases positively northward

Navigation and Ancillary Information Facility

N IF

SPICE Conventions 13

Quaternions

•  The SPICE system uses quaternions in C-kernels
•  There are different “styles” of quaternions used in science and

engineering applications. Styles are characterized by
–  The order of the quaternion elements
–  The quaternion multiplication formula
–  The convention for associating quaternions with rotation matrices

•  Two of the commonly used styles are
–  “SPICE”

»  Used by Sir William Rowan Hamilton (discoverer of quaternions)
»  Used in math and physics textbooks

–  “Engineering” or “MSOP”
»  Widely used in JPL ACS/AACS and other aerospace applications

•  The relationship between SPICE and MSOP quaternions:
–  Let M be a rotation matrix such that for any vector v, M*v is the result of rotating v

by Θ radians in the counterclockwise direction about unit vector A. Then the
quaternions representing M are:

»  SPICE: (+/-) (cos(Θ/2), sin(Θ/2)A(1), sin(Θ/2)A(2), sin(Θ/2)A(3))
»  MSOP: (+/-) (-sin(Θ/2)A(1), -sin(Θ/2)A(2), -sin(Θ/2)A(3), cos(Θ/2))

•  Details about SPICE quaternions are found in:
–  Rotations Required Reading document
–  NAIF white paper on quaternions: ftp://naif.jpl.nasa.gov/pub/naif/misc/Quaternion_White_Paper/

–  SPICE quaternion conversion routines: M2Q, Q2M

Navigation and Ancillary Information Facility

N IF

SPICE Conventions 14

Names and IDs

•  Many items within SPICE have assigned names
(text strings) and IDs (integer numbers)

•  The NAIF/SPICE rules, standards, practices and
exceptions regarding these names and IDs are
discussed in a separate tutorial (“NAIF IDs and
Names”)

Navigation and Ancillary Information Facility

N IF

IDs and Names
for Physical Objects and Reference Frames

March 2010

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 2

•  Summary of naming/numbering schemes used
in SPICE

•  Naming/numbering of physical objects

•  Naming/numbering of reference frames

•  Connection between the schemes

Overview

Caution: users sometimes confuse the ID assigned to an
object and the ID(s) assigned to a reference frame or
frames associated with that object. Read on for details.

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 3

•  SPICE uses IDs and names to identify:
–  physical objects
–  reference frames

•  A name is a text string; an ID is an integer
number

•  The naming/numbering schemes for physical
objects and for frames are independent

–  This means that in general SPICE does not make any
assumptions about frame names/IDs based on the physical
objects’ names/IDs and vice versa

»  There are some exceptions though; they will be
mentioned later

Overview

Navigation and Ancillary Information Facility

N IF

Names and IDs
associated with

Objects

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 5

•  Names and IDs are assigned to the following types
of physical objects:

–  Natural bodies -- planets, satellites, comets, asteroids
–  Artificial bodies -- spacecraft, spacecraft structures, science

instruments, individual detectors within science instruments,
DSN stations

–  Any other point, the location of which can be known within the
SPICE context

»  Barycenters of solar system and planetary systems, landing
sites, corners of solar arrays, focal points of antennas, etc.

•  A single ID is assigned to each physical object, but
multiple names can be associated with (map to)
that ID

–  On input, the names are treated as synonyms
–  On output, the name that was last associated with the ID is used

Object IDs/Names

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 6

•  Physical object IDs are used:
–  in kernels as data identifiers:

»  SPKs -- to identify a body and its center of motion
»  text PCKs -- in keywords associated with a body
»  IKs -- in keywords associated with instrument/detector
»  FKs -- to specify the center for computing LT correction,

and to identify the body in PCK-based frames
»  FKs -- to identify target and observer in dynamic frames

specifications
»  SCLKs -- normally the SCLK ID used in keywords is the

negative of the spacecraft’s ID (thus a positive integer)
»  … and more…

Object IDs -- How Used

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 7

•  Physical object IDs are used:

–  in some APIs as input and/or output arguments:
»  Older SPK routines -- SPKEZ, SPKEZP, SPKGEO, …
»  Older derived geometry routines -- ET2LST, …
»  Older PCK routines -- BODVAR, BODMAT, …
»  IK routines -- GETFOV, indirectly in G*POOL, …
»  SCLK routines -- SCE2C, SCT2E, …
»  Coverage routines -- SPKOBJ, SPKCOV, CKOBJ, CKCOV
»  … and more…

Object IDs -- How Used

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 8

•  Physical object names are used in the following
APIs as input and/or output arguments:

»  Newer SPK routines -- SPKEZR, SPKPOS
»  Newer derived geometry routines -- SINCPT, ILUMIN,

SUBPNT, SUBSLR, …
»  Newer PCK routines -- BODVRD, …

•  Physical object names are not used as data
identifiers within kernels.

Object Names -- How Used

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 9

•  Name/ID mappings used by SPICE may be defined in
two places

–  Inside the Toolkit: hard-coded in the source code
»  See NAIF_IDS.REQ for a complete listing of built-in (default)

assignments
–  In text kernels

»  You may define additional mappings using KEYWORD = VALUE
assignments. For example, for a spacecraft:

•  NAIF_BODY_NAME += (’spacecraft_name’)*
•  NAIF_BODY_CODE += (spacecraft_ID_number)*

»  These assignments exist most often in FKs (e.g. DI, GNS, M01,
MER, SIRTF), sometimes in IKs (e.g. CASSINI, MGS), but can be
placed in any text kernel

»  Normally text kernels are used to define name/ID mappings for
instruments, their subsystems/detectors and other spacecraft
structures

•  See comments and the actual data sections in a text kernel for the complete
listing of the names/IDs defined in that kernel

»  Mappings defined in text kernels take precedence over those
defined in Toolkit source code.

Object IDs/Names -- How Defined

* See Kernels Required Reading for information about the “+=“ operator

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 10

•  Spacecraft (negative numbers)
–  Within NASA, this number is generally the negative of the

numeric ID assigned by the NASA control authority at GSFC
•  -6 ‘PIONEER-6’, ‘P6’
•  -7 ‘PIONEER-7, ‘P7’,
•  -82 ‘CASSINI’, ‘CAS’
•  -94 ‘MARS GLOBAL SURVEYOR’, ‘MGS’
•  …

–  Unfortunately sometimes NASA re-uses a number
»  This will happen with increasing frequency in the future
»  Probably a new scheme is needed

•  DSN ground stations (399000 + station number)
•  399005 ‘DSS-05’
•  …
•  399066 ‘DSS-66’

•  Non-DSN stations (398000 + some integer 0 to 999)
•  398990 ‘NEW_NORCIA’
•  …

Object IDs/Names
Spacecraft and Ground Stations

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 11

•  Sun and Solar System Barycenter (10 and 0)
•  0 ‘SOLAR SYSTEM BARYCENTER’, ‘SSB’
•  10 ‘SUN’

•  Planetary system barycenters (numbers from 1
to 9)

•  1 ‘MERCURY BARYCENTER’
•  2 ‘VENUS BARYCENTER’
•  3 ‘EARTH MOON BARYCENTER’, ‘EMB’, …
•  4 ‘MARS BARYCENTER’
…
•  9 ‘PLUTO BARYCENTER’

•  Planet-only mass centers (planet barycenter ID
* 100 + 99)

•  199 ‘MERCURY’
•  299 ‘VENUS’
•  399 ‘EARTH’
•  499 ‘MARS’
•  …
•  999 ‘PLUTO’

Object IDs/Names -- Planets

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 12

•  Satellites (planet barycenter ID*100 + number <1… 98>)
•  301 ‘MOON’
•  401 ‘PHOBOS’
•  402 ‘DEIMOS’
•  501 ‘IO’
•  …
•  901 ‘CHARON’, ‘1978P1’

Object IDs/Names -- Satellites

See the BACKUP section for details about
how to handle more than 98 satellites.

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 13

•  Periodic Comets (1000000 + number)
•  1000001 ‘AREND’
•  1000002 ‘AREND-REGAUX’
•  …
•  1000032 ‘HALE-BOPP’

•  Numbered Asteroids (2000000 + asteroid number)
•  2000001 ‘CERES’
•  2000004 ‘VESTA’
•  …
•  2009969 ‘BRAILLE’, ‘1992KD’
•  There are a few exceptions; see NAIF_IDS.REQ

Object IDs/Names
Comets & Asteroids

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 14

•  Science Instruments (s/c ID*1000 - inst. number)
–  A number should be picked for EVERY instrument, instrument

subsystem or detector, or spacecraft structure, the parameters
for which are to be stored in IKs, or the location of which is to be
stored in SPKs

–  Instrument numbers are picked from the range 0…999. The only
requirement is that they must be unique

•  …
•  -82760 ‘CASSINI_MIMI_CHEMS’
•  -82761 ‘CASSINI_MIMI_INCA’
•  -82762 ‘CASSINI_MIMI_LEMMS1’
•  -82763 ‘CASSINI_MIMI_LEMMS2’
•  …
•  -82001 ‘CASSINI_SRU-A’
•  -82002 ‘CASSINI_SRU-B’
•  -82008 ‘CASSINI_SRU-A_RAD’
•  -82009 ‘CASSINI_SRU-B_RAD’
•  …

Object IDs/Names -- Instruments

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 15

•  SPICE provides two routines to map physical
object IDs to names, and vice versa

–  To get the ID for a given physical object name:

CALL BODN2C (NAME, ID, FOUND)
CALL BODS2C (NAME, ID, FOUND)

–  To get the name for a given physical object ID:

CALL BODC2N(ID, NAME, FOUND)

–  If the “FOUND” flag returned by either of these routines comes
back FALSE, then the input ID or name cannot be mapped

Object IDs/Names -- Mapping APIs

(This is a more general version as
compared to BODN2C. Use this one.)

Navigation and Ancillary Information Facility

N IF

Names and IDs
associated with

Reference Frames

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 17

•  Names and IDs are assigned to the following
kinds of reference frames

–  Inertial frames
–  Body-fixed frames
–  Spacecraft and instrument frames
–  Topocentric frames
–  Any other reference frame for which the orientation may be

needed to compute observation geometry

•  Unlike for objects, only a single ID and a single
name are assigned to each reference frame

–  “Aliases” for a frame name can only be set up by defining
new zero-offset frames with their own unique names and IDs

Frame IDs/Names

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 18

•  Reference frame IDs are used
–  in the following kernels as data identifiers:

»  FKs -- to “glue” frame definition keywords together
»  SPKs -- to identify base reference frames
»  PCKs -- to identify base reference frames
»  CKs -- to identify base reference frames

–  in the following APIs as input and/or output arguments:
»  Almost nowhere -- users rarely or never need to deal with or

be aware of reference frame IDs

•  Reference frame names are used
–  as arguments in all high level APIs that require a reference frame

to be specified on the input
»  Derived geometry routines -- SINCPT, ILUMIN, SUBPNT, …
»  Frame transformation routines -- PXFORM, SXFORM
»  SPK routines -- SPKEZR, SPKPOS, …

–  Frame names are NOT used as data identifiers within kernels

Frame IDs/Names -- How Used

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 19

•  The reference frame name/ID mappings used by the
SPICE system are defined in two places

–  Built into the Toolkit: hard-coded in source code
»  For inertial frames
»  For body-fixed frames defining the orientation for planets and

most satellites
»  See FRAMES REQUIRED READING for a complete listing

–  In text kernels: provided by KEYWORD=VALUE sets
»  Almost always in FKs (DI, GNS, M01, MER, SIRTF, …), very

rarely in other kernels, but can be in any text kernel
•  (For example during operations MGS frames were defined in IKs and SCLK)

»  Text kernels define spacecraft frames, instrument frames,
spacecraft subsystem frames, DSN station frames, etc.

•  See comments/data sections in a text kernel for the complete listing of the
frames defined in that kernel

Frame IDs/Names -- How Defined

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 20

 The samples of frame IDs shown below are
shown for completeness. Users would
rarely if ever need to know or use them.

•  Inertial frames (positive integers starting at 1)
•  1 ‘J2000’
•  …
•  16 ‘MARSIAU’
•  17 ‘ECLIPJ2000’
•  …

•  Body-fixed frames (positive integers starting at 10001)
•  10001 ‘IAU_MERCURY_BARYCENTER’
•  …
•  10011 ‘IAU_MERCURY’
•  …
•  10020 ‘IAU_MOON’
•  …
•  10081 ‘EARTH_FIXED’
•  …

Frame IDs/Names --
Inertial and Body-fixed

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 21

•  IDs for frames associated with spacecraft, spacecraft
structures, and instruments are usually:

s/c ID times 1000 minus an arbitrary number

•  As example, for Cassini:
–  Spacecraft frame (ID and name)

-82000 ‘CASSINI_SC_COORD’
–  Spacecraft structure frame (ID and name)

-82001 ‘CASSINI_SRU-A’
–  Instrument frames (ID and name)

-82760 ‘CASSINI_MIMI_CHEMS’
-82761 ‘CASSINI_MIMI_LEMMS_INCA’
-82762 ‘CASSINI_MIMI_LEMMS1’
-82763 ‘CASSINI_MIMI_LEMMS2’
-82764 ‘CASSINI_MIMI_LEMMS_BASE’
-83765 ‘CASSINI_MIMI_LEMMS_ART’
…

•  SPICE users would rarely if ever need to know or use frame
IDs; you’ll use the associated frames name instead.

Frame IDs/Names --
Spacecraft and Instrument

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 22

•  SPICE provides two routines to convert (map) reference frame
IDs to names, and vice versa

–  To get the ID for a given reference frame name:

 CALL NAMFRM(NAME, ID)

–  To get the name for a given reference frame ID:

 CALL FRMNAM(ID, NAME)

–  If the ID or name cannot be mapped, these routines return zero and an
empty/blank string respectively.

•  Users will rarely if ever need to call these routines.

Frame IDs/Names -- Mapping APIs

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 23

•  Although physical object and reference frame
naming/numbering schemes are independent, in
practice there is a lot of overlap in the way objects
and frames are named and numbered

•  This overlap is due to the following reasons
–  Conventions adopted over the course of SPICE implementation

»  Example: PCK-based body-fixed frames for planets and
satellites are named ‘IAU_<body name>’

•  However, the IDs of these frames have nothing in common with the IDs of the
objects (bodies) for which these frames are defined

–  The need for the object and frame IDs to be unique
»  For this reason both the instrument (object) IDs and the

instrument frame IDs are derived from the ID of the spacecraft
on which the instrument is flown

–  The need for the object and frame names to be meaningful
»  For this reason the instrument frame names normally contain

both the name of the spacecraft and the name of the instrument

Name/ID Schemes Connections

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 24

•  CK IDs
–  Historically IDs used in CKs are called structure IDs but in reality they

are much more closely related to frames than to physical objects
–  To find which frame is associated with a particular CK ID, look through

FK for a frame whose _CLASS_ID keyword is set to the CK ID
»  In practice, for CK-based frames both the frame ID and frame

_CLASS_ID are set to the CK ID
•  SCLK IDs

–  Because most spacecraft have only one on-board clock, the SCLK ID of
that clock is the same as the spacecraft ID

–  Should a spacecraft carry more than one independent clock, unique
SCLK IDs for these other clocks would be needed

»  Normally the ID of an additional clock will be set to the ID of the
instrument, of which that clock is a part

–  SCLK IDs are used in SCLK APIs (must be provided by the user) and by
the frames subsystem when it reads CKs to determine orientation of
CK-based frames (gets SCLK ID from CK_*_SCLK keyword provided in
the frame definition or computes it by dividing CK ID by 1000)

“Odd Ball” Cases

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 25

Name/IDs Example -- CASSINI (1)

10 ‘SUN’ 1 ‘J2000’

399 ‘EARTH’ 10013 ‘IAU_EARTH’
699 ‘SATURN’ 10016 ‘IAU_SATURN’
601 ‘MIMAS’ 10039 ‘IAU_MIMAS’
602 ‘ENCELADUS’ 10040 ‘IAU_ENCELADUS’

-82 ‘CASSINI’ -82000 ‘CASSINI_SC_COORD’
-82001 ‘CASSINI_SRU-A’ -82001 ‘CASSINI_SRU-A’

-82790 ‘CASSINI_CDA’ -82790 ‘CASSINI_CDA’
-82791 ‘CASSINI_CDA_ART’
-82792 ‘CASSINI_CDA_BASE’

-82820 ‘CASSINI_CAPS_IMS’ -82820 ‘CASSINI_CAPS’
-82821 ‘CASSINI_CAPS_ELS’ -82821 ‘CASSINI_CAPS_ART’
-82822 ‘CASSINI_CAPS_IBS_DT1’ -82822 ‘CASSINI_CAPS_BASE’
-82823 ‘CASSINI_CAPS_IBS_DT2’
-82824 ‘CASSINI_CAPS_IBS_DT3’

Objects IDs/Names Frames IDs/Names

Ep
he

m
er

is
 o

bj
ec

ts

Sp
ac

ec
ra

ft
an

d
its

st

ru
ct

ur
es

C

D
A

in
st

ru
m

en
t

C
A

PS

in
st

ru
m

en
t

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 26

•  The lists provided on the previous page are by no
means complete

–  There are many more Saturnian satellites and other natural bodies
of interest to the Cassini mission, each having an associated frame

–  There are many more instruments on the Cassini spacecraft, with
multiple frames associated with each of them

•  To find names and IDs associated with these objects
and frames, users should refer as follows

–  For names/IDs of natural objects: NAIF_IDS.REQ
–  For names/IDs of Cassini instruments and their subsystems: IK files

»  For other missions this information is in the mission’s FK file
–  For names of inertial frames and body-fixed frames associated with

natural bodies: FRAMES.REQ
–  For names of the reference frames associated with the Cassini

spacecraft, its subsystems and instruments: FK file

Name/IDs Example -- CASSINI (2)

Navigation and Ancillary Information Facility

N IF

Backup

How to handle more than 98
satellites for one planet

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 28

•  The scheme described for satellites can
accommodate only 98 natural satellites. How do
we handle more than 98?

–  For IAU provisional assignments, use “psbbb” also, where:
»  p = planet barycenter ID
»  s = separator, set equal to “5”
»  bbb = satellite number

•  Start with the next available unused IAU two-digit number with a “0”
pre-pended, when we elect to put this scheme into effect

•  Increment by one thereafter

–  For IAU permanent assignments, use “psbbb” where:
»  p = planet barycenter ID
»  s = separator, set equal to “0”
»  bbb = satellite number

•  Use “099” for the first new permanent assignment after “p98” from the
current range is used

Object IDs/Names -- Satellites (2)

Navigation and Ancillary Information Facility

N IF

NAIF IDs and Names 29

•  The satellite extended numbering scheme described on the
previous page attempts to, but may not be able to, maintain
consistency in the last three digits as the boundary
between 98 and 99 is crossed.

–  This is because the IAU sometimes changes the numbering order of
new satellites when migrating from provisional to permanent status.

•  It has been suggested that some JPL entity maintain a
public web page showing the history of all assignments.

–  (Not done so far…)
•  It is recommended that any SPK file made using provisional

IDs be trashed (or hidden away) when a new file using
permanent IDs is obtained.

–  If no new file is expected, the bspidmod program can be used to
replace provisional ID(s) with official ID(s) in the old file

Object IDs/Names -- Satellites (3)

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels

March 2010

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 2

What is a SPICE “Kernel”

Kernel = File
Kernel = File containing ancillary data
Kernel = a file containing "low level" ancillary data that may be used, along
with other data and SPICE software, to determine higher level observation
geometry parameters of use to scientists and engineers in planning and
carrying out space missions, and analyzing data returned from missions.

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 3

SPICE Kernels Family

•  SPK
–  Spacecraft and Planet Ephemeris

•  PcK
–  Planetary Constants, for natural bodies

»  Orientation
»  Size and shape

•  IK
–  Instrument

•  CK
–  Pointing (“C-matrix”)

•  EK
–  Events, up to three distinct components

»  ESP: science plan
»  ESQ: sequence
»  ENB: experimenter’s notebook

•  FK
–  Reference frame specifications

•  SCLK
–  Spacecraft clock correlation data

•  LSK
–  Leapseconds

•  Meta-Kernel (a.k.a. “FURNSH kernel”)
–  Mechanism for aggregating and easily

loading a collection of kernel files

•  DSK (under development)
–  Digital shape kernel

»  Tesselated plate model
»  Digital elevation model

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 4

Text and Binary Kernels

SPICE text kernels are:
–  text PCK (the most common

type of PCK)
–  IK
–  FK
–  LSK
–  SCLK

–  MK (“Furnsh” meta-kernel)

SPICE binary kernels are:
–  SPK
–  binary PCK (exists only for Earth

and moon)
–  CK
–  ESQ (part of the E-kernel)
–  DBK (database kernel)

–  DSK (digital shape kernel)*

* New kind of kernel under development

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 5

•  Binary form: SPK, binary PCK, CK, EK/ESQ1, DSK
–  Binary kernels are not human-readable and require the use of Toolkit

software to examine the data contents.

•  Text form: text PcK, IK, FK, LSK, SCLK, FURNSH (MK)
–  Text kernels contain only printing characters (ASCII values 32-126), i.e.

human-readable text.

•  “Transfer” form of a binary kernel
–  This is an ASCII representation of a binary kernel
–  Was used for porting the file between computers with incompatible

binary representations (e.g. PC and UNIX)
–  Use of the transfer kernel is no longer needed for porting

»  But is one way to convert a non-native binary kernel into native
format, needed for modifying the kernel or improving read efficiency

SPICE Kernel Forms

[1] The ESP and ENB components of the EK might be binary,
text, or html, depending on specific implementation.

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 6

This is a sample SPICE text kernel. The \begindata and \begintext
markers on lines by themselves set off the start of data and text
blocks respectively.
 KPL/<kernel type>
 \begindata

NAME = 'Sample text value'
NaMe = 'Keywords are case sensitive'

NUMBERS = (10.123, +151.241, -1D14)
NUMBERS += (1.0, 1, -10)
NUMBERS += (1.542E-12, 1.123125412)

NAIF_BODY_NAME += (‘SPEEDO’, ‘NEETO’)
NAIF_BODY_CODE += (-678, -679)

TIME = @1972-JAN-1

\begintext
 < some comments about the data >
\begindata
 < more data, given again in keyword = value syntax >
\begintext
 < etc., etc. >

The above assignments demonstrate that text kernels can
contain characters, times, and numeric values. For more detailed
information see Kernel Required Reading.

Example Text Kernel

Note the
forward
slash!

Note the
backward
slashes!

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 7

Text Kernel Operators

•  The “+=“ operator adds additional values to an
existing variable. It creates a new variable if the
referenced variable doesn’t already exist.

•  The “@” symbol preceding a calendar date
identifies a date string. The string must not
contain embedded blanks. The string will be
parsed and converted to an internal double
precision representation of that epoch. The date
is interpreted as ephemeris time (ET).

–  This conversion does not need a leapseconds kernel.

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 8

Example Binary Kernel

A binary kernel contains lots
of non-printing
(unintelligible) data, usually
interspersed with occasional
occurrences of ASCII
characters.

Other than moving binary
kernels around on your
computer, or between
computers, the only way to
use a binary kernel is to read
it or add to it using a SPICE
subroutine or program.

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 9

Comments In SPICE Kernels

•  All SPICE kernels can and should contain
comments–descriptive information about the data
contained in the file.

–  “Comments” are also known as “meta-data”

•  See the tutorial on comments for more
information.

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 10

•  To make kernels available to SPICE programs you “load” them.

•  When you load a text kernel:
–  the file is opened
–  the kernel contents are read into memory

»  variable names and associated values are stored in a data structure
called the “kernel pool”

–  the file is closed

•  When you load a binary kernel:
–  the file is opened
–  for SPK, CK, and binary PCK files, no data are read until a read request is

made by Toolkit software
–  for ESQ files, the schema description is read, checked, and stored in memory

at load time, but no data are read until a query/fetch is made
–  for all practical purposes the binary file remains open unless specifically

unloaded by you

Loading Kernels - 1

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 11

•  Use the FURNSH routine to load all kernels–text and binary.
–  Sample FORTRAN, C, IDL and MATLAB calls:

»  CALL FURNSH (‘name.ext’)
»  furnsh_c (“name.ext”);
»  cspice_furnsh, ‘name.ext’
»  cspice_furnsh (‘name.ext’)

•  Best practices: don’t hard code filenames–list these in a
“meta-kernel” and load the meta-kernel using FURNSH.
–  CALL FURNSH (‘meta-kernel_name’) (Fortran example)
–  See next page for more information on this

•  Caution: ”Transfer format" versions of binary kernels can
not be loaded; they must first be converted to binary with
the Toolkit utility program tobin or spacit.

Loading Kernels - 2

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 12

What is a “Meta-Kernel”

•  The terms “meta-kernel” and “FURNSH kernel” are used
synonymously

•  Using a meta-kernel makes it easy to manage which SPICE
files are loaded into your program

•  A meta-kernel is a file that lists names (and locations) of a
collection of SPICE kernels that are to be used together in
some SPICE-based application

–  You can then simply load the meta-kernel, causing all of the kernels
listed in it to be loaded

•  A meta-kernel is implemented using the SPICE text kernel
standards

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 13

•  This is a sample meta-kernel that the Toolkit routine FURNSH could
use to load a collection of kernels.

KPL/MK
\begindata

KERNELS_TO_LOAD = (
 '/home/mydir/kernels/lowest_priority.bsp',
 '/home/mydir/kernels/next_priority.bsp',
 '/home/mydir/kernels/highest_priority.bsp',
 '/home/mydir/kernels/leapseconds.tls',
 '/home/mydir/kernels/sclk.tsc',
 '/home/mydir/kernels/c-kernel.bc',
 '/home/mydir/kernels+’,
 '/custom/kernel_data/p_constants.tpc’,
)

•  The last file listed in this example (p_constants.tpc) demonstrates
how to use the continuation character ‘+’ to work around the 80
character limitation imposed on string sizes by the text kernel
standards.

Sample Meta-Kernel Contents (1)

The commas
are optional

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 14

•  This sample meta-kernel uses the PATH_VALUES and
PATH_SYMBOLS keywords to specify the directory where the kernels
are located.

KPL/MK
\begindata
 PATH_VALUES = ('/home/mydir/kernels’)
 PATH_SYMBOLS = ('KERNELS')
 KERNELS_TO_LOAD = (

 '$KERNELS/lowest_priority.bsp',
 '$KERNELS/next_priority.bsp',
 '$KERNELS/highest_priority.bsp',
 '$KERNELS/leapseconds.tls',
 '$KERNELS/sclk.tsc',
 '$KERNELS/c-kernel.bc',
 '$KERNELS/custom/kernel_data/p_constants.tpc’
)

•  Although the OS environment variable notation $NAME is used to refer to the
symbols set by the PATH_VALUES and PATH_SYMBOLS keywords, these
symbols are NOT operating system environment variables and are set and used
for substitution by SPICE only in the context of this particular meta-kernel.
•  The ‘+’ continuation character described on the previous page may also be
used to handle path values strings that exceed 80 characters.

Sample Meta-Kernel Contents (2)

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 15

•  The number of binary kernels that may be loaded at
any time is large, but limited.

–  For SPK, CK, and binary PCK files:
»  Loaded SPKs + Loaded CKs + Loaded binary PCKs <= 1000

–  For ESQ files:
»  Loaded ESQs <= 20

–  For all kernels:
»  Loaded kernels <= 1300

•  Assumes each has been loaded only once, and not unloaded.

•  There are also limits on the number of keywords
and values for all loaded text kernels:

–  Maximum number of keywords is 5003.
–  Maximum number of numeric data items is 40,000.
–  Maximum number of character data items is 4000.

Limits on Loaded Kernels

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 16

•  The order in which SPICE kernels are loaded at
run-time determines their priority when requests
for data are made

–  For binary kernels, data from a higher priority file will be used
in the case when two or more files contain data overlapping in
time for a given object.

»  For SPKs, CKs and binary PCKs the file loaded last takes
precedence (has higher priority).
»  Priority doesn’t apply to ESQ files – all data from all loaded
files are available.

–  If two (or more) text kernels assign value(s) to a single keyword
using the “=” operator, the data value(s) associated with the last
loaded occurrence of the keyword are used–all earlier values
have been replaced with the last loaded value(s).
–  Orientation data from a binary PCK always supersedes
orientation data (for the same object) obtained from a text PCK,
no matter the order in which the kernels are loaded.

Kernel Precedence Rule

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 17

•  The unloading of a kernel is infrequently needed for
FORTRAN or CSPICE applications but is essential for Icy
and Mice scripts

–  Because of the way IDL and MATLAB interact with external shared
object libraries any kernels loaded during an IDL or MATLAB session
will stay loaded until the end of the session unless they are specifically
unloaded

•  The routines KCLEAR and UNLOAD may be used to unload
kernels containing data you wish to be no longer available
to your program.

–  KCLEAR unloads all kernels and clears the kernel pool
–  UNLOAD unloads specified kernels
–  KCLEAR and UNLOAD are only capable of unloading kernels that have

been loaded with the routine FURNSH. They will not unload any files
that have been loaded with older load routines such as SPKLEF (those
used prior to availability of FURNSH).

•  Caution: unloading text kernels with UNLOAD will also
remove any kernel pool data provided through the kernel
pool API (P*POOL)

Unloading Kernels

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 18

Backup

•  How kernels are made and used

•  Why and how kernels are modified

•  SPICE data structures hierarchy

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 19

SPK

PcK

IK

CK

FK

ESP

ESQ

ENB

LSK

SCLK

Meta-kernel
(FURNSH)

How Kernels are Made and Used at JPL

NAV and NAIF

NAIF

NAIF or other

SBP* SBP*

SBP*

SBP*

SBP*

SBP*

Text editor
for text versions

SBP*
for binary versions

Text editor

Text editor

SBP*

SBP*

SBP*

Text editor

Text editor

WWW or
e-mail

Text editor or
existing file, input
via ESQ or ENB

Web browser
or SBP*, depending
on implementation

SBP*

SBP*

SBP*

SBP*

SBP*

How Made? How Made? How Used? How Used?

Who usually makes the kernels at JPL?

This represents current practice for
most JPL missions, but is by no means a
requirement. Anyone can make SPICE files.

*SBP = SPICE-based program that uses modules from the
SPICE Toolkit. In some cases the Toolkit contains such a
program already built. In some cases NAIF may have such a
ready-built program that is not in the SPICE Toolkit.

The EK family
1

2

2

2

2

2

2

1

2

3

3

3

3

3 DSK SBP* SBP*

2

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 20

SPK

PcK
Text version

IK

CK

FK

Why & How Kernels are “Modified” - 1

File Type Why Modified How Modified
- To add metadata (comments) - COMMNT, SPACIT or SPICELIB module
-To merge files or subset a file - SPKMERGE
-To correct/revise an object ID - BSPIDMOD

- To revise data values - Text editor
- To add additional data items and values - Text editor

- To revise data values - Text editor
- To add additional data items and values - Text editor

- To add metadata (comments) - COMMNT, SPACIT, or SPICELIB module
- To merge files - DAFCAT, CKSMRG
- To revise the interpolation interval - CKSPANIT, CKSMRG
- To subset a file - CKSLICER

- To revise data values - Text editor
- To add additional data items and values - Text editor

DSK - To add metadata (comments) - COMMNT, SPACIT or SPICELIB module
-To merge files or subset a file - DSKMERGE

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 21

ESP

ESQ

ENB

LSK

SCLK

Meta-kernel
(FURNSH)

Why & How Kernels are “Modified” - 2

Why Modified How Modified

The EK family

File Type

- To add, revise or delete “data” - (Depends on implementation)
- To add metadata (comments) - (Depends on implementation)

- To add additional data - Toolkit modules
- To revise data - Toolkit modules
- To delete data - Toolkit modules
- To add metadata (comments) - COMMNT, SPACIT or SPICELIB module
- To merge files - (under development)

- To change entry status (public <--> private) - WWW
- To delete an entry - WWW

- To add a new leapsecond - Text editor

- To add metadata - Text editor

- To revise contents in any way - Text editor

Navigation and Ancillary Information Facility

N IF

Introduction to Kernels 22

SPICE Data Structures Hierarchy

OR AND

SPK CK
OR

PcK IK FK LSK SCLK ENB ESP ESQ

DBK

MIME
including
plain text DAS TEXT DAF

EK Family

Binary Binary Text

DAF = Double Precision Array File DSK = Digital Shape Kernel (under development)
DBK = Data Base Kernel DLA = DAS Linked Array (under development)
DAS = Direct Access, Segregated
Excepting MIME, each of these data structures is built entirely of SPICE components.
PcK files are usually text-based, but binary versions exist for the earth and moon. The ESP has been
implemented using both the ENB and ESQ mechanisms. The DBK is a SQL-like, homebrew database.

Low
Level

Mid
Level

High
Level

Meta-kernel
(FURNSH) DSK

DLA

Navigation and Ancillary Information Facility

N IF

“Comments” In SPICE Kernels

Also known as “meta-data”

March 2010

Navigation and Ancillary Information Facility

N IF

Comments in SPICE Kernels 2

•  Comments are information that describe the context of kernel
data, i.e. “data about data”

•  Comments are provided as plain text (prose)
•  Examples of comments:

–  Data descriptions
»  “This file contains representations of the trajectories for bodies X, Y

and Z over the interval from launch to landing”
–  Data accuracy
–  Data pedigree

»  How and by whom was the kernel created
•  The program(s) and/or steps used in creation
•  Contact information for user’s questions

–  email address
–  phone numbers

»  Data sources used as inputs when creating the kernel
–  Intended kernel usage
–  Companion files

•  In SPICE, we sometimes refer to “comments” as “meta-data”

What are Comments?

Navigation and Ancillary Information Facility

N IF

Comments in SPICE Kernels 3

•  Binary kernels contain a reserved “comment” area
to hold comments

•  Text kernels have comments interleaved with the
data

–  Comments may be placed at the beginning of the text kernel,
before any data

–  Comments may be inserted between data using \begintext
and \begindata as start and end markers:

\begintext
 Some comments
\begindata
 Some data

Where are Comments Stored?

Navigation and Ancillary Information Facility

N IF

Comments in SPICE Kernels 4

•  Binary Kernels
–  Use the commnt utility program, available in the Toolkit
–  Include comment information at the time of kernel creation using SPICE

APIs (subroutines)
»  This capability is not yet available in Mice

•  Text Kernels
–  Use a text editor

»  Begin comment sections with the “\begintext” marker alone on a line
•  (The marker is not needed for comments placed at the beginning of a text kernel)

»  End comment sections with a “\begindata” marker alone on a line
•  (The marker is not needed if there are no data following the comments)

•  Restrictions
–  For both binary and text kernels

»  Comment line length limit is 255 characters. However, NAIF recommends
using no more than 80 characters per line as this makes your comments far
more readable!

»  Use only printing characters (ASCII 32 - 126)
»  Manipulating binary kernel comments requires the kernel be in the native

binary format for the machine being used
–  For text kernels

»  Refer to “Kernel Required Reading” (kernel.req) for details

Adding Comments to Kernels

Navigation and Ancillary Information Facility

N IF

Comments in SPICE Kernels 5

Viewing Comments in Kernels

•  Binary kernels:
–  Use either the commnt or spacit utility program

»  Both are available in all Toolkits

•  Text kernels:
–  Use any available text file utility, such as:

»  more, cat, vi, emacs
»  Notepad, TextEdit, BBEdit, Word, etc.

Navigation and Ancillary Information Facility

N IF

Comments in SPICE Kernels 6

Terminal Window
Prompt> commnt -r de421.bsp | more

...

DE 421 JPL Planetary Ephemeris SPK
==================================

Original file name: de421.bsp
Creation date: Feb. 13, 2008
File created by: Dr. William Folkner (SSD/JPL)
Comments added by: Nat Bachman (NAIF/JPL)

This SPK file was released on February 13, 2008 by the Solar System
Dynamics Group of JPL's Guidance, Navigation, and Control section.

The DE 421 planetary ephemeris is described in JPL IOM 343R-08-002,
dated Feb. 13, 2008. The introduction of that memo states, in part,
that this ephemeris "represents an overall update for all

--More--

Viewing Comments in Binary Kernels

 Filename must include any required path and contain no more than 255 characters

This example shows reading the comments

Navigation and Ancillary Information Facility

N IF

Comments in SPICE Kernels 7

Terminal Window
prompt> more naif0008.tls

KPL/LSK

LEAPSECONDS KERNEL FILE
===

Modifications:

2005, Aug. 3 NJB Modified file to account for the leapsecond
 that will occur on December 31, 2005.

1998, Jun 17 WLT Modified file to account for the leapsecond
 that will occur on December 31, 1998.

1997, Feb 22 WLT Modified file to account for the leapsecond
 that will occur on June 30, 1997.

…etc.

--More--(19%) -More--(19%)

Viewing Comments in Text Kernels

Navigation and Ancillary Information Facility

N IF

Introduction to the Family of
SPICE Toolkits

March 2010

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 2

•  SPICE Toolkits
–  SPICELIB (FORTRAN)
–  CSPICE (C)
–  Icy (IDL)
–  Mice (MATLAB)

•  Installed Directory Structure
•  Toolkit Documentation
•  Toolkit Utility Programs
•  Toolkit Application Programs
•  Supported Platforms

Topics

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 3

•  The SPICE Toolkit is available in Fortran, C, IDL
(Interactive Data Language), and MATLAB

•  Toolkits contain:
–  Software

»  Subroutine libraries, with source code
•  SPICELIB (Fortran)
•  CSPICE (C)
•  Icy (C)
•  Mice (C and MATLAB script)

»  Executable programs
•  application and utility programs
•  cookbook examples

»  Installation/build scripts
–  Documentation

»  Available in ASCII and HTML
–  Data

»  Sample kernel files
•  Supplied ONLY for use with cookbook programs, not valid for general use

SPICE Toolkit

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 4

•  The components listed on the previous page comprise the generic
Toolkit

–  Toolkits delivered to missions or other special customers may be augmented with
mission- or customer-specific products

•  The Fortran, C, IDL, and MATLAB Toolkits are delivered as standalone
products

–  The IDL and MATLAB products include the CSPICE Toolkit

•  For a given computer and operating system, the Fortran, CSPICE, IDL,
and MATLAB Toolkits use identical kernel files.

»  (See the “Porting Kernels” tutorial for information about using kernels
received from a machine different from what you are using.)

SPICE Toolkit

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 5

•  Toolkit Version
– Generic SPICE Toolkits have an associated Version

number
»  Example: “N0063” (also written as “N63”)

–  The version number applies to the Fortran, C, IDL and
MATLAB implementations for all supported platforms.

– When does NAIF release new SPICE Toolkit versions?
»  Not according to a fixed schedule
»  Primarily driven by addition of significant new capabilities

•  For example, Icy or Mice or the geometry finder subsystem
»  On rare occasion a Toolkit update is released to fix bugs,

improve documentation, or satisfy an urgent request from a
flight project

Toolkit Versions

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 6

Toolkit Characteristics

•  Portable SPICE kernel files
•  Portable NAIF Toolkit software
•  Code is well tested before being released to users
•  New Toolkits are always backwards compatible

–  An application that worked when linked against an older
Toolkit will link and work, without need for changes, using a
new Toolkit

–  Past functionality is never changed or removed
»  Enhancements of existing routines are allowed

–  NAIF reserves the right to fix bugs

•  Extensive user-oriented documentation is
provided

–  Includes highly documented source code

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 7

Toolkit Library Functionality

•  Toolkit libraries contain a broad set of capabilities
related to the computations needed for “observation
geometry” and time conversions.

–  Broad categories are enumerated on the next several pages

•  Caution: not all functionality is present in all four
language versions of the Toolkit library.

–  The Fortran (SPICE) and C (CSPICE) Toolkits provide
virtually identical functionality.

–  The IDL (Icy) Toolkit duplicates most functionality from the
C Toolkit wrapper routines.

–  The MATLAB (Mice) Toolkit provides interfaces to those
routines NAIF considers the most often needed by users.

»  Where not needed, a module is not implemented.

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 8

•  Kernel read access
–  “Load” kernels
–  Get state or position vectors (SPK)
–  Get orientation of planets, natural satellites, etc. (PCK)
–  Get body shape parameters or physical constants (PCK)
–  Get orientation of spacecraft or spacecraft instruments or structures

(CK, FK)
–  Get instrument parameters (e.g., FOV) (IK)
–  Query binary EK files (EK-ESQ)

•  Kernel write access
–  SPK writers
–  CK writers
–  EK writers (sequence component, ESQ)
–  PCK writers (only for binary PCK files)

Toolkit Library Functionality

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 9

•  Additional ephemeris functions
–  Classical osculating elements
–  Two-body Keplerian propagation
–  NORAD two line elements sets (TLE) propagation
–  Light time and Stellar aberration computation

•  Frame transformation
–  Obtain 3x3 matrices for frame transformations of positions
–  Obtain 6x6 matrices for frame transformations of states

•  Time conversion
–  Conversion between standard systems: TDB, TT (TDT), UTC
–  Conversion between SCLK and other systems
–  Parsing and formatting

•  Geometry finder
–  Find times or time spans when a specified geometric situation is true
–  Find times or time spans when a specified geometric parameter is

within a given range, or is at a maximum or minimum

Toolkit Library Functionality

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 10

•  Math
–  Vector/Matrix operations
–  Rotations, Euler angles, quaternions
–  Coordinate conversion (systems: latitudinal, cylindrical, rectangular,

RA and DEC, spherical, geodetic, planetographic)
–  Geometry: ellipsoids, ellipses, planes
–  High-level functions: illumination angles, sub-observer point, sub-solar

point, surface intercept point.
•  Constants

–  Julian date of epoch J2000, SPD(seconds per day), PI, etc.
•  Strings

–  Parsing: find tokens, words
–  Numeric conversion
–  Pattern matching
–  Replace marker, substring
–  Suffix, prefix
–  Case conversion
–  Find first/last non-blank character, first/last printing character

Toolkit Library Functionality

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 11

•  Arrays
–  Sorting, finding order vector, reordering
–  Searching: linear, binary
–  Insertion and deletion

•  Name/code conversion
–  Bodies
–  Frames

•  I/O support
–  Logical unit management (Fortran toolkits)
–  Open, read, write text files
–  Kernel pool API

•  Exception handling
–  Control exception handling behavior: mode, message set, output

device
–  Construct error messages

Toolkit Library Functionality

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 12

•  Advanced data types
–  Cells, Sets
–  Windows (sometimes called schedules)
–  Symbol Tables
–  Planes, Ellipses

Toolkit Library Functionality

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 13

•  SPICELIB, the Fortran SPICE Toolkit
–  Developed first: in use since February 1990
–  Contains code written in ANSI Standard Fortran 77

»  A few widely supported non-ANSI extensions are used, for
example DO WHILE, DO…END DO

–  Compiles under a wide variety of Fortran compilers
»  While NAIF cannot guarantee proper functioning of SPICE

under F90/F95 compilers except on officially supported
environments, those compilers might properly compile
SPICELIB with the resulting libraries being callable from
F90/F95 code if that compiler supports the F77 standard.

Fortran SPICE Toolkit

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 14

CSPICE Toolkit

•  CSPICE, the C-language Toolkit
–  Designed to duplicate the functionality of the Fortran Toolkit
–  All CSPICE source code is in ANSI C

»  The Fortran SPICE Toolkit code is converted to ANSI C using the
automatic translation program f2c

»  High-level functions have been hand-coded in C and documented
in C style in order to provide a natural C-style API. These functions
are called “wrappers”

»  Most wrappers encapsulate calls to C functions generated by f2c
•  The simpler wrappers do their work in-line to boost performance

»  f2c’d functions may be called directly, but this is strongly
discouraged since f2c’d functions emulate Fortran functionality:

•  Call by reference
•  Fortran-style array indexing
•  Fortran-style strings

continued on next page

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 15

–  CSPICE runs under a wide variety of ANSI C compilers
–  CSPICE functions may be called from within C++ source code

»  CSPICE prototypes are protected from name mangling

–  Current CSPICE Limitations
»  Not all “Required Reading” reference documents have

been converted to C style, with C examples
•  Eventually all will be converted

»  CSPICE wrappers do not exist for every functionality
provided in the Fortran toolkits

•  Includes all the most commonly used modules
•  More will be added as time permits

»  In some very limited cases, code generated by f2c fails to
emulate Fortran accurately. Should not be a problem.

•  List-directed I/O has some problems (not consequential for CSPICE)
•  Treatment of white space in text output is slightly different in CSPICE
•  Logical unit-to-file name translation does not handle file name

"synonyms" properly under Linux: once opened with a specified
name, a file must be referred to using the same name throughout a
program run.

CSPICE Toolkit

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 16

Icy Toolkit

•  Icy, the Interactive Data Language Toolkit
–  Provides an IDL-callable “wrapper” interface for many CSPICE

wrapper routines
»  Example:

•  CSPICE: spkezr_c (targ, et, ref, abcorr, obs, state, <ime);
•  Icy: cspice_spkezr, targ, et, ref, abcorr, obs, state, ltime

»  NAIF will add additional interfaces to Icy as time permits
–  By necessity the Icy Toolkit includes the complete CSPICE

Toolkit.
»  Additional Icy software components are:

•  IDL interface wrappers (implemented in ANSI C)
•  Icy cookbook programs (implemented in IDL)

–  Icy Documentation
»  Icy Reference Guide

•  Principal documentation showing how to call Icy wrappers
•  Each Icy wrapper has an HTML page containing usage examples

serving as the Icy “module header”
»  Icy Required Reading

•  Provides background information essential for programming with Icy

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 17

Mice Toolkit

•  Mice, the MATLAB Toolkit
–  Mice provides a MATLAB-callable “wrapper” interface for many CSPICE

wrapper routines
»  Example:

•  CSPICE: spkezr_c (targ, et, ref, abcorr, obs, state, <ime);
•  Mice: [state, ltime] = cspice_spkezr(targ, et, ref, abcorr, obs)

»  More MATLAB-callable wrappers will be added as time permits
–  By necessity all Mice Toolkit packages include the complete CSPICE

Toolkit.
»  Additional Mice software components are:

•  MATLAB interface wrappers (implemented in MATLAB wrapper scripts
calling the ANSI C based interface library)

•  Mice cookbook programs (implemented in MATLAB script)
–  Mice Documentation

»  Mice Reference Guide
•  Principal documentation showing how to call Mice wrappers
•  Each Mice wrapper script has a documentation header containing usage

examples, serving as SPICE “module header”, available from the help
command. This documentation also exists as a HTML page.

»  Mice Required Reading
•  Provides background information essential for programming with Mice

Navigation and Ancillary Information Facility

N IF Toolkit Architecture Pictorial

Introduction to the SPICE Toolkit 18

•  NAIF must provide SPICE capability in the popular languages
•  Development and maintenance must be very economical
•  Computations must be identical for all languages

Interface
languages

ANSII
Fortran 77 f2c Translated C

ANSII C Wrappers
MATLAB Wrappers

Application
and

Utility
Programs

ANSII C Wrappers ANSII C Wrappers

IDL Wrappers

MATLAB Toolkit

User’s
Application

Program

Translated C Translated C

IDL Toolkit C Toolkit FORTRAN Toolkit

f2c

User’s
Application

Program

User’s
Application

Program

User’s
Application

Program

Application
and

Utility
Programs

Application
and

Utility
Programs

Application
and

Utility
Programs

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 19

•  The top level directory name for each Toolkit is:
–  “toolkit” for Fortran Toolkits
–  “cspice” for C Toolkits
–  “icy” for IDL Toolkits
–  “mice” for MATLAB Toolkits

•  Directory structures for the Toolkits are almost identical.
However…

–  The CSPICE, Icy and Mice Toolkits also have a directory for include files
–  The names for application source code directories in CSPICE, Icy and

Mice differ slightly from those in the Fortran toolkit
–  Icy and Mice include additional directories for

»  Icy/Mice source code
»  Icy/Mice cookbook programs

Installed Directory Structure

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 20

•  The next level is comprised of:
–  data

»  Cookbook example kernels (use ONLY for training with cookbook programs)
–  doc

»  Text documents — *.req, *.ug, spicelib.idx/cspice.idx, whats.new,
dscriptn.txt, version.txt.

»  Subdirectory containing HTML documentation, called “html”.
•  The “html” subdirectory contains a single file — the top level HTML documentation

index called “index.html” — and a number of subdirectories, one for each of the
various groups of documents in HTML format (API Reference Guide pages, User’s
Guide pages, etc.)

–  etc
»  In generic Toolkits this directory is empty.

–  exe
»  Executables for brief, chronos, ckbrief, commnt, inspekt, mkspk, msopck,

spacit, spkdiff, frmdiff, spkmerge, tobin, toxfr, version.
»  Executables for the several cookbook example programs.

Installed Directory Structure

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 21

–  include (applies to CSPICE, Icy, and Mice)
»  API header files.

•  File to include in callers of CSPICE is SpiceUsr.h

–  lib

»  Toolkit libraries:
•  For Fortran SPICE Toolkits

–  spicelib.a or spicelib.lib (public modules; use these)
–  support.a or support.lib (private modules; don’t use these)

•  For CSPICE Toolkits
–  cspice.a or cspice.lib (public modules; use these)
–  csupport.a or csupport.lib (private modules; don’t use these)

•  For Icy Toolkits:
–  icy.so (shared object library)
–  icy.dlm (dynamically loadable module)
–  cspice.a or cspice.lib
–  csupport.a or csupport.lib

•  For Mice Toolkits:
–  mice.mex* (shared object library)
–  cspice.a or cspice.lib
–  csupport.a or csupport.lib

–  src

»  Source code directories for executables and libraries
•  Files have type *.f, *.for, *.inc, *.pgm, *.c, *.h, *.x, *.pro, *.m
•  *.h files appearing here are not part of the user API

Installed Directory Structure

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 22

•  All Toolkits include documentation in plain text and HTML
formats

–  Plain text documents are located under the “doc” directory
–  HTML documents are located under the “<toolkit_name>/doc/

html” (Unix) or “<toolkit name>\doc\html” (Windows) directory
»  “<toolkit_name>/doc/html/index.html” or “<toolkit_name>\doc\html

\index.html” is the top level index
•  All Toolkits include the following kinds of documents

–  Module headers

»  Act as primary functional specification: I/O, exceptions, particulars
defining behavior of module

»  Contain code examples
»  A standard format is used for each routine or entry point
»  Plain text Module Headers:

•  Fortran: the top comment block in the source code files under “src/spicelib”
•  C: the top comment block in the source code files under “src/cspice”
•  IDL: Icy Module Headers are not available in plain text format
•  MATLAB accessible via “help function_name” command

»  HTML Module Headers are accessible using the “API Reference
Guide” link from the top level index.

Toolkit Documentation

continues on next page

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 23

–  Required Reading
»  References for principal subsystems
»  Provide many low-level details
»  Provide code examples
»  Plain text versions are located under “doc” and have extension

“.req”
»  HTML versions are are accessible using the “Required Reading

Documents” link from the top level index.
»  Not all of Required Readings were adapted for all languages

•  Some of the Required Reading documents provided with CSPICE still cover Fortran
SPICE

•  Some of the Required Readings for Icy or Mice toolkits still cover CSPICE
–  User’s Guides

»  Interface specifications for the Toolkit utility programs and
applications

»  Plain text versions are located under “doc” and have extension
“.ug”

»  HTML versions are accessible using the “User’s Guide
Documents” link from the top level index.

Toolkit Documentation

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 24

Toolkit Documentation

•  Other documents
–  Permuted Index

»  Maps phrases describing functionality to corresponding module
names and file names

»  Shows names of all entry points in Fortran toolkit APIs
»  Plain text version is located under “doc” and has extension “.idx”:

•  Fortran: spicelib.idx
•  C: cspice.idx
•  IDL: icy.idx and cspice .idx
•  MATLAB: mice.idx and cspice.idx

»  HTML version isaccessible using the “Permuted Index” link from
the top level index.

–  Toolkit Description
»  Describes the directory structure and contents of an installed

Toolkit
»  Customized based on set of delivered products and platform
»  Plain text version is “doc/dscriptn.txt”
»  HTML version isaccessible using the “Toolkit Contents” link from

the top level index.

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 25

Toolkit Documentation

•  Other documents (continued)
–  Introduction to SPICE

»  Brief introduction to the Toolkit and SPICE system
»  Not available in plain text
»  HTML version isaccessible using the “Introduction to the SPICE

System” link from the top level index.

–  What’s New in SPICE
»  Describes new features and bug fixes
»  Plain text version is “doc/whats.new”
»  HTML version isaccessible using the “What’s New in SPICE” link

from the top level index.

–  Toolkit Version Description
»  Indicates Toolkit version
»  Plain text version is “doc/version.txt”
»  Not available in HTML

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 26

•  SPICE Toolkit utility programs are available to:
–  port binary SPICE kernels between incompatible systems*

»  tobin, toxfr, spacit
»  bingo (available only from the NAIF webpage)

–  port text SPICE kernels between incompatible systems
»  bingo (available only from the NAIF webpage)

–  add comments to binary kernels
»  commnt

–  read comments from binary kernels
»  commnt, spacit
»  inspekt (only for EK/ESQ files)

–  summarize coverage of binary kernels
»  brief, ckbrief, spacit

–  merge or subset SPK files
»  spkmerge

–  indicate current Toolkit version
»  version

Toolkit Utility Programs

* Usually not needed

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 27

•  SPICE Toolkit application programs perform various tasks:
–  create a new SPK file from a text file of state vectors or elements

»  mkspk
–  compare (diff) two SPKs

»  spkdiff
–  compare (diff) two reference frames

»  frmdiff
–  create a new CK from a text file of attitude data

»  msopck
–  carry out a wide assortment of time conversions

»  chronos
–  query Event Kernels (EKs)

»  inspekt

Toolkit Application Programs

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 28

•  NAIF ports the SPICE Toolkit to several popular
environments

–  Each environment is characterized by
»  Language
»  Hardware type (platform)
»  Operating System
»  Compiler
»  Selected compilation options

•  NAIF provides SPICE Toolkit packages for each supported
environment

–  If you cannot find a package built for the environment of interest to you,
contact NAIF

»  Don’t try to use or port a Toolkit built for another environment

Supported Environments

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 29

Supported Environments - Fortran

Product Name Operating System Compiler
Mac/Intel, OS-X, Intel FORTRAN OS X 10.4.x Intel Fortran 10.1

Mac/Intel, OS-X, gfortran OS X 10.4.x gfortran, GNU Fortran 4.3

Mac/PowerPC, OS-X, Absoft
FORTRAN

OS X 10.4.x Absoft Pro Fortran 9.0

Mac/PowerPC, OS-X, g77 OS X 10.4.x g77, GNU Fortran 3.4.4

PC, CYGWIN, g77 Windows/Cygwin g77, GNU Fortran 3.2
PC, Linux, Intel FORTRAN Red Hat Linux (RHE4) Intel Fortran 10.0

PC, Linux, g77 Red Hat Linux (RHE4) g77, GNU Fortran 3.4
PC, Linux, gfortran Red Hat Linux (RHE4) gfortran, GNU Fortran 4.3

PC, Windows, Digital FORTRAN Windows NT/2K/XP Compaq Digital Fortran 6.0
PC, Windows, Intel FORTRAN Windows XP Intel Fortran 9.1
PC, Windows, Lahey FORTRAN 95 Windows NT/2K/XP Lahey FORTRAN 95 5.6

Sun, Solaris, SUN FORTRAN Solaris 9 Sun FORTRAN 95 8.2

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 30

Supported Environments - C

Product Name Operating System Compiler
Mac/Intel, OS-X, Apple C OS X 10.4.x gcc, GNU C 4.0.1

Mac/PowerPC, OS-X,
Apple C

OS X 10.4.x gcc, GNU C 4.0.1

PC, CYGWIN, gCC Windows/Cygwin gcc, GNU C 3.2

PC, Linux, gCC Red Hat Linux (RHE4) gcc, GNU C 3.4.6

PC, Linux, gCC, 64bit Red Hat Linux (RHE4) gcc, GNU C 3.4.6

PC, Windows, Microsoft
Visual C

Windows NT/2K/XP Microsoft Visual
Studio .NET 7.0 C

Sun, Solaris, gCC Solaris 9 gcc, GNU C 3.3.2

Sun, Solaris, gCC, 64bit Solaris 9 gcc, GNU C 3.3.2

Sun, Solaris, SUN C Solaris 9 Sun C 5.8

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 31

Supported Environments - IDL*

Product Name Operating System Compiler
Mac/Intel, OS-X, Apple C/IDL OS X 10.4.x gcc, GNU C 4.0.1

Mac/PowerPC, OS-X, Apple
C/IDL

OS X 10.4.x gcc, GNU C 4.0.1

PC, Linux, gcc/IDL Red Hat Linux (RHE4) gcc, GNU C 3.4.6

PC, Linux, gcc/IDL, 64bit Red Hat Linux (RHE4) gcc, GNU C 3.4.6

PC, Windows, Microsoft
Visual C/IDL

Windows XP Microsoft Visual
Studio .NET 7.0 C

Sun, Solaris, gcc/IDL Solaris 9 gcc, GNU C 3.3.2

Sun, Solaris, gcc/IDL, 64bit Solaris 9 gcc, GNU C 3.3.2

Sun, Solaris, SUN C/IDL Solaris 9 Sun C 5.8

*NAIF built and tested Icy using IDL version 6.4,
but these Toolkits work with IDL 7 as well.

Navigation and Ancillary Information Facility

N IF

Introduction to the SPICE Toolkit 32

Supported Environments - MATLAB*

Product Name Operating System Compiler

Mac/Intel, OS-X, Apple C OS X 10.4.x gcc, GNU C 4.0.1

Mac/PowerPC, OS-X,
Apple C

OS X 10.4.x gcc, GNU C 4.0.1

PC, Linux, gCC Red Hat Linux (RHE4) gcc, GNU C 3.4.6

PC, Linux, gCC, 64bit Red Hat Linux (RHE4) gcc, GNU C 3.4.6

PC, Windows, Microsoft
Visual C

Windows XP Microsoft Visual
Studio .NET 7.0 C

*NAIF built and tested Mice using MATLAB version 7.x

Navigation and Ancillary Information Facility

N IF

Using Module Headers

March 2010

Navigation and Ancillary Information Facility

N IF

2 Using Module Headers

Topics

•  Module Header Purpose
•  FORTRAN Module Header Locations
•  C Module Header Locations
•  Icy Module Header Locations
•  Mice Module Header Locations
•  Examine a Typical Header

Navigation and Ancillary Information Facility

N IF

3 Using Module Headers

Module Header Purpose

•  NAIF uses module “headers” to provide SPICE users
with detailed information describing a module’s
function and design.

–  In FORTRAN, C and MATLAB the “headers” are comment blocks
inserted in the source code

•  All Toolkit distributions include HTML versions of the
module headers.

•  Using the HTML formats is usually the best approach
because of hyperlinking with other NAIF
documentation

•  The next charts provide the header locations

Navigation and Ancillary Information Facility

N IF

4 Using Module Headers

Fortran Module Header Locations

•  In FORTRAN Toolkits:
–  <path to SPICELIB>/toolkit/src/spicelib/<name.f or <name>.for
–  In most cases there is a single “header” at the top of the source

code. For cases where a FORTRAN module has multiple entry
points, there are additional “headers” at each entry point. For
example:

»  “keeper.f” has entries for:
•  FURNSH, KTOTAL, KINFO, KDATA, KCLEAR, and UNLOAD

•  HTML versions of the headers:
–  <path to SPICELIB>/toolkit/doc/html/spicelib/index.html

Navigation and Ancillary Information Facility

N IF

5 Using Module Headers

C Module Header Locations

•  In C Toolkits:
–  <path to CSPICE>/cspice/src/cspice/<name>_c.c

•  HTML versions of the headers:
–  <path to CSPICE>/cspice/doc/html/cspice/index.html

Navigation and Ancillary Information Facility

N IF

6 Using Module Headers

Icy Module Header Locations

•  In IDL (“Icy”) toolkits, two sets of headers are
provided.

–  Icy headers in HTML format:
»  <path to Icy>/icy/doc/html/icy/index.html

–  CSPICE headers, in text and HTML formats:
»  <path to Icy>/icy/src/cspice/<name>_c.c
»  <path to Icy>/icy/doc/html/cspice/index.html

•  The information provided in an “Icy” wrapper is
minimal in some cases; the corresponding CSPICE
wrapper provides more detail.

–  A link to the corresponding CSPICE wrapper is provided in the Icy
wrapper.

Navigation and Ancillary Information Facility

N IF

7 Using Module Headers

Mice Module Header Locations

•  In Matlab (“Mice”) toolkits, two sets of headers are
provided.

–  Mice headers in HTML format:
»  <path to Mice>/mice/doc/html/mice/index.html
»  The user can also access the information presented in the HTML

document via the Matlab help command, e.g.
>> help cspice_str2et

–  CSPICE headers, in text and HTML formats:
»  <path to Mice>/mice/src/cspice/<name>_c.c
»  <path to Mice>/mice/doc/html/cspice/index.html

•  The information provided in a “Mice” wrapper is
minimal in some cases; the corresponding CSPICE
wrapper provides more detail.

–  A link to the corresponding CSPICE wrapper is provided in the Mice
wrapper.

Navigation and Ancillary Information Facility

N IF

8 Using Module Headers

Examine a Typical Header

•  As example, look for and examine one of these
headers:

FORTRAN C IDL (Icy) MATLAB (Mice)
SPKEZR spkezr_c cspice_spkezr cspice_spkezr
STR2ET str2et_c cspice_str2et cspice_str2et

Navigation and Ancillary Information Facility

N IF

Preparing for Programming
Using the SPICE Toolkit

March 2010

Navigation and Ancillary Information Facility

N IF

Preparing for Programming 2

Setting Path to Toolkit Executables

•  Unix
–  csh, tcsh: Use the set command to add the location of toolkit executables to

your path.
»  set path = ($path /my_directory/toolkit/exe)
»  set path = ($path /my_directory/cspice/exe)
»  set path = ($path /my_directory/icy/exe)
»  set path = ($path /my_directory/mice/exe)

–  bash
»  PATH=$PATH:/my_directory/toolkit/exe
»  PATH=$PATH:/my_directory/cspice/exe
»  PATH=$PATH:/my_directory/icy/exe
»  PATH=$PATH:/my_directory/mice/exe

•  Windows
–  Add location of toolkit executables to the environment variable PATH from the

Advanced pane on the System Control Panel (Control Panel->System->Advanced).
»  drive:\my_directory\toolkit\exe
»  drive:\my_directory\cspice\exe
»  drive:\my_directory\icy\exe
»  drive:\my_directory\mice\exe

Replace the italics with the path in which you installed the toolkit on your computer.	

Recommended for all languages

Navigation and Ancillary Information Facility

N IF

Preparing for Programming 3

•  Compile and link an application, say program, against the
SPICELIB/CSPICE libraries

–  Assume SPICE is installed at /naif/toolkit/ or CSPICE is installed at /
naif/cspice/

»  C

»  FORTRAN

»  Some FORTRAN compilers (e.g. Absoft) require an additional flag
"-lU77" to pull in the standard Unix symbols when linking against
SPICELIB.

•  The default SPICE library names do not conform to the UNIX convention
libname.a. So you cannot use the library path/name options
… -L/path_to_libs/ -lname

 unless you rename the SPICE library.

Unix/Linux: Build

$ gcc program.c -I/naif/cspice/include /naif/cspice/lib/cspice.a -lm

$ g77 program.f /naif/toolkit/spicelib.a

Navigation and Ancillary Information Facility

N IF

Preparing for Programming 4

•  The standard installation of Microsoft Visual Studio may not
update environment variables needed to use the C compiler (cl)
from the standard DOS shell.

–  You can set the environment variables by executing from a DOS shell one
of the “vars32” batch scripts supplied with Microsoft compilers:

»  vars32.bat
»  vcvars32.bat
»  vsvars32.bat

–  If available on your system, you can execute the “Visual Studio Command
Prompt” utility from the

Programs -> Microsoft Visual Studio -> Visual Studio Tools
 menu. The utility spawns a DOS shell set with the appropriate environment
variables.

Windows: Compiler settings

Navigation and Ancillary Information Facility

N IF

Preparing for Programming 5

•  Assume SPICE is installed at C:\naif\toolkit\ with CSPICE
installed at C:\naif\cspice\

–  Compile and link an application, say program, against the SPICELIB/
CSPICE libraries

»  C

»  FORTRAN

Windows: Builds

> cl program.c -IC:\naif\cspice\include C:\naif\cspice\lib\cspice.lib

> df program.f C:\naif\toolkit\lib\SPICELIB.LIB

Navigation and Ancillary Information Facility

N IF

Preparing for Programming 6

Icy: Register the Icy DLM to IDL (1)

•  Unix and Windows
–  Use the IDL register command:

IDL > dlm_register, ‘/naif/icy/lib/icy.dlm’

–  Or, copy icy.dlm and icy.so (icy.dll) to IDL's binary directory
 {The IDL install directory}/bin/bin.user_architecture

»  /usr/local/itt/idl64/bin/bin.linux.x86/
»  C:\ITT\IDL64\bin\bin.x86\

•  Unix specific:
–  Start the IDL application from a shell in the directory containing both

icy.dlm and icy.so.
–  Append the path to your icy.dlm to the IDL_DLM_PATH environment

variable to include the directory containing icy.dlm and icy.so, e.g.:

 Caveat: with regards to the Icy source directory, icy/src/icy, do not invoke IDL from the directory, do
not register the directory, and do not append to IDL_DLM_PATH the directory. This directory
contains an “icy.dlm” but no “icy.so.”

Required for “Icy”

IDL> dlm_register, ‘_path_to_directory_containing_icy.dlm_’

setenv IDL_DLM_PATH "<IDL_DEFAULT>:_path_to_directory_containing_icy.dlm_"

Navigation and Ancillary Information Facility

N IF

Preparing for Programming 7

•  Windows specific:
–  Set environment variable IDL_DLM_PATH from the Advanced pane

of the System Control Panel.
•  Confirm IDL recognizes and can access Icy.

–  Using the help command:

»  Appearance of the words “not loaded” might suggest something is wrong, but this is expected state
until you execute an Icy command.

–  Execute a trivial Icy command:

Icy: Register the Icy DLM to IDL (2)

IDL> help, ‘icy’, /DLM
**ICY - IDL/CSPICE interface from JPL/NAIF (not loaded)

IDL> print, cspice_icy(‘version’)
% Loaded DLM: ICY.
Icy 1.4.20 25-DEC-2008 (EDW)

Navigation and Ancillary Information Facility

N IF

Preparing for Programming 8

•  Use the IDL IDE’s preferences panel to set the current working
directory to the location where you will be developing your
lessons’ code.

•  Optional: Place your dlm_register command in a start up
script. Specify the script using the IDL IDE’s preferences panel.

Icy: Using the IDL IDE

Recommended for “Icy”

Navigation and Ancillary Information Facility

N IF

Preparing for Programming 9

•  Assume Mice is installed at C:\naif\mice\ on Windows, or /naif/
mice/ on Unix/Linux. Use of Mice from MATLAB requires the
Mice source and library directories exist in the MATLAB search
path.

–  On Windows:

–  On Unix/Linux:

Mice

Required for “Mice”

>> addpath('C:\naif\mice\lib')
>> addpath('C:\naif\mice\src\mice')

>> addpath('/naif/mice/lib')
>> addpath('/naif/mice/src/mice')

Navigation and Ancillary Information Facility

N IF

Time Conversion and
Time Formats

March 2010

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 2

•  Time Systems and Kernels
•  Converting Time Strings
•  Converting Numeric Times
•  Additional Time Conversions
•  Pictorial Layout of the Time Conversions
•  Backup

Topics

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 3

•  Time inputs and outputs in users’ SPICE-based programs are
usually strings representing epochs in these three time systems:

–  Coordinated Universal Time (UTC)
–  Spacecraft Clock (SCLK)
–  Ephemeris Time (ET, also referred to as Barycentric Dynamical Time, TDB)

•  Independent time variable in kernels, and time inputs and outputs
to SPICE routines reading kernel data and computing derived
geometry, are double precision numbers representing epochs in
these two time systems:

–  Numeric Ephemeris Time (TDB), expressed as ephemeris seconds past J2000
–  Encoded Spacecraft Clock, expressed as clock ticks since the clock start

•  SPICE provides routines to perform conversions between string
and numeric times using data from these two kernels:

–  Leapseconds Kernel (LSK) containing data for UTC <=> ET conversion
–  Spacecraft Clock Kernel (SCLK) containing data for ET <=> SCLK conversion

•  Caution: the long-term future relationships between UTC,
TDB, and SCLK time systems cannot be accurately predicted

Time Systems and Kernels

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 4

•  UTC, TDB, or TDT (TT) String to numeric Ephemeris Time
–  STR2ET (string, ET)

»  Converts virtually any time string, excepting SCLK. For example:
‘1996-12-18T12:28:28’ ‘1978/03/12 23:28:59.29’ ‘Mar 2, 1993 11:18:17.287 p.m. PDT’
‘1995-008T18:28:12’ ‘1993-321//12:28:28.287’
‘2451515.2981 JD’ ‘ jd 2451700.05 TDB’
‘1988-08-13, 12:29:48 TDB’ ‘1992 June 13, 12:29:48 TDT’

»  Requires LSK kernel
•  Spacecraft Clock String to numeric Ephemeris Time

–  SCS2E (scid, string, ET)
»  Converts SCLK strings consistent with SCLK parameters. For example:

‘5/65439:18:513’ (VGR1) ‘946814430.172’ (MRO) ‘1/0344476949-27365’ (MSL)

»  The “LSK and SCLK” tutorial discusses SCLK string formats in detail
»  Requires SCLK kernel, and usually LSK kernel (to handle a very small

~2 msec, difference between TDB and TT)

•  Spacecraft Clock String to Encoded Spacecraft Clock (used in
the mid-level interfaces of the C-kernel system)

–  SCENCD (scid, string, SCLKDP)
»  Requires only SCLK kernel

Converting Time Strings

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 5

•  Numeric Ephemeris Time to Calendar, DOY or Julian Date UTC,
TDB, or TDT String

–  TIMOUT (et, fmtpic, STRING)
»  fmtpic is an output time string format specification, giving the user great

flexibility in setting the appearance of the output time string and the time
system used (UTC, TDB, TDT).

•  See next slide for examples of format pictures to produce a variety of output time strings
•  See the TIMOUT header for complete format picture syntax
•  The module TPICTR may be useful in constructing a format picture specification from a

sample time string

»  Requires LSK Kernel

–  ETCAL (et, STRING)
»  STRING, fixed format ephemeris calendar time string, for example

‘2000 JAN 01 12:16:40.123’
»  No LSK Kernel is required

Converting Numeric Times - 1

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 6

Common Time Strings
1999-03-21T12:28:29.702

1999-283T12:29:33

1999-01-12, 12:00:01.342 TDB

2450297.19942145 JD TDB

Less Common Time Strings
465 B.C. Jan 12 03:15:23 p.m.

04:28:55 A.M. June 12, 1982

Thursday November 04, 1999

DEC 31, 15:59:60.12 1998 (PST)

Format Picture Used (fmtpic)
YYYY-MM-DDTHR:MN:SC.###

YYYY-DOYTHR:MN:SC ::RND

YYYY-MM-DD, HR:MN:SC.### ::TDB TDB

JULIAND.######## ::TDB JD TDB

Format Picture Used (fmtpic)
YYYY ERA Mon DD AP:MN:SC ampm

AP:MN:SC AMPM Month DD, YYYY

Weekday Month DD, YYYY

MON DD, HR:MN:SC YYYY (PST)::UTC-8

 Example Time Strings and the Corresponding Format Pictures

Use of Format Picture

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 7

•  Numeric Ephemeris Time to Spacecraft Clock String

–  SCE2S (scid, et, SCLKCH)
»  Requires both LSK and SCLK kernels
»  Output SCLK string examples:

 ‘1/1487147147.203’ (Cassini, MGS)
 ‘1/05812:00:001’ (Voyager 1 and 2)

•  Encoded Spacecraft Clock to Spacecraft Clock String

–  SCDECD (scid, sclkdp, SCLKCH)
»  Requires only SCLK kernel

Converting Numeric Times - 2

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 8

Additional Time Conversions

•  Conversion between uniform time systems – numeric
representations of TDB(ET), TAI, TDT, JDTDB(JED), JDTDT

–  Return value = UNITIM (epoch, insys, outsys)
»  Requires LSK kernel

•  Numeric Ephemeris Time to Local Solar Time String
–  ET2LST(et, body, long, type, HR, MN, SC, TIME, AMPM)

»  Requires SPK (to compute body position relative to the Sun) and
PCK (to compute body rotation) kernels

•  Numeric Ephemeris Time to planetocentric longitude of the
Sun (Ls)

–  Return value = LSPCN (body, et, abcorr)
»  While Ls is not a time system, it is frequently used to determine

body season for a given epoch
•  Spring – 0° Ls; Summer – 90° Ls; Autumn – 180° Ls; Winter – 270° Ls

»  Requires SPK and PCK kernels

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 9

Barycentric
Dynamical Time

(TDB or ET)

Encoded
Spacecraft Clock

(Ticks)

Time string in
UTC, TDB or TDT

TIMOUT
ET2UTC

Spacecraft
Clock

(SCLK)

SCE2S

SCS2E

SCENCD

SCDECD

needs lsk

needs sclk

needs lsk and sclk

Principal Time System Interfaces

Local
Solar
Time

needs pck and spk ET2LST

Uniform time
systems (TDT,TAI,

JED, JDTDT)

DELTET

UNITIM

STR2ET

UTC seconds
past J2000

“L-sub-S”
(planetocentric

longitude of the sun)

LSPCN

SCT2E SCE2C

(Includes lots of
formatting flexibility)

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 10

•  Customizing the Time System

Backup

Navigation and Ancillary Information Facility

N IF

Time Conversion and Formats 11

•  Defaults
–  Two digit year (a bad idea but supported):1969-2068
–  Time System: UTC
–  Calendar: Gregorian

•  Adjustments
–  The one hundred year interval to which two digit years belong may be

set. For example 1980-2079
–  Time Systems: UTC, TDB, TT (Terrestrial Time)
–  Calendar: Gregorian, Julian, or Mixed.

•  See the TIMDEF module header and Time Required Reading
(time.req) for details

Customizing the Time System

Navigation and Ancillary Information Facility

N IF

Leapseconds and Spacecraft Clock
Kernels

LSK and SCLK

March 2010

Navigation and Ancillary Information Facility

N IF

C-Kernel 2

Topics

•  Kernels Supporting Time Conversions
–  LSK
–  SCLK

•  Forms of SCLK Time Within SPICE

•  Backup

Navigation and Ancillary Information Facility

N IF

Leapseconds (LSK) and Spacecraft Clock (SCLK) Kernels 3

•  LSK - The leapseconds kernel is used in
conversions between ephemeris time (ET/TDB)
and Coordinated Universal Time (UTC).

•  SCLK - The spacecraft clock kernel is used in
conversions between spacecraft clock time
(SCLK) and ephemeris time (ET/TDB).

–  (It’s possible there could be two or more clocks associated
with a given spacecraft.)

In most cases one or two kernel files are needed to
perform conversions between supported time systems.

SPICE Time Conversion Kernels

Navigation and Ancillary Information Facility

N IF

Leapseconds (LSK) and Spacecraft Clock (SCLK) Kernels 4

•  Used in ET UTC and in ET SCLK conversions.
–  Utility programs using LSK: spkmerge, chronos, spacit, etc.
–  Subroutines using LSK: STR2ET, TIMOUT, ET2UTC, etc.

•  As with all SPICE kernels, load it using FURNSH.
•  NAIF updates the LSK when a new leapsecond is

announced by the International Earth Rotation
Service (IERS).

–  The latest LSK file is always available from the NAIF server.
»  The latest is always the best one to use.

–  Announcement of each new LSK is made using the
“spice_announce” system.

»  http://naif.jpl.nasa.gov/mailman/listinfo/spice_announce

The leapseconds kernel contains a tabulation of all the
leapseconds that have occurred, plus additional terms.

The Leapseconds Kernel (LSK)

Navigation and Ancillary Information Facility

N IF

Leapseconds (LSK) and Spacecraft Clock (SCLK) Kernels 5

KPL/LSK

. . . <comments> . . .

\begindata

DELTET/DELTA_T_A = 32.184
DELTET/K = 1.657D-3
DELTET/EB = 1.671D-2
DELTET/M = (6.239996D0 1.99096871D-7)

DELTET/DELTA_AT = (10, @1972-JAN-1
 11, @1972-JUL-1
 12, @1973-JAN-1
 13, @1974-JAN-1
 14, @1975-JAN-1
 . . . <more leapsecond records> . . .
 32, @1999-JAN-1
 33, @2006-JAN-1
 34, @2009-JAN-1)

\begintext

LSK File Example

Navigation and Ancillary Information Facility

N IF

Leapseconds (LSK) and Spacecraft Clock (SCLK) Kernels 6

•  An out-of-date leapseconds kernel can be used
successfully for conversions that occur at epochs
prior to the epoch of the first missing leapsecond.

–  But any conversions of epochs occurring after the epoch of a
missing leapsecond will introduce inaccuracies in multiples of
one second per missed leapsecond.

•  Using the latest leapseconds kernel to perform
conversions at epochs more than six months
ahead of the last leapsecond listed may result in
an error if, later on, a new leapsecond is declared
for a time prior to the epochs you processed.

Out of Date LSKs

Navigation and Ancillary Information Facility

N IF

Leapseconds (LSK) and Spacecraft Clock (SCLK) Kernels 7

•  The spacecraft clock kernel contains data to perform
conversions from SCLK to other time systems.

•  It is required by Toolkit utilities and routines that utilize
SCLK time.

–  For example, the SPICE CK subsystem makes heavy use of spacecraft
clock time.

•  As with all SPICE kernels, use FURNSH to load it.
•  Ensure you have the correct version of the SCLK file for

your spacecraft since this kernel may be updated rather
frequently.

–  SCLK files are usually maintained on a flight project’s database.
»  For JPL operated missions they can always be found on the NAIF

server as well.
–  When using a CK, “correct SCLK” means compatible with that CK.

»  For reconstructed CKs, this is most likely the latest version of the
SCLK.

»  For “predict” CKs, this is probably the SCLK kernel used when the
CK was produced.

The Spacecraft Clock Kernel (SCLK)

Navigation and Ancillary Information Facility

N IF

Leapseconds (LSK) and Spacecraft Clock (SCLK) Kernels 8

KPL/SCLK

. . . <comments> . . .

\begindata

SCLK_KERNEL_ID = (@2009-12-07/18:03:04.00)
SCLK_DATA_TYPE_74 = (1)
SCLK01_TIME_SYSTEM_74 = (2)
SCLK01_N_FIELDS_74 = (2)
SCLK01_MODULI_74 = (4294967296 256)
SCLK01_OFFSETS_74 = (0 0)
SCLK01_OUTPUT_DELIM_74 = (1)

SCLK_PARTITION_START_74 = (0.0000000000000E+00
 . . . <more partition start records> . . .
 2.4179319500800E+11)

SCLK_PARTITION_END_74 = (2.0692822929300E+11
 . . . <more partition end records> . . .
 1.0995116277750E+12)

SCLK01_COEFFICIENTS_74 = (
 0.0000000000000E+00 -6.3119514881600E+08 1.0000000000000E+00
 1.2098765056000E+10 -5.8393434781600E+08 1.0000000000000E+00
 . . . <more coefficient records> . . .
 2.4179319365000E+11 3.1330950356800E+08 9.9999997500000E-01)

\begintext

SCLK File Example

Navigation and Ancillary Information Facility

N IF

Leapseconds (LSK) and Spacecraft Clock (SCLK) Kernels 9

•  SCLK time in SPICE is represented in two
different ways:

–  a character string
–  a double precision (DP) number called “ticks”

•  A SCLK character string is composed of one or
more cascading integer numbers – similar to a
digital clock.

–  This form is derived from clock values represented by sets of
bits or bytes, found in downlinked telemetry, whether for
science or engineering/housekeeping data.

•  A SCLK value encoded as a double precision (DP)
number (called “ticks”) is used within SPICE
because it’s easy to convert this to other time
systems, such as ephemeris time (ET, also called
TDB).

Forms of SCLK Time Within SPICE

Navigation and Ancillary Information Facility

N IF

Leapseconds (LSK) and Spacecraft Clock (SCLK) Kernels 10

The Cassini orbiter SCLK time string consists of
three fields separated by delimiters.

1/1609504792.123

Partition: Accounts for
clock resets or counter
roll-over.

Most Significant Clock Field:
Ranges from 0 to 4294967295 (232-1). Nominally
1 second increment.

Least Significant Clock Field:
Ranges from 0 to 255. Nominally
1/256th of a second increment.

Clock Field Delimiter*
(not a decimal point) Partition

Delimiter

Sample SCLK String

* Several SCLK delimiter
characters are available in
SPICE. See “SCLK Required
Reading” for details.

Navigation and Ancillary Information Facility

N IF

Leapseconds (LSK) and Spacecraft Clock (SCLK) Kernels 11

What is a Partition?

•  A partition is a NAIF-created construct to handle spacecraft
clock rollovers or resets.

•  When referring to epochs in the first partition, the leading
‘1/’ may be omitted.

•  Many modern spacecraft don’t use a partition other than 1/.

1/1609504792.123

The portion of the SCLK string circled above
indicates the partition to which the remaining
portion of the string is related.

Navigation and Ancillary Information Facility

N IF

Leapseconds (LSK) and Spacecraft Clock (SCLK) Kernels 12

5F EF 18 18 7B

Constructing an SCLK String

Usually SCLK tags in raw telemetry are represented by sets of
bits or bytes. Such tags must be converted to SCLK strings
used in SPICE. This is an example of how it is done for the
sample CASSINI SCLK string from previous slides.

•  Start with a 5-byte CASSINI TLM SCLK
•  First four bytes are an unsigned

integer representing seconds
•  Last byte is an unsigned byte

representing fractional seconds (as a
count of 1/256 second ticks)

•  Convert integer and fractional seconds to
two strings

•  Concatenate strings together using a
recognized delimiter (‘.’, ‘:’, etc)

•  Add the partition prefix
•  Optional, for most modern missions

except Chandrayaan-1 it may be
omitted

‘1609504792’ '123’

‘1609504792.123’

‘1/1609504792.123’

Navigation and Ancillary Information Facility

N IF

Leapseconds (LSK) and Spacecraft Clock (SCLK) Kernels 13

•  Encoded spacecraft clock values represent “ticks
since spacecraft clock start.”

–  The time corresponding to tick “0” is mission dependent and
does not necessarily relate to launch time. In fact it is often an
arbitrary epoch occurring before launch.

•  A tick is the smallest increment of time that a
spacecraft clock measures. For example, in the
case of the Cassini orbiter this is nominally
1/256th of a second.

•  Encoded SCLK increases continuously
independent of leapseconds, clock resets, and
counter rollovers.

The representation of SCLK time in the SPICE
system is a double precision encoding of a SCLK
string.

Encoded SCLK (Ticks)

Navigation and Ancillary Information Facility

N IF

C-Kernel 14

Additional Info on LSK and SCLK

•  For more information about LSK, SCLK, and time
conversions, look at the following documents

–  Time Required Reading
–  SCLK Required Reading
–  Time tutorial
–  Most Useful SPICELIB Routines
–  headers for the routines mentioned in this tutorial
–  CHRONOS User’s Guide
–  Porting_kernels tutorial

•  Related documents
–  Kernel Required Reading
–  CK Required Reading

Navigation and Ancillary Information Facility

N IF

C-Kernel 15

Backup

•  Examples of SCLK strings
•  SCLK Interface Routines

Navigation and Ancillary Information Facility

N IF

Leapseconds (LSK) and Spacecraft Clock (SCLK) Kernels 16

The Galileo spacecraft SCLK time string consists of
five fields separated by delimiters.

1/16777214:90:9:7

Partition: Accounts for
clock resets or counter roll-
over.
Most Significant Clock Field:
Ranges from 0 to 16777214.
Nominally 60 2/3rd second
increment.

Least Significant Clock Field:
Ranges from 0 to 7. Nominally
1/120th of a second.

Clock Field Delimiters
Partition
Delimiter

Sample Galileo SCLK String

Intermediate Clock Field:
Ranges from 0 to 9. Nominally
1/15th of a second.

Intermediate Clock Field:
Ranges from 0 to 90. Nominally
2/3rd of a second.

Navigation and Ancillary Information Facility

N IF

Leapseconds (LSK) and Spacecraft Clock (SCLK) Kernels 17

More Sample SCLK Strings

•  Cassini
1/1334314108.134

•  DS1
1/67532406.010

•  Galileo
1/16777214:90:9:7

•  Genesis
1/666230496.204

•  MGS
1/655931592.103

The following are examples of SCLK
strings* from missions using SPICE.

•  MPF
1/559627908.058

•  Mariner 9
1/11542909

•  Mars Odyssey
1/687231994.091

•  NEAR
1/40409721942

•  Stardust
1/697451990.042

•  Viking 1&2
1/32233616

•  Voyager 1&2
1/05812:00:001

•  Mars Express
1/0090979196.29713

•  Venus Express
1/0033264000.50826

•  Rosetta
1/0101519975.65186

* When clock strings are used as arguments in modules they must be contained in quotes:
 - Single quotes for Fortran
 - Double quotes for C
 - Single quotes for IDL and MATLAB

Navigation and Ancillary Information Facility

N IF

Leapseconds (LSK) and Spacecraft Clock (SCLK) Kernels 18

 SCS2E (SC, SCLKCH, ET) (SCLK String ET)
 SCE2S (SC, ET, SCLKCH) (ET SCLK String)

 SCT2E (SC, SCLKDP, ET) (Encoded SCLK ET)
 SCE2C1 (SC, ET, SCLKDP) (ET Continuous Encoded SCLK)
 SCE2T (SC, ET, SCLKDP) (ET Discrete Encoded SCLK)

 SCENCD(SC, SCLKCH, SCLKDP) (Encode SCLK)
 SCDECD(SC, SCLKDP, SCLKCH) (Decode SCLK)

Convert SCLK times using the following routines

SCLK Interface Routines

1 Use SCE2C (not SCE2T) for C-kernel data access.

Navigation and Ancillary Information Facility

N IF

Introduction to the
SPICE Ephemeris Subsystem

SPK

Focused on
reading SPK files

March 2010

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 2

•  An SPK file contains ephemeris (trajectory) data for
"ephemeris objects.”

–  “Ephemeris” means position and velocity as a function of time.
•  Spacecraft, planets, satellites, comets and asteroids

are the obvious kinds of "ephemeris objects," but
many other possibilities exist, such as:

–  a rover on the surface of a body
–  a camera on top of a mast on a lander
–  a transmitter cone on a spacecraft
–  a deep space communications antenna on the earth
–  the center of mass of a planet/satellite system (planet barycenter)
–  the center of mass of our solar system (solar system barycenter)

•  See the next page for a pictorial representation of
some of these objects.

SPICE Ephemeris Data

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 3

Examples of Ephemeris Objects

Asteroid

Comet

Sun

Solar
system

barycenter

Object on
surface such
as a lander

or rover

Spacecraft

Planet system's
mass center
(barycenter*)

Planet's
mass
center

Satellite

Antenna
feed cone

•

Earth

Communications
Station

• •

*A barycenter is the
center of mass of a
set of bodies, such as
Saturn plus all of
Saturn's satellites.

The head and the tail of
every blue arrow are located
at “ephemeris objects.”

....

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 4

Inside an SPK:
Bodies and Centers of Motion

•  Inside an SPK file ephemeris objects come in
pairs: a “body” and its “center of motion.”

–  The ephemeris is given for the body moving relative to the
center of motion.

»  For the position component, the vector points TO the body
FROM the center of motion.

–  There can be, and often are, multiple such pairs within an SPK
file.

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 5

•  When you read an SPK file you specify which ephemeris
object is to be the “target” and which is to be the “observer.”

•  The SPK system returns the state of the target relative to the
observer.

–  The position data point from the “observer” to the “target.”
–  The velocity is that of the “target” relative to the “observer.”

Reading an SPK:
Observers and Targets

Target

Observer

Observer

Target

Caution: state (observer, target) ≠ - state (target, observer)

unless the state is geometric (no aberration corrections).

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 6

•  The time period over which an SPK file provides data for an
ephemeris object is called the “coverage” or “time coverage”
for that object.

–  An SPK file’s coverage for an object consists of one or more time
intervals.

–  Often the coverage for all objects in an SPK file is a single, common time
interval.

»  Example: a planetary SPK file such as de421.bsp
»  Counterexample: Cassini tour SPK with merged Huygens probe ephemeris

•  For any request time within any time interval comprising the
coverage for an object, the SPK system can return a vector
representing the state of that body relative to its center of
motion.

–  The SPK system will automatically interpolate ephemeris data to produce
a state vector at the request time.

–  To a user’s program, the ephemeris data appear to be continuous over
each time interval, even if the data stored inside the SPK file are discrete.

SPK File Coverage

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 7

Reference Frames as Used in
Writing and Reading SPKs

•  All ephemeris data in an SPK file have an associated
reference frame

–  There could be multiple such frames, each for a different portion of the
data

–  For the ephemeris data to be useful, this/these frames must be “known”
to any program that will subsequently read the ephemeris data

•  The application “reading” an SPK file(s) must specify
relative to what reference frame the output state or position
vectors are to be given

–  This frame must be “known” to the SPICE-based program

•  “Known” means either a built-in frame (“hard coded”) or
one fully specified at run-time

–  The user’s program may need to have access to additional SPICE data
in order to construct some of these frames

On Writing

On Reading

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 8

Using SPK Files

A Brief Introduction

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 9

•  To retrieve position or state vectors of ephemeris objects
from an SPK file one normally needs two kinds of SPICE
kernels

–  Ephemeris kernel(s) (SPK)
»  Sometimes just one is needed
»  Sometimes two or more are needed to chain together the "target"

and "observer" you have selected
–  Leapseconds kernel (LSK)

»  Used to convert between Coordinated Universal Time (UTC) and
Ephemeris Time (ET)

»  Usually needed since most people work with UTC time
•  Retrieving ephemeris data from an SPK file is usually

called “reading” the file
–  This term is not very accurate since the SPK “reader” software also

performs interpolation, and may chain together data from multiple
sources and/or perform aberration corrections

•  State and position vectors retrieved from an SPK file by the
SPK “reader” routines are of the form:

–  X,Y, Z, dX, dY, dZ for a state vector
–  X, Y, Z for a position vector

Retrieving Position or State Vectors

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 10

Tell your program which SPICE files to use (“loading” files)
CALL FURNSH ('spk_file_name')
CALL FURNSH ('leapseconds_file_name')

Convert UTC time to ephemeris time (TDB), if needed
CALL STR2ET ('utc_string', tdb)

Retrieve state vector from the SPK file at your requested time
CALL SPKEZR (target, tdb, 'frame', 'correction', observer, state, light time)

Use the returned state vector in other SPICE routines to compute observation
geometry of interest.

Loop... do as many times as you need to

Initialization…typically done once per program execution

inputs outputs

Retrieving a State Vector

Better yet, replace these
two calls with a single call
to a “furnsh kernel”
containing the names of all
kernel files to load.

Fortran syntax

used here

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 11

•  TARGET* and OBSERVER*: Character names or NAIF IDs for the
end point and origin of the state vector (Cartesian position and
velocity vectors) to be returned.

–  The position component of the requested state vector points from observer to
target.

•  TDB: The time at the observer at which the state vector is to be
computed. The time system used is Ephemeris Time (ET), now
generally called Barycentric Dynamical Time (TDB).

•  FRAME: The SPICE name for the reference frame in which your
output state vector is to be given. SPK software will automatically
convert data to the frame you specify (if needed). SPICE must
know the named frame. If it is not a built-in frame SPICE must
have sufficient data at run time to construct it.

* Character names work for the target and observer inputs only if built into SPICE or if registered using the
SPICE ID-body name mapping facility. Otherwise use the SPICE numeric ID in quotes, as a character string.

Arguments of SPKEZR - 1

INPUTS

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 12

•  CORRECTION: Specification of what kind of aberration correction
(s), if any, to apply in computing the output state vector.

–  Use ‘LT+S’ to obtain the apparent state of the target as seen by the observer. ‘LT
+S’ invokes light time and stellar aberration corrections.

–  Use ‘NONE’ to obtain the uncorrected (aka “geometric”) state, as given by the
source SPK file or files.

 See the header for subroutine SPKEZR, the document SPK Required
Reading, or the “Fundamental Concepts” tutorial for details. See the
backup charts for examples of aberration correction magnitudes.

•  STATE: This is the Cartesian state vector you requested. Contains 6
components: three for position (x,y,z) and three for velocity (dx, dy,
dz) of the target with respect to the observer. The position
component of the state vector points from the observer to the
target.

•  LIGHT TIME: The one-way light time between the (optionally
aberration-corrected) position of target and the geometric position
of the observer at the specified epoch.

Arguments of SPKEZR - 2

OUTPUTS

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 13

Retrieve a position vector from the SPK file at your requested time
 CALL SPKPOS (target, tdb, 'frame', 'correction', observer, positn, light time)

inputs outputs

Retrieving a Position Vector

Use the returned position vector in other SPICE routines

•  The SPICE routine SPKPOS is the position-only analog of
SPKEZR

–  The arguments of SPKPOS are identical to those of SPKEZR, except that
SPKPOS returns a 3-component position vector instead of a 6-component
state vector

•  When velocity data are not needed, using SPKPOS offers
several advantages over using SPKEZR

–  SPKPOS executes more quickly than SPKEZR when stellar aberration
corrections are used

–  SPKPOS can be used when reference frame transformations of velocity
are not possible due to absence of C-kernel angular velocity data

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 14

In this example we get the state (STATE) of Titan as seen from the Huygens probe at the UTC epoch 2004
NOV 21 02:40:21.3. The state vector is returned in the J2000 inertial reference frame (which in SPICE is the
same as the ICRF frame) and has been corrected for both light time and stellar aberration (LT+S). The one-
way light time (LT) is also returned.

A SPICE leapseconds file (NAIF0009.TLS) is used, as is a SPICE ephemeris file (HUYGENS_3_MERGE.BSP)
containing ephemeris data for the Huygens probe (-150), Saturn barycenter (6), Saturn mass center (699),
Saturn's satellites (6xx) and the sun (10), relative to the solar system barycenter.

CALL FURNSH ('NAIF0009.TLS')
CALL FURNSH ('HUYGENS_3_MERGE.BSP')

CALL STR2ET ('2004 NOV 21 02:40:21.3', TDB)
CALL SPKEZR ('TITAN', TDB, 'J2000', 'LT+S', 'HUYGENS PROBE',
 STATE, LT)

(Insert additional code here to make derived computations such as spacecraft sub-latitude
and longitude, lighting angles, etc. Use more SPICE subroutines to help.)

Repeat in a loop if/as needed to solve your particular problem

Initialization - typically do this just once per program execution

A Simple Example of Retrieving State Vectors

Better to use a “furnsh kernel”
instead of these individual
FURNSH statements

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 15

•  To get state vectors referenced to a non-inertial
reference frame, or when the data within the SPK
file are provided in a non-inertial frame, typically
more kernels will be needed.

–  To get the state of an object relative to a planet in the planet’s
IAU body-fixed reference frame you’ll need:

»  PcK file containing orientation data for the planet
»  SPK(s) for the object, planet, and (typically) planet

barycenter
»  LSK

–  To get the state of an object in a spacecraft-fixed reference
frame you’ll need:

»  FK, CK and SCLK for the spacecraft
»  SPK(s) for the spacecraft and object
»  LSK

A Slightly More Complex Example - 1
Kernel Data Needed

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 16

Tell your program which SPICE files to use (“loading” files)
CALL FURNSH ('spk_file_name')
CALL FURNSH ('leapseconds_file_name')
CALL FURNSH ('pck_file_name')

Convert UTC time to ephemeris time (TDB), if needed
CALL STR2ET ('utc_string', tdb)

Get state vector from SPK file at requested time, in planet’s IAU body-fixed frame
CALL SPKEZR (target, tdb, 'IAU_<body_name>', 'correction',
observer, state, lightime)

(Insert additional code here to make derived computations such as
spacecraft sub-latitude and longitude, lighting angles, etc. Use
more SPICE subroutines to help.)

Loop... do as many times as you need

Initialization...typically once per program execution

A Slightly More Complex Example - 2
Retrieving State Vectors

Better to use a “furnsh kernel”
instead of these three
individual FURNSH statements

Obtaining a state vector in a body-fixed reference frame

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 17

Chaining Data

•  If needed, the SPK software will automatically chain
together two or more state vectors needed to connect your
"target" to your "observer." (See next chart.)

•  SPK software can chain together state vectors provided by
a single SPK file, or by multiple SPK files.

•  In doing the chaining, if needed the SPK software will also
transform the various state vectors into a common
reference frame for addition or subtraction, then transform
the result to the reference frame you have selected for
output.

–  Your selected output reference frame must be one known to the SPICE
system, and your application program must have available all needed
SPICE data to construct this reference frame.

•  See the chaining example on the next page.

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 18

Example of Chaining

Planet system's
mass center

(planet barycenter)

Planet's
mass center

Satellite

• •

Your SPK may not contain exactly the
ephemeris you want.

But, if all the needed data are available in
your SPK file, the SPK subsystem will chain
together the position vectors indicated by
the three blue arrows–the data explicitly
contained in an SPK file–to give you the
position vector indicated by the red arrow–
the one you asked for.

This might require the loading of two SPK
files, one containing data for the spacecraft
relative to the planet mass center, and
another containing data for the planet mass
center and the satellite relative to the planet
barycenter.

Planet

Suppose you ask for the position of the satellite
relative to the spacecraft.

Spacecraft

“Planet system” = the planet and all of it’s satellites

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 19

More About SPK Files

Here we provide some more details on the design
and structure of SPK files.

However, still more information is provided in the
“Making an SPK” tutorial.

Navigation and Ancillary Information Facility

N IF

SPK
Type 12

SPK
Type 8

SPK
Type 4

SPK Subsystem 20

SPK
Type 3

SPK
Type 5

SPK
Type 10

SPK
Type 13

Chebyshev
Polynomials

(separate ones
for position and

velocity)

Weighted
Two-body

Motion

Hermite
Interpolation of

unequally spaced
discrete

state vectors

Space Command
Two-line Elements

SPK files contain various mathematical representations of ephemeris
data ("data types"), but the high-level user interfaces (SPK "readers")
are type-independent:

CALL SPKPOS (‘target’, time, ‘frame’, ‘correction’, ‘observer’, positn, light_time)

SPK Data Type Concept

CALL SPKEZR (‘target’, time, ‘frame’, ‘correction’, ‘observer’, state, light_time)

SPK Reader Modules

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 21

Why Have Multiple Data Types?

•  To allow SPK producers to choose an ephemeris
representation well-suited for their applications. For
example:

–  Weighted two-body extrapolation (type 5) yields compact files;
may be used with sparse data. Only accurate for motion that is
well approximated by the two-body model.

–  SPK files based on sliding-window Lagrange and Hermite
interpolation (types 9 and 13) are easy to create. Position can
be made arbitrarily accurate with sufficiently small time
separation of states.

–  Chebyshev polynomials (types 2, 3, 14) yield the best
combination of evaluation speed and accuracy. The file creator
must do more work to use these data types.

•  To replicate data originally provided in other formats.
–  Types 1, 2, 3, 8, 10, 14, 15, 17 and 18 were developed to enable

accurate duplication of data obtained from ephemeris
developers.

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 22

Widely Used SPK Data Types

•  Type 1 (Modified divided difference arrays)
–  Used by JPL orbit determination software for spacecraft ephemerides

•  Type 2 (Chebyshev polynomials for position, velocity given by
differentiation)

–  Used for JPL planetary ephemerides

•  Type 3 (Separate Chebyshev polynomials for position and
velocity)

–  Used for JPL satellite ephemerides

•  Type 5 (Weighted two-body extrapolation)
–  Used for comets and asteroids, as well as for sparse data sets where a

piecewise two-body approximation is acceptable

•  Type 10 (Space command two-line elements)
–  Used for earth orbiters

•  Types 9 and 13 (Sliding-window Lagrange and Hermite
interpolation of unequally-spaced states)

–  Used by non-JPL ephemeris producers and by MKSPK users

•  Type 18 (Sliding window Hermite or Lagrange interpolation)
–  Used in SPKs made by ESA missions

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 23

SPK Segments - 1

•  An SPK file is mostly made up of one or more
blocks of ephemeris data called “segments.”

–  Each segment contains position and velocity data for one
body, relative to one center of motion, given in one reference
frame, using one mathematical representation (called the SPK
“data type”), for a specified time interval.

–  Data for one body, relative to one center of motion, in one
reference frame, using one SPK data type may be placed in
many segments. This is often the case for spacecraft.

–  You can observe the segment-by-segment contents of an SPK
file using the SPACIT utility program.

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 24

SPK Segments - 2

•  An SPK segment, by definition, contains a
continuous representation of ephemeris data over
an interval of time.

–  You can request a position or state vector at any time within
the covered interval.

»  Achieved through interpolation of discrete data, or by
evaluating an analytical function, depending on the SPK
type.

•  However, interpolation across segments and
extrapolation beyond the time bounds of a
segment are not permitted by the SPK “readers.”

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 25

SPK File Structure: The User's View

Comment area

Segment 1 …

Segment n

Always present

Possibly present
 - sometimes by choice

 - sometimes required
…

Logical Organization of an SPK File

See the tutorial
named Making an
SPK for details
about segment
architecture and
contents.

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 26

SPK Segment Order and Priority

•  Within a single SPK file…
–  The segments in an SPK file need not be ordered according to

time or body.
–  Segment order does imply priority. When two segments from

the same SPK file both contain data for a given target and time
that satisfy a request, the SPK system selects the segment
located later in the file.

»  The centers of motion, frames and SPK types are irrelevant
to this selection.

•  If using two or more SPK files…
–  Segments from SPK files loaded later have higher priority:

when two segments from two different SPK files both contain
data for a given target and time, the SPK system selects the
segment from the SPK file that was loaded later.

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 27

Planets and Planet Barycenters

•  A planet and its satellites orbit the planet system’s barycenter
–  For example, the Jupiter mass center (599) and each of Jupiter’s satellites

(501 - 5xx) orbit the Jupiter system barycenter (5)

•  Planet system barycenters (i.e. 1 through 9) and the sun (10)
orbit the solar system barycenter (0)

•  Because Mercury and Venus have no satellites, their
barycenters (1 and 2) occupy the same locations as their mass
centers (199 and 299)*

•  Because the masses of Phobos and Deimos are so small
compared to the mass of Mars, the mass center for Mars (499)*
is treated as equivalent to the Mars barycenter (4)

* These equivalences hold true ONLY in the SPK
subsystem, not in the PCK subsystem

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 28

•  A single SPK file can hold data for one ephemeris object, or
for many ephemeris objects.

–  This is illustrated in the next three charts

SPK File Ephemeris Contents

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 29

Orbiter Planet Satellite -1

-82 = Cassini S/C 601 = Mimas
602 = Enceladus
603 = Tethys
604 = Dione
605 = Rhea
606 = Titan
607 = Hyperion
608 = Iapetus
609 = Phoebe

699 = Saturn mass center

610 = Janus
611 = Epimetheus
:
617 = Pandora
699 = Saturn mass center

-150 = Huygens probe

Probe

The user’s program must “load” as many of these SPK files
as needed to satisfy her/his requirements. NAIF strongly recommends
that such programs have the flexibility to load a list of SPK files provided
to the program at run time; this is easily accomplished by listing the
SPK files in a “furnsh kernel” using the Toolkit’s FURNSH routine.

Example of Flight Project SPK Files

This made up example shows four collections of SPK files for the
Cassini-Huygens mission.

One object One object Multiple objects

Multiple objects

Multiple objects

Satellite -2

 0 = solar system bc
 .
 .
 3 = Earth barycenter
 .
 6 = Saturn barycenter
 .
 .
 10 = Sun mass center
299 = Venus mass center
399 = Earth mass center
301 = Moon

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 30

Planet:

Satellite - 1:

Satellite - 2:

Orbiter :

Probe :

▲

Launch Orbit

Insertion
Probe
Release

* Note: This is likely not a real Cassini scenario; it is simply an illustration
 of some of the possibilities for ephemeris delivery on a planetary mission.

(Major satellites)

(Minor satellites)

End of
Mission

cruise phase
▲
▲
 ▲
Time line:

Each bar represents a separate file

Possible* SPK File Time Coverages
for the Previous Example

orbit phase

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 31

0 S.S. BC
1 Merc. BC
199 Mercury
2 Venus BC
299 Venus
3 Earth BC
301 Moon
399 Earth
4 Mars BC
499 Mars
5 Jupiter BC
6 Saturn BC
7 Uranus BC
8 Neptune BC
9 Pluto BC
10 Sun

3 Earth BC
399 Earth
5 Jupiter BC
501 Io
502 Europa
503 Ganymede
504   Callisto
505   Amalthea
514 Thebe
599 Jupiter
10 Sun

2000253 Mathilde
2000433 Eros

de421.bsp
Planet Ephemeris

jup230.bsp
Merged Planet and
Satellite Ephemeris

my_asteroids.bsp
Asteroid Ephemeris

Generic SPK files can be obtained from the NAIF server.

Examples of Generic
SPK File Contents

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 32

•  An SPK file may contain positions of tracking
stations, observatories, roving vehicles, etc.

–  The object could be stationary or moving

•  One reads this file the same as for any other SPK
file

–  Use the name or NAIF ID of the antenna, observatory or rover
as the “target” or “observer” in an SPK reader argument list

–  Also requires use of a SPICE PcK file if you request vectors to
be returned in an inertial frame such as J2000

SPKs for Objects Located on
the Surface of a Natural Body

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 33

•  The SPK producer should have provided descriptive
meta-data inside an SPK file, in the “comment area”

–  The comments should say when/why/how and for what purpose
the file was made

–  Additional useful information could also be provided by the
producer

•  These comments may be extracted or viewed using
an API (subroutine) or a SPICE utility program.

Understanding an SPK File

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 34

•  You can subset an SPK file, or merge two or more files
–  The merge may key off of objects, or time, or both

•  You can read data from just one, or many* SPK files in
your application program

•  Don’t forget the precedence rule: data in a later loaded
file take precedence over data from an earlier loaded file

 (* The allowed number of simultaneously loaded DAF-based files is currently set to 1000.)

Manipulating and Using SPK Files

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 35

% brief 070413BP_SCPSE_07097_07121.bsp
Brief. Version: 2.3.1 (SPICE Toolkit N0061)

Summary for: 070413BP_SCPSE_07097_07121.bsp

Bodies: CASSINI (-82) PLUTO BARYCENTER (9) TETHYS (603)
 MERCURY BARYCENTER (1) SUN (10) DIONE (604)
 VENUS BARYCENTER (2) MERCURY (199) RHEA (605)
 EARTH BARYCENTER (3) VENUS (299) TITAN (606)
 MARS BARYCENTER (4) MOON (301) HYPERION (607)
 JUPITER BARYCENTER (5) EARTH (399) IAPETUS (608)
 SATURN BARYCENTER (6) MARS (499) PHOEBE (609)
 URANUS BARYCENTER (7) MIMAS (601) SATURN (699)
 NEPTUNE BARYCENTER (8) ENCELADUS (602)
 Start of Interval (ET) End of Interval (ET)
 -------------------------------- --------------------------------
 2007 APR 07 16:22:23.000 2007 MAY 01 09:34:03.000

Summarizing an SPK File - 1

•  A brief summary can be made using the SPICE Toolkit utility “brief”
–  Summary is for objects present and their start and stop epochs

•  At your command line prompt, type the program name (with path),
followed by the name of the binary SPK file that is to be summarized

•  See the brief User’s Guide or on-line help (%brief -h) for more details

Note, the default
is ET, not UTC!

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 36

•  A detailed summary can be made using the Toolkit utility “SPACIT”
•  See the SPACIT User’s Guide for details

Summary for SPK file: sat240.bsp
Leapseconds File : /kernels/gen/lsk/leapseconds.ker
Summary Type : Entire File

--
 Segment ID : SAT240
 Target Body : Body 601, MIMAS
 Center Body : Body 6, SATURN BARYCENTER
 Reference frame: Frame 1, J2000
 SPK Data Type : Type 3
 Description : Fixed Width, Fixed Order Chebyshev Polynomials: Pos, Vel
 UTC Start Time : 1969 DEC 31 00:00:00.000
 UTC Stop Time : 2019 DEC 02 00:00:00.000
 ET Start Time : 1969 DEC 31 00:00:41.183
 ET Stop time : 2019 DEC 02 00:01:05.183
--
--
 Segment ID : SAT240
 Target Body : Body 602, ENCELADUS
 Center Body : Body 6, SATURN BARYCENTER
 Reference frame: Frame 1, J2000
 SPK Data Type : Type 3
 Description : Fixed Width, Fixed Order Chebyshev Polynomials: Pos, Vel
 UTC Start Time : 1969 DEC 31 00:00:00.000
 UTC Stop Time : 2019 DEC 02 00:00:00.000
 ET Start Time : 1969 DEC 31 00:00:41.183
 ET Stop time : 2019 DEC 02 00:01:05.183
-- :

:
(This is a partial output; not all data could be displayed on this chart)

Summarizing an SPK File - 2

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 37

•  Call SPKOBJ to find the set of objects for which a specified SPK
provides data.

–  INPUT: an SPK file name and initialized SPICE integer “Set” data structure. The set may
optionally contain ID codes obtained from previous calls.

–  OUTPUT: the input set, to which have been added (via set union) the ID codes of objects
for which the specified SPK provides coverage.

CALL SPKOBJ (SPK, IDSET)

•  Call SPKCOV to find the window of times for which a specified SPK file
provides coverage for a specified body:

–  INPUT: an SPK file name, body ID code and initialized SPICE double precision “Window”
data structure. The window may optionally contain coverage data from previous calls.

–  OUTPUT: the input window, to which have been added (via window union) the sequence
of start and stop times of segment coverage intervals of the specified SPK, expressed as
seconds past J2000 TDB.

CALL SPKCOV (SPK, IDCODE, COVER)

•  See the headers of these routines for example programs.
•  Also see the CELLS, SETS and WINDOWS Required Reading for background

information on these SPICE data types.

Summarizing an SPK File - 3

Summarizing an SPK at the API Level

Navigation and Ancillary Information Facility

N IF

C-Kernel 38

SPK Utility Programs

•  The following SPK utility programs are included in the
Toolkit:

BRIEF summarizes coverage for one or more SPK files
SPACIT generates segment-by-segment summary of an SPK file
COMMNT reads, appends, or deletes comments in an SPK file
MKSPK converts ephemeris data provided in a text file into an SPK file
SPKDIFF compares two SPK files
SPKMERGE subsets or merges one or more SPK files

•  These additional SPK utility programs are provided on the
NAIF Web site (http://naif.jpl.nasa.gov/naif/utilities.html)

SPY validates, inspects, and analyses SPK files
PINPOINT creates an SPK file for fixed locations (ground stations, etc)
BSPIDMOD alters body IDs in an SPK file
DAFMOD alters body or frame IDs in an SPK file
DAFCAT concatenates together SPK files
BFF displays binary file format of an SPK file
BINGO converts SPK files between IEEE and PC binary formats

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 39

•  For more information about SPK, look at the
following:

–  Backup slides in this tutorial
–  STATES cookbook program (source code) and its User’s Guide
–  Most Useful Routines document
–  SPK Required Reading document
–  Headers of the subroutines mentioned
–  Using Frames tutorial
–  BRIEF and SPKDIFF User’s Guides

•  Related documents:
–  NAIF_IDS Required Reading
–  Frames Required Reading
–  Time Required Reading
–  Kernel Required Reading

Additional Information on SPK

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 40

Backup

•  Problems Using SPK Files
•  Don’t Mix Planet Ephemerides
•  Barycenters and Mass Centers
•  Effect of Aberration Corrections
•  Retrieving State Vectors: "Under the Hood”
•  SPK File Structure

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 41

SPICE(SPKINSUFFDATA) - -
Insufficient ephemeris data has been loaded to
compute the state of xxx relative to yyy.

•  The file, or files, you loaded do not contain data for both your
target and observer bodies

–  You may have loaded the wrong file, or assumed the file contains data
that it doesn’t

–  You may not have loaded all the files needed
•  The file, or files, you loaded do not cover the time at which

you requested a state vector
–  This could occur if you’ve been given a file coverage summary in

calendar ET form and you mistook this for UTC
(ET = UTC + DELTAET, where DELTAET is about 65 secs as of 10/1/08)

–  This could occur if you are requesting a light-time corrected state and the
SPK files being used do not have data at the time that is one-way light-
time away* from your ET epoch of interest

»  * Earlier, for the receive case; later, for the transmission case
•  In the above situations you’ll get an error message like the

following:

Problems Using SPK Files - 1

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 42

SPICE(SPKINSUFFDATA) - -
Insufficient ephemeris data has been loaded to
compute the state of xxx relative to yyy.

•  You have requested aberration-corrected states
but the file, or files, you loaded do not contain
sufficient data to relate both your target and
observer bodies back to the solar system
barycenter.

–  You may not have loaded all the files needed
–  You may have assumed the file contains data that it doesn’t

•  In the above situations you’ll get an error
message like the following:

Problems Using SPK Files - 2

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 43

•  An infrequent problem occurs when your SPK file
(s) contain data for both target and observer, and
cover the period of interest, but ephemeris data for
an intermediate body needed to link the target and
observer together is missing.

–  Example: You load a spacecraft SPK containing ephemeris for
Cassini (-82) relative to the solar system barycenter (0), and you
load a satellite SPK containing the ephemeris for Titan (606) and
Saturn (699) relative to the Saturn barycenter (6). But you forgot
to load a planet SPK file that contains data for the Saturn
barycenter relative to the solar system barycenter. The SPK
software cannot “connect” Cassini to Titan or to Saturn. (See
the drawing on the next page.)

–  In this case, knowing what is the “Center Body” of movement
for each target body is important; this is shown in SPACIT, and
in BRIEF summaries if the -c command line option is used.

Problems Using SPK Files – 3a

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 44

Problems Using SPK Files - 3b
(drawing)

+

+

Sun

Solar System
Barycenter

Cassini spacecraft during
interplanetary cruise

Saturn

Titan

These vectors obtained
from a satellite
ephemeris SPK

This vector obtained from a
cruise phase spacecraft SPK

This vector cannot be obtained
from either the spacecraft or
satellite SPKs; a planet
ephemeris SPK is needed.

In this example the
absence of a planet
ephemeris SPK means the
Cassini-Titan and Cassini-
Saturn vectors shown here
cannot be determined
because the Saturn
Barycenter-to-Solar System
Barycenter vector is not
available.

available in SPK files
not available in SPK files

can’t be computed

Given…

Therefore…

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 45

Problems Using SPK Files - 4

•  You see an error message to the effect that pole
RA (right ascension) data cannot be found

–  You are requesting results in a body-fixed frame, but you
have not loaded a SPICE PcK file that defines this frame.

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 46

•  Segment Masking: You've loaded sufficient data to "connect"
target and observer, but the SPK subsystem can't make the
connection.

–  This can happen when a high-priority segment that can't be connected to
both target and observer "masks" a lower-priority segment that can be
connected.

–  Example: you want the state of earth as seen from the Galileo orbiter at a
specified ephemeris time ET1.

»  You have loaded SPK files providing:
•  the state of the Galileo orbiter relative to the asteroid Gaspra
•  the state of the orbiter relative to the sun
•  the state of the earth relative to the earth-moon barycenter
•  the states of the sun and earth-moon barycenter relative to the solar system barycenter

»  If an SPK segment for the orbiter relative to Gaspra covering ET1 has
higher priority than the segment for the orbiter relative to the sun
covering ET1, no connection between the orbiter and the earth will be
made.

»  Solution:
•  Load an SPK file providing the ephemeris of Gaspra relative to the sun or the solar system

barycenter (for a time interval containing ET1)

Problems Using SPK Files - 5

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 47

Problems Using SPK Files - 6

•  Other missing data… not obvious.
–  You may need CK (and SCLK), FK or PCK data to construct a

state (or position) vector in your requested output frame.
•  Mistaking ET for UTC, or vice-versa.
•  You must have loaded sufficient SPKs to be able

to chain states to the solar system barycenter if
doing aberration corrections.

•  Using light time corrections requires target
ephemeris data at the light time-corrected epoch.

–  If you’re working near the beginning of an SPK, the light time-
corrected epoch may occur earlier than available data.

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 48

•  You’ve assumed that:

 state (observer, target) = - state (target, observer)

•  This is NOT true unless you have requested geometric states in
both cases (i.e. no light time or stellar aberration corrections
are applied)

Problems Using SPK Files - 7

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 49

–  With each new integration of the
solar system, the solar system
barycenter moves w.r.t. the planets

–  Planet to planet offset variations
are much smaller than the
barycenter to planet variations

S.S.Barycenter

S.S.Barycenter

Mars

Earth

Comparing Apples and Oranges-1

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 50

•  SPICE allows you to “load”
different planetary
ephemerides (or portions
of them)

»  Potentially can subtract
the solar system
barycenter-relative
positions from different
ephemerides to get
relative states

•  Don’t mix planetary
ephemerides

•  For missions, a consistent
set of ephemerides is
provided

Result of mixing
ephemerides

Mars Earth

Comparing Apples and Oranges-2

S.S.Barycenter

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 51

Body Mass System Barycenter offset from Offset as % of
Center Barycenter body mass center (km)* body radius*

Sun (10) SSB (0) 1,378,196 198%

Mercury (199) M. BC (1) 0 0

Venus (299) V. BC (2) 0 0

Earth (399) E. BC (3) 4942 77%

Mars (499) M. BC (4) ~0 ~0

Jupiter (599) J. BC (5) 220 0.3%

Saturn (699) S. BC (6) 312 0.5%

Uranus (799) U. BC (7) 43 0.17%

Neptune (899) N. BC (8) 74 0.3%

Pluto (999) P. BC (9) 2080 174%
* Estimated maximum values over the time range 2000-2050

Barycenter Offset Magnitude

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 52

Effect of Aberration Corrections - 1

•  Angular offsets between corrected and uncorrected position
vectors over the time span 2004 Jan 1 to 2005 Jan1

–  Mars as seen from MEX:
»  LT+S vs NONE: .0002 to .0008 degrees
»  LT vs NONE: .0006 to .0047 degrees

–  Earth as seen from MEX:
»  LT+S vs NONE: .0035 to .0106 degrees
»  LT vs NONE: .0000 to .0057 degrees

–  MEX as seen from Earth:
»  LT+S vs NONE: .0035 to .0104 degrees
»  LT vs NONE: .0033 to .0048 degrees

–  Sun as seen from Mars:
»  LT+S vs NONE: .0042 to .0047 degrees
»  LT vs NONE: .0000 to .0000 degrees

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 53

Effect of Aberration Corrections - 2

•  Angular offsets between corrected and uncorrected position
vectors over the time span 2004 Jan 1 to 2008 Jan1

–  Saturn as seen from CASSINI:
»  LT+S vs NONE: .0000 to .0058 degrees
»  LT vs NONE: .0001 to .0019 degrees

–  Titan as seen from CASSINI:
»  LT+S vs NONE: .0000 to .0057 degrees
»  LT vs NONE: .0000 to .0030 degrees

–  Earth as seen from CASSINI:
»  LT+S vs NONE: .0000 to .0107 degrees
»  LT vs NONE: .0000 to .0058 degrees

–  CASSINI as seen from Earth:
»  LT+S vs NONE: .0000 to .0107 degrees
»  LT vs NONE: .0000 to .0059 degrees

–  Sun as seen from CASSINI:
»  LT+S vs NONE: .0000 to .0059 degrees
»  LT vs NONE: .0000 to .0000 degrees

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 54

•  Example: find the geometric state of the MGS orbiter relative
to Mars the at observation epoch ET, expressed in the J2000
reference frame.

–  CALL SPKEZR ('MGS', ET, 'J2000', 'NONE', 'MARS', STATE, LT)
–  The SPK subsystem locates an SPK segment containing the ephemeris

of the orbiter relative to Mars covering epoch ET, interpolates the
ephemeris data at ET, and returns the interpolated state vector.

•  Example: find the geometric state of Titan relative to the
earth at ET, expressed in the J2000 reference frame.

–  CALL SPKEZR ('TITAN', ET, 'J2000', 'NONE', 'EARTH', STATE, LT)
–  The SPK subsystem looks up and interpolates ephemeris data to yield:

»  The state of the earth relative to the earth-moon barycenter (A)
»  The state of the earth-moon barycenter relative to the solar system

barycenter (B)
»  The state of Titan relative to the Saturn system barycenter at ET (C)
»  The state of the Saturn system barycenter relative to the solar

system barycenter at ET (D)
–  SPKEZR then returns the state vector

»  C + D – (A + B)

Retrieving State Vectors:
"Under the Hood" - 1

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 55

•  Example: find the apparent state of the Cassini orbiter
relative to the DSN station DSS-14, expressed in the
topocentric reference frame centered at DSS-14, at a specified
observation epoch ET.

–  CALL SPKEZR ('CASSINI', ET, 'DSS-14_TOPO',
 'LT+S', 'DSS-14', STATE, LT)
–  The SPK subsystem looks up and interpolates ephemeris data to yield:

»  The state of DSS-14 relative to the earth in the ITRF93 terrestrial
reference frame (A)

»  The state at ET of the earth relative to the earth-moon barycenter in
the J2000 reference frame (B)

»  The state at ET of the earth-moon barycenter relative to the solar
system barycenter in the J2000 frame (C)

»  The state at the light time-corrected epoch ET-LT of the Cassini
orbiter relative to the Saturn system barycenter (other centers are
possible) in the J2000 frame (D)

Retrieving State Vectors:
"Under the Hood" - 2

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 56

»  The state at ET-LT of the Saturn system barycenter relative
to the solar system barycenter in the J2000 frame (E)

–  The SPK subsystem also looks up transformation matrices to
map states:
»  From the J2000 frame to the ITRF93 terrestrial (earth body-

fixed) frame at the observation epoch ET (T1)
»  From the ITRF93 terrestrial frame to the DSS-14-centered

topocentric frame (T2)
–  SPKEZR then computes the J2000-relative, light-time corrected

observer-target state vector
»  E + D – ((T1)-1 *A + B + C))

–  SPKEZR corrects this vector for stellar aberration
»  Call the result "V_J2000_apparent"

–  and finally returns the requested state vector in the DSS-14
topocentric reference frame
»  STATE = T2 * T1 * V_J2000_apparent

Retrieving State Vectors:
"Under the Hood" - 3

Navigation and Ancillary Information Facility

N IF

SPK Subsystem 57

SPK File Structure

•  A description of SPK file structure is shown near
the beginning of the “Making an SPK” tutorial.

Navigation and Ancillary Information Facility

N IF

Planetary Constants Kernel
PCK

March 2010

Navigation and Ancillary Information Facility

N IF

PcK Subsystem 2

•  Overview
•  Using PCKs
•  Text PCKs

–  IAU Models

•  Special case: binary PCKs
•  Interface Routines
•  PCK Reference Frames

Topics

Navigation and Ancillary Information Facility

N IF

PcK Subsystem 3

•  The P_constants kernel (PCK or PcK) is logically a part of the
“planet kernel.”

•  Usually SPICE PCK data consist of:
–  Orientation (also known as “rotation”) models for extended, natural solar

system bodies: sun, planets, natural satellites, a few asteroids
»  Location of the pole and prime meridian
»  Axis directions of a body-fixed, body-centered reference frame
»  Spin rate

–  Physical and cartographic constants
»  Sets of radii for triaxial shape models.
»  Additional items could be included, such as

•  prime meridian offset from the principal axis
•  magnetic dipole location
•  gravity parameters: GM, J2, higher order gravity field terms
•  ring model parameters

•  PCK data files are called “PCK kernels,” “PCKs” or “PCK files.”
•  The PCK subsystem supports text and binary PCK file formats.

–  Text PCKs may contain orientation, shape, and other cartographic or physical
data.

–  Binary PCKs are used for high-accuracy orientation data.
»  At NAIF, binary PCKs are available only for the earth and the moon.

Overview

Navigation and Ancillary Information Facility

N IF

PcK Subsystem 4

•  Text PCK files contain orientation, shape and other
data associated with natural solar system bodies.

•  NAIF creates and distributes a “generic” text PCK
based on the latest IAU/IAG Report.*

–  The reports are issued once every three years, and so might not
contain the very latest available results.

–  SPICE PCK software is designed to use these data to compute
orientation of body-fixed frames.

–  These frames have a name style of “IAU_body-name”
•  NAIF also provides a “masses” PCK, containing GM

values for the Sun and planetary systems.
–  Values from this file are typically used with SPICE osculating

element routines, and in using the MAKSPK application to make a
Type 5 SPK file.

•  Text PCKs are sometimes produced by flight
projects and others–not only by NAIF.

Text PCKs - 1

* “Report of the IAU/IAG Working Group on cartographic coordinates and rotational
elements: <year issued>”; published in Celestial Mechanics and Dynamical Astronomy

Navigation and Ancillary Information Facility

N IF

PcK Subsystem 5

•  The SPICE text kernel mechanism is used to implement
IAU/IAG-based generic PCK files.

–  Users may easily visually inspect data.
–  Users may (carefully!) modify text PCKs with a text editor.

»  Data or comments may be added, deleted, or changed.
»  Comments should be added to explain changes.

–  Kernel variables contain the mathematical terms appearing in rotation
or shape models.
»  BODY699_RADII = (60268 60268 54364)
»  BODY699_POLE_RA = (40.58 -0.036 0.)

–  The user may include additional kernel variables to change the base
frame or reference epoch.

–  Kernel variable names are case-sensitive.
»  NAIF uses only upper case for variable names; we suggest you do the

same.

Text PCKs - 2

Navigation and Ancillary Information Facility

N IF

PcK Subsystem 6

•  SPICE text PCK orientation models use data from the
IAU/IAG:
–  for the sun and planets:

»  IAU models use low-degree (typically linear) polynomials to represent RA and
DEC of the pole (body-fixed +Z-axis) as a function of time.

»  The prime meridian is also represented by a low-degree polynomial.
»  Trigonometric polynomial terms are supported by SPICE

•  but are rarely used in IAU models for planet orientation
–  for natural satellites:

»  Additional trigonometric polynomial terms are used to more accurately
represent precession and nutation.

»  A few satellites exhibit chaotic rotation and so are not modeled.
–  for some major asteroids (e.g. Ida, Eros, Gaspra, Vesta)

IAU Orientation Models - 1

Navigation and Ancillary Information Facility

N IF

PcK Subsystem 7

•  IAU body-fixed frames are planetocentric. For planets and satellites:
–  Z-axis is aligned with +/- spin axis. The positive Z-axis points toward the

north side of the “invariable plane of the solar system.”
–  The “invariable plane” is normal to the solar system’s angular

momentum vector. It is:
»  approximately the same as Jupiter’s orbital plane.
»  roughly parallel to the ecliptic plane.

–  X-axis defines the prime meridian.
–  Y-axis completes the right-handed frame.

•  The IAU chooses as its base frame the International Celestial
Reference Frame (ICRF), as defined by the International Earth
Rotation Service (IERS).

–  For historical and backwards compatibility reasons SPICE uses the names “J2000”
and “EME2000” as synonyms for the ICRF inertial reference frame, even though
J2000 and ICRF are, in fact, not identical. (The difference is “well under 0.1 arc
seconds.”)

•  The IAU reference epoch for rotational models is 2000 Jan 1
12:00:00 TDB, frequently referred to as “J2000.”

–  Note: This use of “J2000” is to identify an epoch in time, and should
NOT be confused with “J2000” used in SPICE and elsewhere to refer to
the ICRF inertial reference frame.

IAU Orientation Models - 2

Navigation and Ancillary Information Facility

N IF

PcK Subsystem 8

IAU Shape Models

•  SPICE text PCK shape models use data from the IAU/IAG
•  IAU shape models are nominally triaxial ellipsoids

–  For many bodies, two of the axes (equatorial axes) have the same value
(spheroidal)

–  For some bodies, one or more radii have not been determined.
•  Although many bodies are in fact modeled as spheres or

spheroids, SPICE deals with the general, triaxial case.
–  Exception: SPICE supports geodetic coordinate transformations only

for bodies modeled as spheres or spheroids.
»  RECGEO and GEOREC are the modules performing these transformations.

–  Exception: SPICE supports planetographic coordinate transformations
only for bodies modeled as spheres or spheroids.

»  PGRREC, RECPGR, DPGRDR and DRDPGR are the modules supporting
these transformations.

Navigation and Ancillary Information Facility

N IF

PcK Subsystem 9

•  The SPICE system stores high-accuracy orientation models in
binary PCKs.

–  Binary PCKs are implemented using the DAF file architecture (as are SPK files)
–  SPICE Toolkit utilities enable reading and writing comments, summarizing, and porting

binary PCKs.
–  Like SPK files, binary PCKs support multiple data representations (“data types”).

»  Type 2: Chebyshev polynomials for Euler angles, angular velocity obtained by
differentiation, constant interval length.

»  Type 3: Separate Chebyshev polynomials for Euler angles and their derivatives,
variable interval length.

•  Binary PCKs are limited to storing orientation data.
–  Applications that require shape data must also load a text PCK.

•  Orientation data from a binary PCK always supersede orientation data (for
the same object) obtained from a text PCK, no matter the order in which the
kernels are loaded

•  Binary PCKs are available for the Earth and Moon.
–  The orientation data provided by these kernels are much more accurate than

those provided by generic text PCKs based on the IAU/IAG reports.
–  These kernels are the topic of the tutorial on high-accuracy orientation data and

associated frames for the Earth and Moon.

Special Case: Binary PCKs

Navigation and Ancillary Information Facility

N IF

PcK Subsystem 10

•  Many PCK reference frame specifications are built-in to SPICE.
–  Just add orientation data (load PCK files) to use these frames. Examples:

»  IAU frames: IAU_SATURN, IAU_TITAN, IAU_EARTH, IAU_MOON, etc.
»  IERS frames: ITRF93

•  Other PCK frames are not built in and must be specified at run time
by loading frame kernels, for example:

–  Body fixed frames for asteroids or “newer” natural satellites
»  See the Frames Required Reading for information on creating frame kernels that

specify PCK reference frames.
–  Lunar body-fixed frames: MOON_ME, MOON_PA

»  See the tutorial on “high-accuracy” orientation data and associated frames for the
Earth and Moon” for details.

•  SPICE makes default associations between bodies and built-in PCK
frames

–  For example, the default PCK frames for the planets are IAU_MERCURY,
IAU_VENUS, IAU_EARTH, etc.

–  You can look up the default PCK frame associated with a body by calling
CNMFRM or CIDFRM.

»  (Neither of these is yet available in Mice.)

PCK Reference Frames

Navigation and Ancillary Information Facility

N IF

PcK Subsystem 11

•  Load PCKs using FURNSH
–  Orientation data from a binary PCK always supersede orientation data (for the

same object) obtained from a text PCK, no matter the order in which the kernels
are loaded

•  PCK orientation data are usually accessed via Frame system or
SPK calls

–  Example: Get the IAU_SATURN body-fixed reference frame to J2000 position or
state transformation matrix at ET:

»  CALL PXFORM ('IAU_SATURN', 'J2000', ET, RMAT)
»  CALL SXFORM ('IAU_SATURN', 'J2000', ET, XFORM)

–  Example: Get state of Saturn relative to Cassini in the IAU_SATURN body-fixed
reference frame:

»  CALL SPKEZR ('SATURN', ET, 'IAU_SATURN', 'LT+S', ‘CASSINI', STATE, LT)
–  Example: Get state of Cassini relative to the DSN station DSS-13 in the J2000

inertial reference frame:
»  CALL SPKEZR ('CASSINI', ET, 'J2000', 'LT+S', 'DSS-13', STATE, LT)

•  An Earth PCK must be loaded in order for this call to work.
–  Even though the specified reference frame is inertial
–  This call, in the course of its work, converts the position of the DSN station relative to the Earth’s center

from an Earth-fixed, earth-centered frame to the J2000 frame.

•  Access to PCK shape and other data is discussed in the section
titled “Interface Routines”

Using PCKs

Navigation and Ancillary Information Facility

N IF

PcK Subsystem 12

•  Call FURNSH to load PCKs.
–  CALL UNLOAD or KCLEAR to unload them.

•  Call SXFORM to return a state transformation.
–  Returns 6x6 matrix (attitude and angular velocity)

»  CALL SXFORM (FROM, TO, ET, XFORM)
•  Call PXFORM to return a position transformation.

–  Returns 3x3 matrix (attitude only)
»  CALL PXFORM (FROM, TO, ET, RMAT)

•  Get state of Saturn relative to Cassini in the IAU_SATURN
body-fixed reference frame:
–  CALL SPKEZR ('SATURN', ET, 'IAU_SATURN', 'LT+S', ‘CASSINI', STATE, LT)

•  Get state of Cassini relative to the DSN station DSS-13 in the
J2000 inertial reference frame:
–  CALL SPKEZR ('CASSINI', ET, 'J2000', 'LT+S', 'DSS-13', STATE, LT)

»  An Earth PCK must be loaded in order for this call to work.
•  Even though the specified reference frame is inertial
•  This call, in the course of its work, converts the position of the DSN station relative to the Earth’s center from an

Earth-fixed, earth-centered frame to the J2000 frame.

Interface Routines - 1

Navigation and Ancillary Information Facility

N IF

PcK Subsystem 13

•  Call BODVRD or BODVCD to retrieve constants associated with a
body. For example:
–  CALL BODVRD ('SATURN', 'RADII', 3, N, RADII)
–  CALL BODVCD (699, 'RADII', 3, N, RADII)

–  These calls retrieve values associated with the variable BODY699_RADII.
–  The variable name is case-sensitive, so the string “RADII” above must be in upper case.

•  You can use general kernel pool fetch routines to fetch data
assigned to any non-standard names

–  GCPOOL, for character data
–  GDPOOL, for double precision data
–  GIPOOL, for integer data

Interface Routines - 2

Navigation and Ancillary Information Facility

N IF PCK Utility Programs

•  The following PCK utility programs are included in the
Toolkit:

BRIEF summarizes coverage for one or more binary PCK files
SPACIT generates segment-by-segment summary of a binary PCK file
COMMNT reads, appends, or deletes comments in a binary PCK file
FRMDIFF samples or compares orientation of a PCK-based frame

•  These additional PCK utility programs are provided on the
NAIF Web site (http://naif.jpl.nasa.gov/naif/utilities.html)

DAFMOD alters frame IDs in a binary PCK file
DAFCAT concatenates together binary PCK files
BFF displays binary file format of an binary PCK file
BINGO converts binary PCK files between IEEE and PC binary

formats

14 PcK Subsystem

Navigation and Ancillary Information Facility

N IF

•  For more information about PCK, look at the
following:

–  Most Useful Routines document
–  PCK Required Reading document
–  Headers of the routines mentioned
–  Lunar/Earth High-Precision PCK/FK tutorial
–  BRIEF and FRMDIFF User’s Guides

•  Related documents:
–  Frames Required Reading
–  Kernel Required Reading
–  NAIF_IDS Required Reading
–  Time Required Reading

Additional Information on PCK

15 PcK Subsystem

Navigation and Ancillary Information Facility

N IF

Backup

PcK Subsystem 16

Navigation and Ancillary Information Facility

N IF

PcK Subsystem 17

•  Some (mostly deprecated) SPICE routines implicitly use the default
PCK frames (IAU_<body name>).

•  You can change the default PCK frame associated with a body by
loading a frame kernel that assigns a new default frame to that
body.

–  For the Earth or Moon, you can load a “frame association kernel” provided by
NAIF.

–  For any body, you can load a frame kernel containing the assignment
 OBJECT_<body name>_FRAME = '<new default frame name>'

»  Example: OBJECT_MOON_FRAME = 'MOON_ME'

•  For high-accuracy work involving the Earth or Moon and any SPICE
routines that use the default PCK frames, you normally would
override the SPICE default frames by loading frame association
kernels.

–  Reference the tutorial on “high-accuracy” orientation data and associated
frames for the Earth and Moon for details.

Changing the Default Frame

Navigation and Ancillary Information Facility

N IF

“Camera-matrix” Kernel
CK

(Orientation or Attitude Kernel)

Emphasis on reading CK files

March 2010

Navigation and Ancillary Information Facility

N IF

C-Kernel 2

CK File Contents - 1

•  A CK file holds orientation data for a spacecraft or a moving
structure on the spacecraft

–  “Orientation data” ⇒ quaternions, from which orientation matrices are
formed by SPICE software. These matrices are used to rotate position
vectors from a base reference frame (the “from” frame) into a second
reference frame (the “to” frame)

»  In SPICE this is often called the “C-matrix, short for “Camera matrix”
–  Optionally may include angular velocity of rotation of the “to” frame with

respect to the “from” frame
»  Angular velocity vectors are expressed relative to the “from” frame.

•  A CK file should also contain comments–sometimes called
metadata–that provide some details about the CK such as:

–  the purpose for this particular CK
–  when and how it was made
–  what time span(s) the data cover

Navigation and Ancillary Information Facility

N IF

C-Kernel 3

CK File Contents - 2

•  A single CK file can hold orientation data for
one, or for any combination of spacecraft or their
structures
–  Some examples

1.  Huygens Probe
2.  Cassini Orbiter and its CDA instrument mirror
3.  Mars Express Orbiter, PFS scanner, Beagle Lander
4.  MRO orbiter, MRO high gain antenna, MRO solar arrays

•  In practice CKs usually contain data for just one
structure

Navigation and Ancillary Information Facility

N IF

C-Kernel 4

CK File Varieties

•  “Reconstruction” CK (also called “definitive” CK)
–  A CK file can be made from orientation telemetry returned from a

spacecraft or other structure
–  A CK might also be made from some process that improves upon the

pointing determined from downlinked telemetry ("C-smithing")
–  These kinds of files are generally used for science data analysis or

spacecraft performance analysis

•  “Predict” CK
–  A CK file can be made using information that predicts what the

orientation will be some time in the future
»  Input data usually come from a modeling program, or a set of

orientation rules
–  This kind of file is generally used for engineering assessment, science

observation planning, software testing and quick-look science data
analysis

»  If it has good fidelity, such a file might be used to “fill in the data
gaps” of a reconstruction CK file

»  In some cases (ESA in particular) the predict meets the
reconstruction accuracy requirements; a true reconstruction CK is
not produced

Navigation and Ancillary Information Facility

N IF

C-Kernel 5

CK Data Types Concept

The underlying orientation data are of varying types, but
the user interface to each of these CK types is the same.

CK
Type 1

CK
Type 2

CK
Type 3

CK
Type 5

Discrete
Points

Piecewise Constant
Angular Velocity

Linear
Interpolation

Chebychev
Polynomials

ESOC
DDID

Discrete
data
type

“Continuous”
data
types

CK Reader Module

CK
Type 4

Navigation and Ancillary Information Facility

N IF

C-Kernel 6

•  To get orientation (rotation matrix) and angular velocity of a
spacecraft or one of its moving structures, one needs at least three
SPICE kernel types: CK, SCLK and LSK. One may also need an FK,
if he or she plans to access CK data via high level SPICE interfaces.

–  CK contains spacecraft or other structure orientation

–  SCLK and LSK contain time correlation coefficients used to convert between
ephemeris time (ET) and spacecraft clock time (SCLK)

»  Sometimes an LSK is not needed in this conversion, but best to have it
available as it is usually needed for other purposes

–  FK associates reference frames with CK IDs
»  Needed if high level SPICE interfaces are used to access CK data (see

next page)

Kernel Data needed

Navigation and Ancillary Information Facility

N IF

C-Kernel 7

What SPICE Routines Access CKs?

•  High-level SPICELIB routines are used more often than the
“original” CK readers to access CK data. These high-level
routines are:

–  Position or state transformation matrix determination
»  PXFORM: return a rotation matrix (3x3) from one frame to another,

either of which can be a CK-based frame or have CK-based frames
as “links” in its chain

»  SXFORM: return a state transformation matrix (6x6) from one
frame to another, either of which can be a CK-based frame or have
CK-based frames as “links” in its chain

–  Position or state vector determination
»  SPKPOS: return a position vector (3x1) in a specified frame, which

can be a CK-based frame or have CK-based frames as “links” in
its chain

»  SPKEZR: return a state vector (6x1) in a specified frame, which
can be a CK-based frame or have CK-based frames as “links” in
its chain

•  Use of the above mentioned routines is discussed in the FK,
Using Frames, and SPK tutorials

•  The “original” CK access routines are CKGP and CKGPAV
–  Use of these routines is described in this tutorial, along with topics

applicable to all of the routines mentioned above

Navigation and Ancillary Information Facility

N IF

C-Kernel 8

Initialization ... typically once per program run

 Tell your program which SPICE files to use (“loading” files)
 CALL FURNSH('lsk_file_name')
 CALL FURNSH('sclk_file_name')
 CALL FURNSH('ck_file_name')

Loop ... do as often as you need

 Convert UTC to SCLK ticks *
 CALL STR2ET('utc_string', tdb)
 CALL SCE2C (spacecraft_id, tdb, sclkdp)

 Get rotation matrix, or rotation matrix and angular velocity at requested time
 CALL CKGP (instid,sclkdp,tol,'ref_frame',cmat, clkout,found)
 CALL CKGPAV (instid,sclkdp,tol,'ref_frame',cmat,av,clkout,found)
 inputs outputs

* Although most spacecraft have a single on-board clock and this clock has the same ID as the spacecraft, the user
should know which SCLK was used to tag data in a CK file to specify the correct ID in a call to SCE2C.

One Example of How To Read a CK File

or

Better yet, use a “furnsh kernel”
to load all the needed files.

Navigation and Ancillary Information Facility

N IF

C-Kernel 9

instid NAIF ID for the spacecraft, instrument or other structure for which the
orientation is to be returned

sclkdp the time at which the orientation matrix and angular velocity are to be
computed. The time system used is encoded spacecraft clock time (SCLK).
The units are ticks since the zero epoch of the clock

tol* the tolerance, expressed as number of SCLK ticks, to be used in searching
for and computing the orientation data

ref_frame the name of the reference frame with respect to which the orientation is to
be computed. This is also called the “base” or “from” frame.

cmat the 3x3 rotation matrix that you requested
av the angular velocity that you requested
clkout the exact time for which the orientation and angular velocity was

computed
found the logical flag indicating whether the orientation and angular velocity data

were found. Note that if the loaded CK file(s) do not contain angular
velocity data, CKGPAV will return a FALSE found flag even if orientation
could have been computed. If “found” is .FALSE., then the values of the
output arguments “cmat” and “av” are undefined and should not be used!

 Always check the FOUND flag returned by CKGPAV and CKGP!

 * tol is explained in detail in backup slides

Arguments of CKGPAV
Inputs

Outputs

Navigation and Ancillary Information Facility

N IF

C-Kernel 10

An Example of Project CK Files

 CASSINI HUYGENS CASSINI
SPACECRAFT PROBE CDA MIRROR

 -82000 -150000 -82791

A user’s program must be able to load as many of these files as
needed to satisfy his/her requirements. It is strongly recommended
that such programs have the flexibility to load a list of CK files
provided to the program at run time; this is easily accomplished
using the Toolkit's FURNSH routine.

Navigation and Ancillary Information Facility

N IF

C-Kernel 11

Cassini
Orbiter:

Huygens
Probe:

Cassini
CDA Mirror:

Time line: ▲

Launch Orbit

Insertion
Probe

Release
End of

Mission

cruise phase ▲
 ▲
 ▲

* Note: This may not be a bona fide Cassini/Huygens scenario; it is a highly simplified illustration
 of some of the possibilities for orientation delivery on a planetary mission.

Sample* CK File Coverage - 1

Navigation and Ancillary Information Facility

N IF

C-Kernel 12

Even though a project's CK production process may suggest that CK files provide
continuous coverage for the interval of time for which they were generated, in
reality this is rarely the case. CK files almost always contain gaps in coverage.
Below is an example of this.

Coverage of …
a CK file:

as appears in file name/comments

CK file segments:
as appears in ckbrief/spacit summary

Segments with “continuous” data:

Summary of pointing available to the
CK reader for this CK file:

Sample CK Data Coverage - 2

(Types 2 - 5)

Blue line segments represent interpolation intervals–times when
pointing will be returned and the FOUND flag set to “TRUE.”

Time

Tstart Tstop

Navigation and Ancillary Information Facility

N IF

C-Kernel 13

What is an Interpolation interval?

•  An interpolation interval is a time period for which the CK
reader routines can compute and return pointing.

–  For CK Types 3 and 5 the pointing is computed by interpolating between
the attitude data points that fall within the interval.

–  For CK Type 2 the pointing within each interval is computed by
extrapolating from a single attitude and associated angular velocity.

–  For CK Type 4 the pointing is computed by evaluating polynomials
covering the interval.

–  For CK Type 1 (discrete pointing instances) the notion of an
interpolation interval is not relevant.

•  The time periods between interpolation intervals are gaps
during which the CK readers are not able to compute
pointing.

•  The interpolation intervals in Type 3 CK segments can be
modified without changing the actual pointing data.

–  The CKSPANIT and CKSMRG programs are used to make these
changes.

Navigation and Ancillary Information Facility

N IF

C-Kernel 14

Obtaining Coverage of CK File

•  High-level subroutine interfaces allow for obtaining CK coverage
information.

–  Call CKOBJ to find the set of structures for which a specified CK provides data.
»  INPUT: an CK file name and initialized SPICE integer “Set” data structure.

The set may optionally contain ID codes obtained from previous calls.
»  OUTPUT: the input set, to which have been added (via set union) the ID

codes of structures for which the specified CK provides coverage.
CALL CKOBJ (CK, IDS)

–  Call CKCOV to find the window of times for which a specified CK file provides
coverage for a specified structure:

»  INPUT: a CK file name, structure ID code, flag indicating whether angular
rates are needed, flag indicating whether coverage on segment or interval
level is to be returned, tolerance, output time system, and initialized SPICE
double precision “Window” data structure. The window may optionally
contain coverage data from previous calls.

»  OUTPUT: the input window, to which have been added (via window union)
the sequence of start and stop times of coverage intervals of the specified
CK, expressed as encoded SCLK or ET seconds past J2000.
CALL CKCOV (CK, ID, NEEDAV, LEVEL, TOL, TIMSYS, COVER)

•  See the headers of these routines for example programs.
•  Also see the CELLS, SETS and WINDOWS Required Reading for

background information on these SPICE data types.

Navigation and Ancillary Information Facility

N IF

C-Kernel 15

Make Use of CKCOV

•  When using high-level routines* that need
orientation data from a C-kernel, it's often a good
idea to first determine what are the valid
interpolation intervals in your CK using CKCOV.

–  If using multiple CKs, all of which are needed to construct a
frame chain, call CKCOV for each one and then intersect the
coverage windows.

•  Then check each time of interest for your
geometry calculations against the window of valid
intervals before proceeding onwards.

* E.g. SPKEZR, SPKPOS, SXFORM, PXFORM, SINCPT

Navigation and Ancillary Information Facility

N IF

C-Kernel 16

Summarizing a CK file - 1

•  A brief summary of a CK can be made using the Toolkit utility
CKBRIEF

–  At your command prompt, type the program name followed by the names of
CK, LSK and SCLK files (given in any order)

% ckbrief 07102_07107ra.bc naif0008.tls cas00106.tsc

CKBRIEF Ver 3.2.0, 2006-11-02. SPICE Toolkit Version: N0061.

Summary for: 07102_07107ra.bc

Object: -82000
 Interval Begin ET Interval End ET AV
 ------------------------ ------------------------ ---
 2007-APR-12 00:01:06.462 2007-APR-17 00:01:03.726 Y

Navigation and Ancillary Information Facility

N IF

C-Kernel 17

Summarizing a CK file - 2

•  A summary of interpolation intervals in a CK can be made using
CKBRIEF with ‘-dump’ option

% ckbrief –dump 07102_07107ra.bc naif0008.tls cas00106.tsc

CKBRIEF Ver 3.2.0, 2006-11-02. SPICE Toolkit Version: N0061.

Summary for: 07102_07107ra.bc

Segment No.: 1

Object: -82000
 Interval Begin ET Interval End ET AV
 ------------------------ ------------------------ ---
 2007-APR-12 00:01:06.462 2007-APR-12 05:58:02.576 Y
 2007-APR-12 05:58:22.576 2007-APR-12 21:34:26.221 Y
 . . .

Navigation and Ancillary Information Facility

N IF

C-Kernel 18

Summarizing a CK file - 3

•  A summary of interpolation intervals gaps in a CK can also be
made using the Toolkit utility FRMDIFF with ‘-t dumpc’ option

– FRMDIFF can also display gaps in CK coverage using ‘-t dumpg’ option

% frmdiff -t dumpg \
 –k cas_v40.tf naif0008.tls cas00106.tsc \
 -f 'YYYY-MM-DDTHR:MN:SC ::RND’ \
 07102_07107ra.bc

. . . <FRMDIFF report header> . . .

gap_start, gap_stop, gap_duration_sec, gap_duration_string
2007-102T05:56:57 2007-102T05:57:17 19.999 0:00:00:19.999
2007-102T21:33:21 2007-102T21:33:41 19.999 0:00:00:19.999
2007-102T21:34:57 2007-102T21:35:25 27.999 0:00:00:27.999
. . .

Navigation and Ancillary Information Facility

N IF

C-Kernel 19

Summarizing a CK file - 4

•  A detailed summary of a CK can be made using the Toolkit utility
SPACIT. See the SPACIT User's Guide for details.

--
 Segment ID : CASSINI ATT: -Y TO TITAN, +Z - VELCTY
 Instrument Code: -82000
 Spacecraft : Body -82, CAS
 Reference Frame: Frame 1, J2000
 CK Data Type : Type 3
 Description : Continuous Pointing: Linear Interpolation
 Available Data : Pointing and Angular Velocity
 UTC Start Time : 2005 FEB 15 07:59:59.999
 UTC Stop Time : 2005 FEB 15 08:59:59.998
 SCLK Start Time: 1/1487147147.203
 SCLK Stop Time : 1/1487150747.209
--
 . .
 . .
 etc. etc.

Navigation and Ancillary Information Facility

N IF

C-Kernel 20

CK Utility Programs

•  The following CK utility programs are included in the Toolkit:
CKBRIEF summarizes coverage for one or more CK files
SPACIT generates segment-by-segment summary of a CK file
COMMNT reads, appends, or deletes comments in an CK file
MSOPCK converts attitude data provided in a text file into a CK file
FRMDIFF samples or compares orientation of CK-based frames

•  These additional CK utility programs are provided on the
NAIF Web site (http://naif.jpl.nasa.gov/naif/utilities.html)

CKSLICER subsets a CK file
CKSMRG merges segments in a type 3 CK file (*)
DAFCAT concatenates together CK files (*)
CKSPANIT modifies interpolation interval information in a Type 3 CK file
DAFMOD alters structure or frame IDs in a CK file
prediCkt creates a CK file representing an orientation profile

described by a set of orientation rules and a schedule
BFF displays binary file format of an CK file
BINGO converts CK files between IEEE and PC binary formats

(*) DAFCAT and SKSMRG are frequently used together to first merge many CK files into a
single file using DAFCAT and then merge segments inside the merged file using CKSMRG.

Navigation and Ancillary Information Facility

N IF

C-Kernel 21

Additional Information on CK

•  For more information about CK, look at the
following documents

–  CK Required Reading
–  headers for the CKGP and CKGPAV routines
–  Most Useful SPICELIB Routines
–  CKBRIEF and FRMDIFF User’s Guides
–  Frames tutorials: FK and Using Frames don’t miss these
–  Porting_kernels tutorial

•  Related documents
–  SCLK Required Reading
–  Time Required Reading
–  Frames Required Reading
–  NAIF_IDS Required Reading
–  Rotations Required Reading

Navigation and Ancillary Information Facility

N IF

C-Kernel 22

Backup

•  Meaning of Tolerance

•  Examples of Problems Encountered When Using
CK Subsystem

Navigation and Ancillary Information Facility

N IF

C-Kernel 23

The Meaning of Tolerance - 1

•  The CKGP and CKGPAV routines use a time
tolerance, “tol,” measured in ticks, in executing
pointing lookups.
–  No matter whether your CK is a discrete type (Type 1) or a

continuous type (Types 2 - 5), if pointing information is not
found within +/- tol of your pointing request time, no pointing
will be returned and the “found flag” will be set to “FALSE.”

–  For Type 1 (discrete) CKs, the pointing instance nearest* to
your request time will be returned, as long as it is within tol of
your request time.
»  If the nearest pointing instances on each side of your

request time are equidistant from your request time, the later
instance will be selected.

–  For Types 2 - 5 (continuous pointing), pointing for exactly your
request time will be returned if this time falls anywhere within
an interpolation interval.

–  For all Types, the time tag associated with the pointing data will
also be returned.

*Ignoring segment priority

Navigation and Ancillary Information Facility

N IF

C-Kernel 24

 SCLKDP TOL
 \ /
 | |
 |/ \
 Your request [---+---]
 . . .
 Available data (0----0--0--0--0--0---0--0--0--0-----0--0--0)

 A SPICELIB CK reader returns this pointing instance

The Meaning of Tolerance - 2

• “0” is used to represent discrete pointing instances (quaternions)
• “()” are used to represent the end points of a segment within a CK file
• SCLKDP is the time at which you have requested pointing
• TOL is the time tolerance you have specified in your pointing request
• The quaternions occurring in the segment need not be evenly spaced in
time

When reading a Type 1 CK containing discrete pointing instances

Navigation and Ancillary Information Facility

N IF

C-Kernel 25

The Meaning of Tolerance - 3

 SCLKDP
 \ TOL
 | /
 |/\
 Your request [--+--]
 . . .
 Available data (==----=============---======------===--)

 A SPICELIB CK reader returns pointing at precisely the requested epoch

When reading a Type 2, 3, 4 or 5 CK (continuous pointing), with a
“pointing request” that falls within a span of continuous pointing (an
“interpolation interval”)

• “==” is used to indicate interpolation intervals of continuous pointing
• “()” are used to represent the end points of a segment within a CK file
• SCLKDP is the time at which you have requested pointing
• TOL is the time tolerance you have specified in your pointing request; for
this particular case it does not come into play
• The quaternions occurring in the periods of continuous pointing need
not be evenly spaced in time

Navigation and Ancillary Information Facility

N IF

C-Kernel 26

The Meaning of Tolerance - 4

 SCLKDP
 \ TOL
 | /
 |/\
 Your request [--+--]
 . . .
 Available data (--==============----======------===--)

 A SPICELIB CK reader returns pointing at the epoch closest to
 the request time, if this is within TOL of that request time.

When reading a Type 2, 3, 4 or 5 CK (continuous pointing), with a
“pointing request” that is NOT within a span of continuous pointing (an
“interpolation interval”)

• “==” is used to indicate interpolation intervals of continuous pointing
• “()” are used to represent the end points of a segment within a CK file
• SCLKDP is the time at which you have requested pointing
• TOL is the time tolerance you have specified in your pointing request
• The quaternions occurring in the periods of continuous pointing need not
be evenly spaced in time

Navigation and Ancillary Information Facility

N IF

C-Kernel 27

Problems using CK - 1

•  The file or files you loaded do not contain
orientation data for the object of interest.

–  Make sure the ID that you use in a call to CKGP or CKGPAV
matches one in the CK file(s) you have loaded.

–  Make sure the frame that you specify in a call to SXFORM,
PXFORM, SPKEZR, or SPKPOS is transformable to one
available in the loaded CK files.

•  CKGP or CKGPAV returns a transformation matrix
and/or angular velocity that does not appear
correct.

–  Probably the FOUND flag is “FALSE” and you are using data
left over from a previous query. Remember to always check the
FOUND flag! (If the FOUND flag is “TRUE” but the data seem
bad, contact the data producer.)

Navigation and Ancillary Information Facility

N IF

C-Kernel 28

Problems using CK - 2

•  The file, or files, you loaded do not cover the time at
which you requested orientation

–  Check file coverage on the segment level by summarizing the file
(s) using CKBRIEF or SPACIT

–  Check interpolation interval coverage using CKBRIEF with option
“-dump,” or by examining comments provided in the comment
area of the file - you may be asking for data within a coverage gap
(outside of interpolation intervals)

•  One of the frames routines (SPKEZR, SPKPOS,
SXFORM, PXFORM, SINCPT) signals an error

–  All frames routines read CK files using tolerance = 0
»  For discrete CKs (Type 1) the orientation of a CK-based frame

will be computed only if the time provided to a Frames routine
exactly matches one of the times stored in the CK file;
otherwise an error will be signaled.

»  For continuous CKs (all but Type 1) the orientation of a CK-
based frame will be computed only if the time provided to a
frame routine falls within one of the interpolation intervals
defined by the CK file; otherwise an error will be signaled.

Navigation and Ancillary Information Facility

N IF

C-Kernel 29

Problems using CK - 3

•  You’ve confirmed not having any of the
previously described problems, but the FOUND
flag comes back “FALSE” when using CKGPAV,
or SXFORM or SPKEZR signals a frame related
error.

–  You are using a SPICE routine that expects angular velocity as
well as orientation, but the CK segments available at your
requested epoch don’t contain angular velocity.

»  Routines expecting AV are: CKGPAV, SXFORM, SPKEZR
»  Routines not expecting AV are: CKGP, PXFORM, SPKPOS

Navigation and Ancillary Information Facility

N IF

C-Kernel 30

Problems using CK - 4

•  The FOUND flag comes back “TRUE” when using CKGPAV
but returned angular velocity does not appear correct.

–  While many other sources of the angular rate data, for example
spacecraft telemetry, specify it relative to the spacecraft frame, SPICE
CK files store it, and CKGPAV returns it, with respect to the base frame.
So the CK style of returned angular velocity may be unexpected.

•  The FOUND flag comes back “TRUE” when using CKGP/
CKPGAV but the quaternion computed from the returned
transformation matrix via a call to M2Q does not appear
correct.

–  The quaternion returned by M2Q follows the SPICE style, which is
different from the quaternion styles used by some other sources of
orientation data, for example most spacecraft telemetry.

»  See the headers of the M2Q and Q2M routines, and the Rotations
Required reading document for more details.

»  NAIF also prepared and can provide a “white paper” explaining
differences between various quaternion styles commonly used in
space applications.

Navigation and Ancillary Information Facility

N IF

C-Kernel 31

Problems using CK - 5

•  You’re trying to use a CK file that is not properly
formatted for your computer

–  You can read only a binary CK file with the CK subroutines; you
can’t read a “transfer format” file

»  Although not required, binary CK files often have a name like
“xxxxxx.bc”

»  Although not required, transfer format CK files often have a
name like “xxxxxx.xc”

–  If using Toolkit Version N0051 or earlier you must have the proper
kind of CK binary file for your computer (a native binary file)

»  Sun, HP, SGI and MAC (Motorola cpu) use the unix binary
standard

»  PC (Windows or Linux) uses its own binary standard
»  The pair of utility programs named TOBIN and TOXFR, or the

utility program SPACIT, can be used to port CK files between
computers having incompatible binary standards

Navigation and Ancillary Information Facility

N IF

Frames Kernel
FK

March 2010

Navigation and Ancillary Information Facility

N IF

Frames Kernel 2

Introduction

What does the FRAMES subsystem do?
•  It establishes relationships between reference frames used

in geometry computations -- it "chains frames together.”
–  We often call this set of relationships a frame tree

•  It connects frames with the sources of their orientation
specifications.

•  Based on these relationships and orientation source
information, it allows SPICE software to compute
transformations between neighboring frames in the "chain,"
and to combine these transformations in the right order,
thus providing an ability to compute orientation of any
frame in the chain with respect to any other frame in the
chain at any time. *

* If the complete set of underlying SPICE data needed to compute the transformation is
available.

Navigation and Ancillary Information Facility

N IF

Frames Kernel 3

I n e r t i a l
J 2 0 0 0
f r a m e

E a r t h
B o d y - f i x e d
f r a m e

F i x e d o f f s e t
t r a n s f o r m a t i o n

S a t u r n
B o d y - f i x e d
f r a m e

C a s s i n i
s p a c e c r a f t

f r a m e

I S S N A C
i n s t r u m e n t
f r a m e

T o p o c e n t r i c
F r a m e a t t h e
l a n d i n g s i t e

T i t a n
b o d y - f i x e d

f r a m e

P C K - b a s e d
t r a n s f o r m a t i o n

P C K - b a s e d
t r a n s f o r m a t i o n P C K - b a s e d

t r a n s f o r m a t i o n

C K b a s e d
t r a n s f o r m a t i o n

Sample Frame Tree

Navigation and Ancillary Information Facility

N IF

Frames Kernel 4

Frame Classes

Frame class

Inertial

Body-fixed

CK-based

Fixed Offset

Dynamic

 Examples

•  Earth Equator/Equinox of Epoch (J2000, …)
•  Planet Equator/Equinox of Epoch (MARSIAU, ...)
•  Ecliptic of Epoch (ECLIPJ2000, ...)

•  Solar system body IAU frames (IAU_SATURN, …)
•  High accuracy Earth frames (ITRF93, …)
•  High accuracy Moon frames (MOON_PA, MOON_ME)

•  Spacecraft (CASSINI_SC_BUS, …)
•  Moving parts of an instrument (MPL_RA_JOINT1, ...)

•  Instrument mounting alignment (CASSINI_ISS_NAC, …)
•  Topocentric (DSS-14_TOPO, …)

•  Geomagnetic
•  Geocentric Solar Equatorial
•  Planet true equator and equinox of date

Navigation and Ancillary Information Facility

N IF

Frames Kernel 5

Frame class Frame Defined in Orientation data provided in

Inertial Toolkit Toolkit

Bodyfixed Toolkit or FK PCK

CK based FK CK

Fixed offset FK FK

Dynamic FK Toolkit, or computed
 using FK, SPK, CK, and/or
 PCK

Frames Class Specifications

Navigation and Ancillary Information Facility

N IF

Frames Kernel 6

SXFORM/PXFORM returns state or position
transformation matrix

CALL SXFORM (‘FROM_FRAME_NAME’, ‘TO_FRAME_NAME’, ET, MAT6x6)
CALL PXFORM (‘FROM_FRAME_NAME’, ‘TO_FRAME_NAME’, ET, MAT3X3)

SPKEZR/SPKPOS returns state or position vector
in specified frame

CALL SPKEZR (BOD, ET, ‘FRAME_NAME’, CORR, OBS, STATE, LT)
CALL SPKPOS (BOD, ET, ‘FRAME_NAME’, CORR, OBS, POSITN, LT)

FRAMES Subsystem Interfaces

The above are FORTRAN examples, using SPICELIB modules.
The same interfaces exist for C, using CSPICE modules, and for Icy and Mice.

Navigation and Ancillary Information Facility

N IF

Frames Kernel 7

•  Refer to “NAIF IDs” Tutorial for an introduction to reference
frame names and IDs

•  Refer to FRAMES.REQ for the list of NAIF
“built in” (hard coded) inertial and body-fixed frames

•  Refer to a project’s Frames Kernel (FK) file for a list of
frames defined for the spacecraft, its subsystems and
instruments

•  Refer to an earth stations FK for a list of frames defined for
the DSN and other stations

•  Refer to the moon FKs for descriptions of the body-fixed
frames defined for the moon

What are the Names of Frames?

Navigation and Ancillary Information Facility

N IF

Frames Kernel 8

•  Uses the SPICE text kernel file standards
•  Loaded using the FURNSH routine
•  Usually contains comprehensive information about the

defined frames in the text section(s) of the file
•  Contains frame definition information consisting of a set of

keywords in the data sections of the file. Below are examples
of a CK-based frame and a fixed-offset frame definitions:

•  These examples are discussed in detail on the next few slides

Frames Kernel File

FRAME_DAWN_SPACECRAFT = -203000
FRAME_-203000_NAME = 'DAWN_SPACECRAFT’
FRAME_-203000_CLASS = 3
FRAME_-203000_CLASS_ID = -203000
FRAME_-203000_CENTER = -203
CK_-203000_SCLK = -203
CK_-203000_SPK = -203

FRAME_DAWN_FC1 = -203110
FRAME_-203110_NAME = 'DAWN_FC1’
FRAME_-203110_CLASS = 4
FRAME_-203110_CLASS_ID = -203110
FRAME_-203110_CENTER = -203
TKFRAME_-203110_RELATIVE = 'DAWN_SPACECRAFT’
TKFRAME_-203110_SPEC = 'ANGLES’
TKFRAME_-203110_UNITS = 'DEGREES’
TKFRAME_-203110_ANGLES = (0.0, 0.0, 0.0)
TKFRAME_-203110_AXES = (1, 2, 3)

CK-based Frame Example Fixed-offset Frame Example

Navigation and Ancillary Information Facility

N IF

Frames Kernel 9

Frame Definition Details - 1

•  The Frame ID is an integer number used by the SPICE
system as a “handle” in buffering and retrieving
various parameters associated with a frame. In an FK
it “glues” together the keywords defining the frame.

FRAME_DAWN_SPACECRAFT = -203000
FRAME_-203000_NAME = 'DAWN_SPACECRAFT’
FRAME_-203000_CLASS = 3
FRAME_-203000_CLASS_ID = -203000
FRAME_-203000_CENTER = -203
CK_-203000_SCLK = -203
CK_-203000_SPK = -203

FRAME_DAWN_FC1 = -203110
FRAME_-203110_NAME = 'DAWN_FC1’
FRAME_-203110_CLASS = 4
FRAME_-203110_CLASS_ID = -203110
FRAME_-203110_CENTER = -203
TKFRAME_-203110_RELATIVE = 'DAWN_SPACECRAFT’
TKFRAME_-203110_SPEC = 'ANGLES’
TKFRAME_-203110_UNITS = 'DEGREES’
TKFRAME_-203110_ANGLES = (0.0, 0.0, 0.0)
TKFRAME_-203110_AXES = (1, 2, 3)

Navigation and Ancillary Information Facility

N IF

Frames Kernel 10

Frame Definition Details - 2

•  The “FRAME_<name> = <id>” and
“FRAME_<id>_NAME = <name>” keywords establish
the association between the name and ID of the frame

FRAME_DAWN_SPACECRAFT = -203000
FRAME_-203000_NAME = 'DAWN_SPACECRAFT’
FRAME_-203000_CLASS = 3
FRAME_-203000_CLASS_ID = -203000
FRAME_-203000_CENTER = -203
CK_-203000_SCLK = -203
CK_-203000_SPK = -203

FRAME_DAWN_FC1 = -203110
FRAME_-203110_NAME = 'DAWN_FC1’
FRAME_-203110_CLASS = 4
FRAME_-203110_CLASS_ID = -203110
FRAME_-203110_CENTER = -203
TKFRAME_-203110_RELATIVE = 'DAWN_SPACECRAFT’
TKFRAME_-203110_SPEC = 'ANGLES’
TKFRAME_-203110_UNITS = 'DEGREES’
TKFRAME_-203110_ANGLES = (0.0, 0.0, 0.0)
TKFRAME_-203110_AXES = (1, 2, 3)

Navigation and Ancillary Information Facility

N IF

Frames Kernel 11

Frame Definition Details - 3

•  The FRAME…CLASS keyword specifies the method
by which the frame is related to its base frame

•  This keyword is set to:
 2 for PCK-based frames
 3 for CK-based frames
 4 for fixed-offset frames
 5 for dynamic frames

FRAME_DAWN_SPACECRAFT = -203000
FRAME_-203000_NAME = 'DAWN_SPACECRAFT’
FRAME_-203000_CLASS = 3
FRAME_-203000_CLASS_ID = -203000
FRAME_-203000_CENTER = -203
CK_-203000_SCLK = -203
CK_-203000_SPK = -203

FRAME_DAWN_FC1 = -203110
FRAME_-203110_NAME = 'DAWN_FC1’
FRAME_-203110_CLASS = 4
FRAME_-203110_CLASS_ID = -203110
FRAME_-203110_CENTER = -203
TKFRAME_-203110_RELATIVE = 'DAWN_SPACECRAFT’
TKFRAME_-203110_SPEC = 'ANGLES’
TKFRAME_-203110_UNITS = 'DEGREES’
TKFRAME_-203110_ANGLES = (0.0, 0.0, 0.0)
TKFRAME_-203110_AXES = (1, 2, 3)

Navigation and Ancillary Information Facility

N IF

Frames Kernel 12

Frame Definition Details - 4

•  The FRAME…CLASS_ID is the number that connects a frame with the
orientation data for it.

–  For body-fixed frames the CLASS_ID is the ID of the natural body. It is used as input to
PCK routines called by the Frame subsystem to compute orientation of the frame.

»  The Frame ID and CLASS_ID are not the same for the body-fixed frames defined in
the Toolkit but they can be the same for frames defined in FK files.

–  For CK-based frames the CLASS_ID is the CK structure ID. It is used as input to CK
routines called by the Frame subsystem to compute orientation of the frame.

»  Usually the CLASS_ID of a CK-based frame is the same as the frame ID, but this is
not required.

–  For fixed offset and dynamic frames the CLASS_ID is the ID that is used to retrieve the
frame definition keywords.

»  The CLASS_ID of a fixed offset or dynamic frame is the same as the frame ID.

FRAME_DAWN_SPACECRAFT = -203000
FRAME_-203000_NAME = 'DAWN_SPACECRAFT’
FRAME_-203000_CLASS = 3
FRAME_-203000_CLASS_ID = -203000
FRAME_-203000_CENTER = -203
CK_-203000_SCLK = -203
CK_-203000_SPK = -203

FRAME_DAWN_FC1 = -203110
FRAME_-203110_NAME = 'DAWN_FC1’
FRAME_-203110_CLASS = 4
FRAME_-203110_CLASS_ID = -203110
FRAME_-203110_CENTER = -203
TKFRAME_-203110_RELATIVE = 'DAWN_SPACECRAFT’
TKFRAME_-203110_SPEC = 'ANGLES’
TKFRAME_-203110_UNITS = 'DEGREES’
TKFRAME_-203110_ANGLES = (0.0, 0.0, 0.0)
TKFRAME_-203110_AXES = (1, 2, 3)

Navigation and Ancillary Information Facility

N IF

Frames Kernel 13

Frame Definition Details - 5

•  The FRAME…CENTER specifies the ephemeris object
at which the frame origin is located

–  It is used ONLY to compute the light-time corrected
orientation of the frame

FRAME_DAWN_SPACECRAFT = -203000
FRAME_-203000_NAME = 'DAWN_SPACECRAFT’
FRAME_-203000_CLASS = 3
FRAME_-203000_CLASS_ID = -203000
FRAME_-203000_CENTER = -203
CK_-203000_SCLK = -203
CK_-203000_SPK = -203

FRAME_DAWN_FC1 = -203110
FRAME_-203110_NAME = 'DAWN_FC1’
FRAME_-203110_CLASS = 4
FRAME_-203110_CLASS_ID = -203110
FRAME_-203110_CENTER = -203
TKFRAME_-203110_RELATIVE = 'DAWN_SPACECRAFT’
TKFRAME_-203110_SPEC = 'ANGLES’
TKFRAME_-203110_UNITS = 'DEGREES’
TKFRAME_-203110_ANGLES = (0.0, 0.0, 0.0)
TKFRAME_-203110_AXES = (1, 2, 3)

Navigation and Ancillary Information Facility

N IF

Frames Kernel 14

Frame Definition Details - 6

•  Additional keywords are included depending on the frame class
–  For CK frames, CK…SCLK and CK…SPK keywords identify the

spacecraft clock ID and physical object ID associated with the CK
structure ID

–  For fixed-offset frames, TKFRAME_* keywords specify the base
frame and the fixed orientation with respect to this frame

–  For dynamic frames, additional keywords depend on the dynamic
frame family

FRAME_DAWN_SPACECRAFT = -203000
FRAME_-203000_NAME = 'DAWN_SPACECRAFT’
FRAME_-203000_CLASS = 3
FRAME_-203000_CLASS_ID = -203000
FRAME_-203000_CENTER = -203
CK_-203000_SCLK = -203
CK_-203000_SPK = -203

FRAME_DAWN_FC1 = -203110
FRAME_-203110_NAME = 'DAWN_FC1’
FRAME_-203110_CLASS = 4
FRAME_-203110_CLASS_ID = -203110
FRAME_-203110_CENTER = -203
TKFRAME_-203110_RELATIVE = 'DAWN_SPACECRAFT’
TKFRAME_-203110_SPEC = 'ANGLES’
TKFRAME_-203110_UNITS = 'DEGREES’
TKFRAME_-203110_ANGLES = (0.0, 0.0, 0.0)
TKFRAME_-203110_AXES = (1, 2, 3)

Navigation and Ancillary Information Facility

N IF

Frames Kernel 15

•  The frames routines (SPKEZR, SPKPOS, SXFORM, PXFORM) all read CK
files using tolerance = 0

–  For discrete CKs the orientation of a CK-based frame will be computed only if the time
provided to a Frames routine exactly matches one of the times stored in the CK file;
otherwise an error will be signaled.

–  For continuous CKs the orientation of a CK-based frame will be computed only if the time
provided to a Frames routine falls within one of the interpolation intervals defined by the CK
file; otherwise an error will be signaled.

•  Using SPKEZR or SXFORM requires CKs with angular rates
–  Since these routines return a state vector (6x1) or state transformation matrix (6x6), angular

rates must be present in the CK in order to compute vectors and matrices; if rates are not
present, an error will be signaled.

–  SPKPOS and PXFORM, which return a position vector (3x1) and a position transformation
matrix (3x3) respectively, can be used instead because they require only orientation data to
be present in the CK.

•  Ephemeris time input to Frames routines is converted to SCLK to access
CKs

–  SCLK and LSK kernels must be loaded to support this conversion.
–  SCLK ID is specified in one of the CK frame definition keywords; if not, it’s assumed to be

the Frame ID divided by a 1000.

CK-Based Frames “Must Know”
These are VERY IMPORTANT points you must understand!

Navigation and Ancillary Information Facility

N IF

Frames Kernel 16

Frame Tree Example:
ASPERA Instrument on Mars Express

 "J2000" <-inertial
 |
 +---+
 | | |
 |<-pck | |<-pck
 | | |
 V | V
 "IAU_MARS" | "IAU_EARTH"
 MARS BODY-FIXED |<-ck EARTH BODY-FIXED
 --------------- | ----------------
 V
 "MEX_SPACECRAFT"
 +---+
 | |
 |<-fixed |<-fixed
 | |
 V V
 "MEX_ASPERA_URF" "MEX_ASPERA_IMA_URF"
 ----------------- --------------------
 | |
 |<-ck |<-fixed
 | |
 V V
 "MEX_ASPERA_SAF” “MEX_ASPERA_IMA”
 --- ... ----------------
 | | |
 |<-fixed |<-fixed |<-fixed
 | | |
 V V V
 "MEX_ASPERA_ELS" "MEX_ASPERA_NPI" "MEX_ASPERA_NPD1"
 ---------------- ---------------- ----------------

Blue text indicates frame class

Navigation and Ancillary Information Facility

N IF FK Utility Programs

•  The following FK and frames utility programs are included in
the Toolkit:

FRMDIFF samples orientation of a frame or compares orientation of
two frames

CKBRIEF summarizes coverage for one or more CK files
BRIEF summarizes coverage for one or more binary PCK files

•  These additional FK and frames utility programs are
provided on the NAIF Web site (http://naif.jpl.nasa.gov/naif/
utilities.html)

PINPOINT creates SPK and topocentric frames FK files for fixed
locations (ground stations, etc)

BINGO converts FK files between UNIX and DOS text formats

17 Frames Kernel

Navigation and Ancillary Information Facility

N IF Additional Information on FK

•  For more information about FK and frames, look
at the following documents

–  Frames Required Reading
–  Using Frames Tutorial
–  Dynamic Frames Tutorial
–  NAIF IDs Tutorial
–  headers for the routines mentioned in this tutorial
–  Most Useful SPICELIB Routines
–  FRMDIFF User’s Guide
–  Porting_kernels tutorial

•  Related documents
–  CK Required Reading
–  PCK Required Reading
–  SPK Required Reading
–  Rotations Required Reading

18 Frames Kernel

Navigation and Ancillary Information Facility

N IF

Using the Frames Subsystem

March 2010

Navigation and Ancillary Information Facility

N IF

Using Frames 2

•  The “power” of the Frames capability stems from the
SPICE system’s ability to construct complex reference
frame transformations with no programming effort
required of you - the end user

–  But your selecting and loading the needed kernels is crucial

•  The principal benefit from the Frames capability is
obtained through the main SPK subsystem interfaces
(SPKEZR and SPKPOS) and the Frames subsystem
interfaces (SXFORM and PXFORM)

•  The remaining pages illustrate typical use of frames
•  Several VERY IMPORTANT usage issues are mentioned in

the core Frames tutorial (fk.*); be sure to also read that.

What is the Power of Frames?

In SPICE terminology: “reference frame” = “coordinate system”

Navigation and Ancillary Information Facility

N IF

Using Frames 3

Compute the angular separation between the ISS Narrow
Angle Camera and Wide Angle Camera boresights:

C Retrieve the matrix that transforms vectors from NAC to WAC frame
 CALL PXFORM(‘CASSINI_ISS_NAC’, ‘CASSINI_ISS_WAC’, ET, MAT)
C Transform NAC boresight to WAC frame and find separation angle
 CALL MXV (MAT, NAC_BORESIGHT_nac, NAC_BORESIGHT_wac)
 ANGLE = VSEP(NAC_BORESIGHT_wac , WAC_BORESIGHT_wac)

Offset Between Instruments

I S S N A C
F r a m e

I S S W A C
F r a m e

M i s a l i g n m e n t
a n g l e b e t w e e n I S S
c a m e r a b o r e s i g h t s

S / C
F r a m e

C A S S I N I

W A C B o r e s i g h t

N A C B o r e s i g h t

Required Kernels:
• Generic LSK
• Mission FK
• Camera IK(s)

Navigation and Ancillary Information Facility

N IF

Using Frames 4

Angular Constraints

Check whether the angle between camera boresight and direction
to Sun is within allowed range:
CALL SPKPOS(‘SUN’, ET, ‘CASSINI_ISS_NAC’, ‘LT+S’, ‘CASSINI’, SUNVEC, LT)
ANGLE = VSEP(NAC_BORESIGHT_nac, SUNVEC)
IF (ANGLE .LE. CONSTRAINT) WRITE(*,*) ‘WE ARE IN TROUBLE!’

J 2 0 0 0
F r a m e

J 2 0 0 0
F r a m e

I S S N A C
F r a m e

S / C
F r a m e

C A S S I N I

S a t u r n

S u n

S S B

S u n d i r e c t i o n
i n t h e N A C f r a m e

N A C B o r e s i g h t

A n g l e b e t w e e n
N A C B o r e s i g h t

a n d S u n d i r e c t i o n

Required Kernels:
• Generic LSK
• Mission FK
• Spacecraft SCLK
• Camera IK
• Planetary
Ephemeris SPK
• Spacecraft SPK
• Spacecraft CK

Navigation and Ancillary Information Facility

N IF

Using Frames 5

Compute solar azimuth and elevation at the Huygens probe landing site
CALL SPKPOS(‘SUN’,ET,‘HUYGENS_LOCAL_LEVEL’,‘LT+S’,‘HUYGENS_PROBE’,SUNVEC,LT)
CALL RECLAT(SUNVEC, R, AZIMUTH, ELEVATION)
ELEVATION = -ELEVATION
IF (AZIMUTH .LT. 0.D0) THEN
 AZIMUTH = AZIMUTH + TWOPI()
ENDIF

Angles at the Surface

J 2 0 0 0
F r a m e

J 2 0 0 0
F r a m e

T i t a n ‘ s I A U
B o d y - f i x e d

f r a m e

L o c a l L e v e l
F r a m e a t t h e

p r o b e L a n d i n g
S i t e

S o l a r
A Z

S o l a r
E L S u n D i r e c t i o n

I n L o c a l L e v e l
F r a m e

T i t a n

S u n

S S B Required Kernels:
• Generic LSK
• Generic PCK
• Mission FK
• Planetary
Ephemeris SPK
• Satellite
Ephemeris SPK
• Landing Site SPK

Navigation and Ancillary Information Facility

N IF

Using Frames 6

Find the position of one MGS MAG sensor with respect to the other
in the MGS s/c frame. Also find the relative orientation of sensors:
CALL SPKEZR(‘MGS_MAG-Y’, ET, ‘MGS_SPACECRAFT’, ‘NONE’, ‘MGS_MAG+Y’, STATE, LT)
CALL PXFORM(‘MGS_MAG_+Y_SENSOR’, ‘MGS_MAG_-Y_SENSOR’, ET, MAT)

Relative Position of Sensors

M A G + Y
f r a m e

+ Y G i m b a l
f r a m e

M A G - Y p o s i t i o n r e l a t i v e M A G + Y

S / C F r a m e

- Y H i n g e
f r a m e

- Y G i m b a l
f r a m e

M A G - Y
f r a m e

Required Kernels:
• Generic LSK
• Mission FK
• Structure
Locations SPK
• Spacecraft SCLK
• Solar Array CK

Navigation and Ancillary Information Facility

N IF

Using Frames 7

Manipulators - 1

Compute the angle between the direction to Earth and the MGS
HGA boresight:
 CALL SPKEZR(‘EARTH’, ET, ‘MGS_HGA’, ‘LT+S’, ‘MGS’, EARTH_STATE, LT)
 ANGLE = VSEP(HGA_BORESIGHT, EARTH_STATE)

H G A
f r a m e

H G A G i m b a l
f r a m e

S / C F r a m e

J 2 0 0 0
F r a m e

M G S

M a r s

S S B

S u n

E a r t h

H G A H i n g e
f r a m e

J 2 0 0 0
F r a m e

M G S H G A
o f f - p o i n t i n g

a n g l e

Required Kernels:
• Generic LSK
• Mission FK
• Spacecraft SCLK
• HGA IK
• Structure
Locations SPK
• Planetary
Ephemeris SPK
• Spacecraft SPK
• Spacecraft CK
• HGA CK

Navigation and Ancillary Information Facility

N IF

Using Frames 8

Compute the dig location in MPL surface-fixed and camera left eye
frames:
CALL SPKEZR(‘MPL_RA_SCOOP’,ET,‘MPL_SURFACE_FIXED’,‘NONE’,‘MPL_SURF’,ST1,LT)
CALL SPKEZR(‘MPL_RA_SCOOP’,ET,‘MPL_SSI_LEFT’, ‘NONE’,‘MPL_SSI’, ST2,LT)

Manipulators - 2

S S I F r a m e

S S I C a m e r a
h e a d F r a m e

M V A C S
F r a m e

S u r f a c e - f i x e d
F r a m e

R A J 1
F r a m e

R A J 2
F r a m e

R A S c o o p
F r a m e

D i g L o c a t i o n
i n S u r f a c e f i x e d

f r a m e

D i g L o c .
i n S S I
f r a m e

Required Kernels:
• Generic LSK
• Mission FK
• Lander SCLK
• Structure
Locations SPK
• Lander SPK
• Lander CK
• SSI CK
• RA CK

Navigation and Ancillary Information Facility

N IF

Derived Quantities

March 2010

Navigation and Ancillary Information Facility

N IF

Derived Quantities 2

•  What are “derived quantities?”
•  A quick tour of some of the routines provided for

the computation of derived quantities
–  Vector/Matrix Routines
–  Geometry Routines
–  Coordinate System Routines

•  Computing Illumination Angles
•  Computing Ring Plane Intercepts
•  Computing Occultation Events

Overview

Navigation and Ancillary Information Facility

N IF

Derived Quantities 3

•  Derived quantities are data produced from states, C-
matrices, frame transformations, physical constants, time
conversions, etc.

–  These are the primary reason that SPICE exists!
•  Examples are:

–  Angles, Angular Rates
–  Distances, Speeds
–  Directions
–  Lighting conditions
–  Cartographic parameters
–  Time windows of events

•  The SPICE Toolkit contains many routines that assist with
the computations of derived quantities.

–  Some are fairly low level, some are quite high level.
–  More are being added as time permits.

What are Derived Quantities?

Navigation and Ancillary Information Facility

N IF

Derived Quantities 4

•  Vector/Matrix Routines
–  Vector and vector derivative arithmetic
–  Matrix arithmetic

•  Geometric “Objects”
–  Planes
–  Ellipses
–  Ellipsoids
–  Rays

•  Coordinate Systems
–  Spherical: latitude/longitude, co-latitude/longitude, right

ascension/declination; Geodetic, Cylindrical, Rectangular,
Planetographic

•  Others

A Quick Tour

The lists on the following pages are just
a subset of what’s available in the Toolkit.

Navigation and Ancillary Information Facility

N IF

Derived Quantities 5

•  Function
–  <v,w>
–  v x w
–  v/|v|
–  v x w / | v x w|
–  v + w
–  v - w
–  av [+ bw [+ cu]]
–  angle between v and w
–  |v|

•  Routine
–  VDOT, DVDOT
–  VCROSS, DVCRSS
–  VHAT, DVHAT
–  UCROSS, DUCRSS
–  VADD, VADDG
–  VSUB, VSUBG
–  VSCL, [VLCOM, [VLCOM3]]
–  VSEP
–  VNORM

v
w

v||

v |

v

w

VPROJ, VPERP

TWOVEC, FRAME

Vectors

Navigation and Ancillary Information Facility

N IF

Derived Quantities 6

•  Routine
–  MXV
–  MXM
–  MTXV
–  MTXM
–  MXMT
–  VTMV
–  XPOSE
–  INVERSE, INVSTM

Matrices

•  Function
–  M x v
–  M x M
–  Mt x v
–  Mt x M
–  M x Mt
–  vt x M x v
–  Mt
–  M-1

Selected Matrix-Vector Linear Algebra Routines

M = Matrix
V = Vector
X = Multiplication
T = Transpose

Navigation and Ancillary Information Facility

N IF

Derived Quantities 7

Function Routines

Euler angles

ax ay az

bx by bz

cx cy cz

αx αy αz

βx βy βz

γx γy γz

ax ay az

bx by bz

cx cy cz

0

EUL2M, M2EUL

RAXISA, AXISAR
ROTATE, ROTMAT

Rotation axis
and angle

Matrix Conversions

Q2M, M2Q

Euler angles and Euler angle rates
or
rotation matrix and angular velocity
vector

Transform between

6x6 state transformation
matrix

ax ay az
bx by bz
cx cy cz

3x3 rotation matrix

EUL2XF, XF2EUL
RAV2XF, XF2RAV Transform between

ax ay az
bx by bz
cx cy cz

3x3 rotation matrix
Transform between

ax ay az
bx by bz
cx cy cz

3x3 rotation matrix Transform between SPICE Style
Quaternion

(Q0,Q1,Q2,Q3)

Navigation and Ancillary Information Facility

N IF

Derived Quantities 8

•  Ellipsoids
–  nearest point
–  surface ray intercept
–  surface normal
–  limb
–  slice with a plane
–  altitude of ray w.r.t. to ellipsoid

•  Planes
–  intersect ray and plane

•  Ellipses
–  project onto a plane
–  find semi-axes of an ellipse

–  NEARPT, SUBPNT, DNEARP
–  SURFPT, SINCPT
–  SURFNM
–  EDLIMB
–  INELPL
–  NPEDLN

–  INRYPL

–  PJELPL

–  SAELGV

Function Routine

Geometry

Navigation and Ancillary Information Facility

N IF

Derived Quantities 9

Coordinate Transformation
–  Latitudinal to/from

Rectangular
–  Planetographic to/from

Rectangular
–  R.A. Dec to/from

Rectangular
–  Geodetic to/from

Rectangular
–  Cylindrical to/from

Rectangular
–  Spherical to/from

Rectangular

 Routine
–  LATREC
RECLAT

–  PGRREC
RECPGR

–  RADREC
RECRAD

–  GEOREC
RECGEO

–  CYLREC
RECCYL

–  SPHREC
RECSPH

Position Coordinate Transformations

Navigation and Ancillary Information Facility

N IF

Derived Quantities 10

•  Coordinate
Transformation

–  Latitudinal to/from
Rectangular

–  Planetographic to/from
Rectangular

–  R.A. Dec to/from
Rectangular

–  Geodetic to/from
Rectangular

–  Cylindrical to/from
Rectangular

–  Spherical to/from
Rectangular

•  Jacobian (Derivative)
Matrix Routine
–  DRDLAT
DLATDR

–  DRDPGR
DPGRDR

–  DRDLAT*
DLATDR*

–  DRDGEO
DGEODR

–  DRDCYL
DCYLDR

–  DRDSPH
DSPHDR

* Jacobian matrices for the R.A and Dec
to/from rectangular mappings are
identical to those for the latitudinal to/
from rectangular mappings

Velocity Coordinate Transformations - 1

Navigation and Ancillary Information Facility

N IF

Derived Quantities 11

Velocity Coordinate Transformations - 2

•  Example: transform velocities from rectangular to spherical
coordinates using the SPICE Jacobian matrix routines. The
SPICE calls that implement this computation are:

CALL SPKEZR (TARG, ET, REF, CORR, OBS, STATE, LT)
CALL DSPHDR (STATE(1), STATE(2), STATE(3), JACOBI)
CALL MXV (JACOBI, STATE(4), SPHVEL)

•  After these calls, the vector SPHVEL contains the velocity in
spherical coordinates: specifically, the derivatives

(d (r) / dt, d (colatitude) / dt, d (longitude) /dt)

•  Caution: coordinate transformations often have
singularities, so derivatives may not exist everywhere.

–  Exceptions are described in the headers of the SPICE Jacobian matrix
routines.

–  SPICE Jacobian matrix routines signal errors if asked to perform an
invalid computation.

Navigation and Ancillary Information Facility

N IF

Derived Quantities 12

•  Illumination angles (phase, incidence, emission)
–  ILUMIN*

•  Subsolar point
–  SUBSLR*

•  Subobserver point
–  SUBPNT*

•  Surface intercept point
–  SINCPT*

•  Longitude of the sun (Ls), an indicator of season
–  LSPCN

Other Derived Geometric Quantities

* These routines supercede the now deprecated
routines ILLUM, SUBSOL, SUBPT and SRFXPT

Navigation and Ancillary Information Facility

N IF

Derived Quantities 13

•  The SPICE Geometry Finder (GF) subsystem can find times
when the following events occur:

– A specified coordinate of a position vector, sub-observer
point, or ray-body surface intercept satisfies a given
constraint

– A specified occultation or transit is in effect
– A specified target body or ray (e.g. direction to a

specified star) is in the field of view (FOV) of a given
instrument

–  The angular separation of two specified bodies as seen
by a specified observer satisfies a given constraint

–  The distance between a specified target and observer
satisfies a given constraint

Geometric Events

Navigation and Ancillary Information Facility

N IF

Derived Quantities 14

•  Given the direction of an instrument boresight in
a bodyfixed frame, return the illumination angles
(incidence, phase, emission) at the surface
intercept on a tri-axial ellipsoid

phase

incidence

emission

Computing Illumination Angles

instrument
boresight
direction

target-observer
vector

Navigation and Ancillary Information Facility

N IF

Derived Quantities 15

•  CALL GETFOV to obtain
boresight direction vector.

•  CALL SINCPT to find
intersection of direction
vector with surface.

•  CALL ILUMIN to determine
illumination angles.

emission phase

incidence

Computing Illumination Angles

instrument
boresight
direction

target-observer
vector

Navigation and Ancillary Information Facility

N IF

Derived Quantities 16

•  Determine the intersection of the apparent line of sight vector
between Earth and Cassini with Saturn’s ring plane and determine
the distance of this point from the center of Saturn.

Computing Ring Plane Intercepts

Navigation and Ancillary Information Facility

N IF

Derived Quantities 17

•  CALL SPKEZR to get light time corrected position of spacecraft as
seen from earth at time ET in J2000 reference frame SCVEC.

•  CALL SPKEZR to get light time corrected position position of center of
Saturn at time ET as seen from earth in J2000 frame SATCTR.

•  CALL PXFORM to get rotation from Saturn body-fixed coordinates to
J2000 at light time corrected epoch. The third column of this matrix
gives the pole direction of Saturn in the J2000 frame SATPOL.

•  CALL NVP2PL and use SATCTR and SATPOL to construct the ring
plane RPLANE.

•  CALL INRYPL to intersect the Earth-spacecraft vector SCVEC with the
Saturn ring plane RPLANE to produce the intercept point X.

•  CALL VSUB to get the position of the intercept with respect to Saturn
XSAT (subtract SATCTR from X) and use VNORM to get the distance

of XSAT from the center of Saturn.

Computing Ring Plane Intercepts-2

This simplified
computation ignores the
difference between the
light time from Saturn to
the observer and the light
time from the intercept
point to the observer.

The position and
orientation of Saturn can
be re-computed using the
light time from earth to the
intercept; the intercept can
be re-computed until
convergence is attained.

This computation is for the reception case;
radiation is received at the earth at a given
epoch “ET”.

Navigation and Ancillary Information Facility

N IF

Derived Quantities 18

•  Create a dynamic frame with one axis pointing from earth to the
light time corrected position of the Cassini orbiter. Use the CN
correction for this position vector. (This gives us a frame in
which the direction vector of interest is constant.)

•  Temporarily change the radii of Saturn to make the polar axis
length 1 cm and the equatorial radii 1.e6 km. This can be done
either by editing the PCK or by calling BODVCD to fetch the
original radii, then calling PDPOOL to set the kernel pool variable
containing the radii to the new values. This flat ellipsoid will be
used to represent the ring plane.

•  Use SINCPT to find the intercept of the earth-Cassini ray with the
flat ellipsoid. Use the CN correction. SINCPT returns both the
intercept in the IAU_SATURN frame and the earth-intercept
vector. Use VNORM to get the distance of the intercept from
Saturn’s center.

•  Restore the original radii of Saturn. If PDPOOL was used to
update the radii in the kernel pool, use PDPOOL again to restore
the radii fetched by BODVCD.

Computing Ring Plane Intercepts-3

An
alternate
approach

Navigation and Ancillary Information Facility

N IF

Derived Quantities 19

•  Determine when the spacecraft will be occulted by
an object (such as a natural satellite) as seen from
an observer (such as earth).

Computing Occultation Events

Spacecraft
motion

Direction to
the observer

A body
such as

a satellite

Navigation and Ancillary Information Facility

N IF

Derived Quantities 20

•  Select a start epoch, stop epoch and
step size.

–  Start and stop epochs can bracket multiple
occultation events

–  Step size should be smaller than the shortest
occultation duration of interest, and shorter
than the minimum interval between
occultation events that are to be
distinguished, but large enough to solve
problem with reasonable speed.

–  Insert search interval into a SPICE window (for
Mice, simply use an array). This is the
“confinement window.”

•  CALL GFOCLT to find occultations, if
any. The time intervals, within the
confinement window, over which
occultations occur will be returned in a
SPICE window (for Mice, an array).

–  GFOCLT can treat targets as ellipsoids or
points (but at least one must be an ellipsoid).

–  GFOCLT can search for different occultation
or transit geometries: full, partial, annular, or
“any.”

Find Occultation Ingress/Egress

Spacecraft
motion

Direction to
the observer

A body
such as

a satellite

Navigation and Ancillary Information Facility

N IF

Derived Quantities 21

•  NAIF is upgrading the Geometry Finder (GF)
subsystem to support searches involving the
following geometric quantities:
– Eclipses
– Range rates
– Illumination angles
– Body-centered phase angles
– User-defined binary state quantities
– User-defined scalar quantities

GF Enhancements (Fall 2009)

Navigation and Ancillary Information Facility

N IF

Other Useful Functions

March 2010

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 2

•  Overview
•  Language-specific status
•  File Operations
•  String Manipulation
•  Searching, Sorting and Other Array Manipulations
•  Windows
•  Symbol Tables
•  Sets and Cells
•  Constants and Unit Conversion
•  Numerical Functions

Topics

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 3

Overview

•  The routines described in this tutorial originated in the
Fortran version of the the SPICE Toolkit.

•  Many, but not all, of these routines have implementations for
the C, IDL, and MATLAB Toolkits.

•  The descriptions include a language “identifier” or set of
identifiers prefixed to the routine’s name to indicate which
Toolkit language(s) include that routine.

–  [F] available in Fortran (SPICELIB)
–  [C] available in C (CSPICE)
–  [I] available in IDL (Icy)
–  [M] available in MATLAB (Mice)

•  NAIF adds interfaces to the CSPICE, Icy, and Mice Toolkits as
needed or when requested by a customer.

•  CSPICE, Icy, and Mice do not need all of the functionality
implemented in the Fortran Toolkit.

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 4

•  Text files provide a simple,
human readable mechanism
for sharing data.

•  The Toolkit contains several
utility routines to assist with
the creation and parsing of
text, and with the reading and
writing of text files.

–  [F,C] RDTEXT: read a line of text
from a text file

–  [F] TOSTDO: write a line of text to
standard output

–  [F,C] PROMPT: display a prompt,
wait for and return user’s
response

–  [F] TXTOPN: open a new text file
returning a logical unit

–  [F] WRITLN: write a line of text to
the file attached to a logical unit.

Text I/O (1)

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 5

CALL PROMPT (‘Filename? ’, NAME)
CALL TOSTDO (‘You specified the file: ‘// NAME)

Now that we have the filename, read
and process its contents

CALL RDTEXT (NAME, LINE, EOF)

DO WHILE (.NOT. EOF)

 process the line just read

 CALL RDTEXT (NAME, LINE, EOF)

END DO

Terminal Window

Filename? mydata.file
You specified the file: mydata.file

Text I/O (2)

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 6

•  Logical unit management - Fortran specific
–  [F] RESLUN: (reserve logical unit) prohibits SPICE systems

from using specified units.
–  [F] FRELUN: (free logical unit) places “reserved” units back into

service for SPICE.
–  [F] GETLUN: (get logical unit) locates an unused, unreserved

logical unit.
•  Determining whether or not a file exists

–  [F,C,I] EXISTS
•  Deleting an existing file

–  [F] DELFIL

File Operations

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 7

•  Breaking apart a list
–  [F,C,I] LPARSE: parses a list of items delimited by a single

character.
–  [F,C] LPARSM: parses a list of items separated by multiple

delimiters.
–  [F] NEXTWD: returns the next word in a given character string.
–  [F] NTHWD: returns the nth word in a string and the location of

the word in the string.
–  [F,C] KXTRCT: extracts a substring starting with a keyword.

•  Removing unwanted parts of a string
–  [F,C,I] CMPRSS: compresses a character string by removing

instances of more than N consecutive occurrences of a
specified character.

–  [F] ASTRIP: removes a set ASCII characters from a string.
–  [F] REMSUB: removes a substring from a string.

String Manipulation - Parsing (1)

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 8

•  Locating substrings
–  [F] LTRIM, RTRIM: return the location of the leftmost or

rightmost non-blank character.
–  [F,C] POS, CPOS, POSR, CPOSR, NCPOS, NCPOSR: locate

substring or member of specified character set searching
forward or backward.

•  Pattern matching
–  [F,C,I] MATCHI: matches a string against a wildcard template,

case insensitive.
–  [F,C,I] MATCHW: matches a string against a wildcard template,

case sensitive.
•  Extracting numeric and time data

–  [F] NPARSD, NPARSI, DXTRCT, TPARTV
–  [F,C,I] PRSDP, PRSINT, TPARSE

•  Heavy duty parsing
–  [F] SCANIT

String Manipulation - Parsing (2)

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 9

‘a dog, a cat, and a cow’ lparsm
‘a dog’

‘a cat’

‘and a cow’

‘Remove extra spaces’ cmprss ‘Remove extra spaces’

matchi(*g*)
‘Green eggs and ham’

‘the cat in the hat’
‘how the grinch stole Christmas’

‘green eggs and ham’

‘how the grinch stole Christmas’

String Manipulation - Parsing (3)

Split on a comma!

Match any string containing a ‘g’!

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 10

•  Fill in the “Blank”
–  [F,C] REPMC: Replace a marker with a character string.
 CALL REPMC (‘The file was: #’, '#', ‘foo.bar', OUT)
 OUT has the value “The file was: foo.bar”
–  [F,C] REPMI: Replace a marker with an integer.
 CALL REPMI (‘The value is: #’, '#', 7, OUT)

 OUT has the value “The value is: 7”
–  [F,C] REPMD: Replace a marker with a double precision number.
 CALL REPMD (‘The value is: #’, '#’, 3.141592654D0, 10, OUT)

 OUT has the value “The value is: 3.141592654E+00”
–  [F,C] REPMOT: Replace a marker with the text representation of

an ordinal number.
 CALL REPMOT (‘It was the # term.’, '#’, ‘L’, 2, OUT)

 OUT has the value “It was the second term.”

String Manipulation - Creating (1)

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 11

•  Fill in the “Blank” (cont.)
–  [F,C] REPMCT: Replace a marker with the text representation of

a cardinal number.
 CALL REPMCT (‘Hit # errors.’, '#', 6, 'L', OUT)

 OUT becomes ‘Hit six errors.’

•  Numeric Formatting
–  [F] DPFMT: Using a format template, create a formatted string

that represents a double precision number
 CALL DPFMT (PI(), 'xxx.yyyy', OUT)

 OUT becomes ‘ 3.1416’

–  [F] DPSTR, INTSTR, INTTXT, INTORD

String Manipulation - Creating (2)

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 12

•  Time formatting
–  [F,C,I,M] TPICTR: Given a sample time string, create a time

format picture suitable for use by the routine TIMOUT.
–  [F,C,I,M] TIMOUT: Converts an input epoch to a character

string formatted to the specifications of a user's format picture.
•  Changing case

–  [F,C,I] UCASE: Convert all characters in string to uppercase.
–  [F,C,I] LCASE: Convert all characters in string to lowercase.

•  Building strings
–  [F] SUFFIX: add a suffix to a string
–  [F] PREFIX: add a prefix to a string

String Manipulation - Creating (3)

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 13

•  Sorting arrays
–  [F,C] SHELLC, SHELLI, SHELLD, ORDERI, ORDERC, ORDERD,

REORDC, REORDI, REORDD, REORDL
•  Searching ordered arrays

–  [F,C] BSRCHC, BSRCHI, BSRCHD, LSTLEC, LSTLEI, LSTLED,
LSTLTC, LSTLTI, LSTLTD, BSCHOI

•  Searching unordered arrays
–  [F,C] ISRCHC, ISRCHI, ISRCHD, ESRCHC

•  Moving portions of arrays
–  [F] CYCLAC, CYCLAD, CYCLAI

•  Inserting and removing array elements
–  [F] INSLAC, INSLAD, INSLAI, REMLAC, REMLAD, REMLAI

Searching, Sorting and Other Array
Manipulations (1)

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 14

sun
mercury
venus
earth
mars
jupiter
saturn
uranus
neptune
pluto

00.0
00.455
00.720
00.983
01.531
05.440
09.107
20.74
30.091
31.052

earth
jupiter
mars
mercury
neptune
pluto
saturn
sun
uranus
venus

00.983
05.440
01.531
00.445
30.091
31.052
09.107
00.000
20.74
00.720

orderc reordc,d

04
06
05
02
09
10
07
01
08
03

Searching, Sorting and Other Array
Manipulations (2)

Body A.U.1

Vector of “Body” indices representing
the list sorted in alphabetical order.

Sorted
Body A.U.1

1 Distance in A.U. at Jan 01, 2006.

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 15

•  A SPICE window is a list of disjoint intervals arranged in
ascending order.

–  An interval is specified by a pair of double precision numbers,
with the second greater than or equal to the first.

•  The Toolkit contains a family of routines for creating windows
and performing “set arithmetic” on them.

•  SPICE windows are frequently used to specify intervals of
time when some set of user constraints are satisfied.
–  Let window NotBehind contain intervals of time when Cassini is

not behind Saturn as seen from earth.
–  Let window Goldstone contain intervals of time when Cassini is

above the Goldstone horizon.
–  Cassini can be tracked from Goldstone during the intersection of

these two windows (Track = NotBehind * Goldstone).

•  See windows.req for more information.

Windows

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 16

Difference

Intersection

Union

Windows Math

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 17

•  SPICELIB (Fortran) supports the use of associative arrays/
hashes through the use of an abstract data type called
symbol tables.

–  These are used to associate a set of names with collections of
associated values.

–  Values associated with a name are exclusively character,
exclusively integer or exclusively double precision.

–  Routines to manipulate a symbol table have the form SY***<T>
where <T> is the data type of the values (C, D, or I).

•  Operations include:
–  Insert a symbol
–  Remove a symbol
–  Push/Pop a value onto the list of values associated with a

symbol
–  Fetch/Sort values associated with a symbol

•  See symbols.req for more information.

Symbol Tables

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 18

•  Cells are arrays that “know” how many addresses are
available for use and how many are currently used.

–  Routines that use cells typically have simpler interfaces than
routines that use arrays.

–  See cells.req for more information.
•  Sets are cells that contain no duplicate elements and whose

elements are ordered in ascending order.
–  Two Sets can be: intersected, unioned, differenced, differenced

symmetrically (union - intersection)
–  See sets.req for more information.

•  Language support for sets and cells
–  Double Precision, Integer, and Character string cell types are

supported in the Fortran and C Toolkits.
–  Double Precision and Integer cell types are supported in the IDL

Toolkits.
–  Sets and cells aren’t currently needed in the MATLAB Toolkits

since MATLAB supports set math.

Sets and Cells (1)

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 19

CALL UNIONC (CASSINI, MGS, PROJECTS)
CALL DIFFC (NAIF, PROJECTS, OTHER)

Cassini

Boris
Chuck
Ed
Nat

MGS

Boris
Ed

NAIF

Boris
Chuck
Ed
Nat
Lee

Other

Lee

Sets and Cells (2)

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 20

•  Constants are implemented in the Toolkit as functions.
–  Thus the changing of a constant by NAIF requires only relinking

by the Toolkit user–not recompiling.
»  Users should NOT change constant functions in the Toolkit.

•  System Constants
–  [F,C,I,M] DPMIN, DPMAX, INTMIN, INTMAX

•  Numeric Constants
–  [F,C,I,M] PI, HALFPI, TWOPI, RPD (radians/degree), DPR(degrees/

radian)
•  Physical Constants

–  [F,C,I,M] CLIGHT, SPD, TYEAR, JYEAR

•  Epochs
–  [F,C,I,M] J2000,J1950, J1900, J2100, B1900, B1950

•  Simple Conversion of Units
–  [F,C,I,M] CONVRT

Constants and Unit Conversion

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 21

•  Several routines are provided to assist with numeric
computations and comparisons.

•  Functions
–  [F] DCBRT: cube root
–  Hyperbolic Functions:

»  [F] DACOSH, DATANH
–  Polynomial Interpolation and Evaluation:

»  [F] LGRESP, LGRINT, LGRIND, POLYDS, HRMESP, HRMINT
–  Chebyshev Polynomial Evaluation:

»  [F] CHBDER, CHBVAL, CHBINT

Numerical Functions (1)

Navigation and Ancillary Information Facility

N IF

Other Useful Functions 22

•  Numerical Decisions
–  Same or opposite sign (Boolean):

»  [F] SMSGND, SMSGNI, OPSGND, OPSGNI
–  Force a value into a range (bracket):

»  [F,C] BRCKTD, BRCKTI
–  Determine parity of integers (Boolean):

»  [F] ODD, EVEN
–  Truncate conditionally:

»  [F] EXACT

•  Arithmetic
–  Greatest common divisor:

»  [F] GCD
–  Positive remainder:

»  [F] RMAINI, RMAIND

Numerical Functions (2)

Navigation and Ancillary Information Facility

N IF

Instrument Kernel
IK

March 2010

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 2

•  The Instrument Kernel serves as a repository for
instrument specific information that may be useful
within the SPICE context.

–  Always included:
»  Specifications for an instrument’s field-of-view (FOV) size,

shape, and orientation
–  Other possibilities:

»  Internal instrument timing parameters and other data relating
to SPICE computations might also be placed in an I-kernel

»  Instrument geometric calibration data

•  Note: instrument mounting alignment data are
specified in a mission’s Frames Kernel (FK)

–  (Wasn’t true for some of the earliest missions that used SPICE)

Purpose

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 3

KPL/IK
 Comments describing the keywords and values
 to follow, as well as any other pertinent
 information.

 \begindata
 Keyword = Value(s) Assignment
 Keyword = Value(s) Assignment

 \begintext

 More descriptive comments.

 \begindata
 Keyword = Value(s) Assignment
 \begintext

 More descriptive comments.
 etc …

•  An I-Kernel is a SPICE text kernel. The format and structure
of a typical I-Kernel is shown below.

I-Kernel Structure

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 4

•  Examples of IK keywords, with descriptions:
–  INS-94031_FOCAL_LENGTH MGS MOC NA focal length
–  INS-41220_IFOV MEX HRSC SRC pixel angular size
–  INS-41130_NUMBER_OF_SECTORS MEX ASPERA NPI number of sectors

•  In general SPICE does not require any specific keywords to be
present in an IK

–  One exception is a set of keywords defining an instrument’s FOV, if the
SPICE Toolkit’s GETFOV routine is planned to be used to retrieve the FOV
attributes

»  Keywords required by GETFOV will be covered later in this tutorial

•  The requirements on keywords in an IK are the following:
–  Keywords must begin with INS[#], where [#] is replaced with the NAIF

instrument ID code (which is a negative number)
–  The total length of the keyword must be less than or equal to 32 characters
–  Keywords are case-sensitive (Keyword != KEYWORD)

I-Kernel Contents (1)

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 5

•  IKs should contain extensive comments regarding:
–  Instrument overview
–  Reference source(s) for the data included in the IK
–  Names/IDs assigned to the instrument and its parts
–  Explanation of each keyword included in the file
–  Description of the FOV and detector layout
–  Sometimes descriptions of the algorithms in which parameters

provided in the IK are used, and even fragments of source code
implementing these algorithms

»  For example optical distortion models or timing algorithms

•  This documentation exists primarily to assist users in
integrating I-Kernel data into their applications

–  One needs to know the keyword name to get its value(s) from the IK
data

–  One needs to know what each value means in order to use it properly

I-Kernel Contents (2)

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 6

•  As with any SPICE kernel, an IK is loaded using FURNSH
 CALL FURNSH (’ik_file_name.ti’) Better yet, use a FURNSH kernel

•  By knowing the name and type (DP, integer, or character) of a
keyword of interest, the value(s) associated with that keyword
can be retrieved using G*POOL routines
 CALL GDPOOL (NAME, START, ROOM, N, VALUES, FOUND)
 CALL GIPOOL (NAME, START, ROOM, N, VALUES, FOUND)
 CALL GCPOOL (NAME, START, ROOM, N, VALUES, FOUND)

•  When an instrument’s FOV is defined in the IK using a special
set of keywords discussed later in this tutorial, the FOV shape,
reference frame, boresight vector, and boundary vectors can be
retrieved by calling the GETFOV routine
 CALL GETFOV (INSTID, ROOM, SHAPE, FRAME, BSIGHT, N, BOUNDS)

I-Kernel Interface Routines

FORTRAN examples are shown

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 7

•  The following keywords defining FOV attributes for the
instrument with NAIF ID (#) must be present in the IK if the
SPICE Toolkit’s GETFOV module will be used

–  Keyword defining shape of the FOV

INS#_FOV_SHAPE = 'CIRCLE' or 'ELLIPSE' or
 'RECTANGLE' or 'POLYGON'

–  Keyword defining reference frame in which the boresight vector and
FOV boundary vectors are specified

INS#_FOV_FRAME = 'frame name'

–  Keyword defining the boresight vector

INS#_BORESIGHT = (X, Y, Z)

FOV Definition Keywords (1)

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 8

–  Keyword(s) defining FOV boundary vectors, in either of two ways

»  By specifying boundary vectors explicitly

 INS#_FOV_CLASS_SPEC = 'CORNERS’
 INS#_FOV_BOUNDARY_CORNERS = (X(1), Y(1), Z(1),
 … … …
 X(n), Y(n), Z(n))

 where the FOV_BOUNDARY_CORNERS keyword provides an array
of vectors that point to the "corners" of the instrument field of
view.

Use of the INS#_FOV_CLASS_SPEC keyword is optional when
explicit boundary vectors are provided.

FOV Definition Keywords (2)

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 9

»  By providing half angular extents of the FOV (possible only for
circular, elliptical or rectangular FOVs)

 INS#_FOV_CLASS_SPEC = 'ANGLES'
 INS#_FOV_REF_VECTOR = (X, Y, Z)
 INS#_FOV_REF_ANGLE = halfangle1
 INS#_FOV_CROSS_ANGLE = halfangle2
 INS#_FOV_ANGLE_UNITS = 'DEGREES' or
 'RADIANS’ or …

 where the FOV_REF_VECTOR keyword specifies a reference
vector that, together with the boresight vector, define the plane
in which the half angle given in the FOV_REF_ANGLE keyword is
measured. The other half angle given in the FOV_CROSS_ANGLE
keyword is measured in the plane normal to this plane and
containing the boresight vector.

FOV Definition Keywords (3)

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 10

•  Neither the boresight nor reference vector has to be co-
aligned with one of the FOV frame’s axes

–  But for convenience, each is frequently defined to be along one of the
FOV axes

•  Neither the boresight nor corner nor reference vector has
to be a unit vector

–  But these frequently are defined as unit vectors
•  When a FOV is specified using the half angular extents

method, the boresight and reference vectors have to be
linearly independent but they don’t have to be
perpendicular

–  But for convenience the reference vector is usually picked to be
normal to the boresight vector

•  Half angular extents for a rectangular FOV specify the
angles between the boresight and the FOV sides, i.e. they
are for the middle of the FOV

FOV Definition Keywords (4)

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 11

Consider an instrument with a circular field of view.

Angular Size
Boundary

Corner
Vector

Boresight
Vector

Instrument
focal point

X

Y

Z

(0,0,0)

(0,1,4)

Circular Field of View

Y

X
14.03 O

Subtended field of
view angle
14.03 = arc tan (1/4)

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 12

The following sets of keywords and values describe this
circular field of view:

INS-11111_FOV_SHAPE = 'CIRCLE'
INS-11111_FOV_FRAME = 'FRAME_FOR_INS-11111'
INS-11111_BORESIGHT = (0.0 0.0 1.0)
INS-11111_FOV_BOUNDARY_CORNERS = (0.0 1.0 4.0)

Circular FOV Definition

INS-11111_FOV_SHAPE = 'CIRCLE'
INS-11111_FOV_FRAME = 'FRAME_FOR_INS-11111'
INS-11111_BORESIGHT = (0.0 0.0 1.0)
INS-11111_FOV_CLASS_SPEC = 'ANGLES'
INS-11111_FOV_REF_VECTOR = (0.0 1.0 0.0)
INS-11111_FOV_REF_ANGLE = 14.03624347
INS-11111_FOV_ANGLE_UNITS = 'DEGREES'

Specifying boundary vectors explicitly:

Specifying half angular extents of the FOV:

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 13

Consider an instrument with an elliptical field of view.

Boundary
Corner
Vectors

Boresight
Vector

Instrument
focal point

X

Y

Z

(0,0,0)

(0,1,4)

(2,0,4)

Elliptical Field of View

Y

X
14.03 O

26.57 O

Subtended field of
view angle
14.03 = arc tan (1/4)
26.57 = arc tan (2/4)

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 14

The following sets of keywords and values describe this
elliptical field of view:

INS-22222_FOV_SHAPE = 'ELLIPSE'
INS-22222_FOV_FRAME = 'FRAME_FOR_INS-22222'
INS-22222_BORESIGHT = (0.0 0.0 1.0)
INS-22222_FOV_BOUNDARY_CORNERS = (0.0 1.0 4.0
 2.0 0.0 4.0)

Elliptical FOV Definition

INS-22222_FOV_SHAPE = 'ELLIPSE'
INS-22222_FOV_FRAME = 'FRAME_FOR_INS-22222'
INS-22222_BORESIGHT = (0.0 0.0 1.0)
INS-22222_FOV_CLASS_SPEC = 'ANGLES'
INS-22222_FOV_REF_VECTOR = (0.0 1.0 0.0)
INS-22222_FOV_REF_ANGLE = 14.03624347
INS-22222_FOV_CROSS_ANGLE = 26.56505118
INS-22222_FOV_ANGLE_UNITS = 'DEGREES'

Specifying boundary vectors explicitly:

Specifying half angular extents of the FOV:

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 15

Consider an instrument with a rectangular field of view.

Boundary
Corner
Vectors

Boresight
Vector

Instrument
focal point

X

Y

Z

(0,0,0)

(2,1,4)
(-2,1,4)

(-2,-1,4) (2,-1,4)

Rectangular Field of View

Y

X
14.03 O

26.57 O

Subtended field of
view angle
14.03 = arc tan (1/4)
26.57 = arc tan (2/4)

Note: there is not currently a required order for listing the boundary corner vectors,
but there will be such a requirement in the future.

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 16

The following sets of keywords and values describe this
rectangular field of view:

INS-33333_FOV_SHAPE = ’RECTANGLE'
INS-33333_FOV_FRAME = 'FRAME_FOR_INS-33333'
INS-33333_BORESIGHT = (0.0 0.0 1.0)
INS-33333_FOV_BOUNDARY_CORNERS = (2.0 1.0 4.0
 -2.0 1.0 4.0
 -2.0 -1.0 4.0
 2.0 -1.0 4.0)

Rectangular FOV Definition

INS-33333_FOV_SHAPE = ’RECTANGLE'
INS-33333_FOV_FRAME = 'FRAME_FOR_INS-33333'
INS-33333_BORESIGHT = (0.0 0.0 1.0)
INS-33333_FOV_CLASS_SPEC = 'ANGLES'
INS-33333_FOV_REF_VECTOR = (0.0 1.0 0.0)
INS-33333_FOV_REF_ANGLE = 14.03624347
INS-33333_FOV_CROSS_ANGLE = 26.56505118
INS-33333_FOV_ANGLE_UNITS = 'DEGREES'

Specifying boundary vectors explicitly:

Specifying half angular extents of the FOV:

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 17

Consider an instrument with a trapezoidal field of view.

Boundary
Corner
Vectors

Boresight
Vector

Instrument
focal point

X

Y

Z

(0,0,0)

(1,1,4) (-1,1,4)

(-2,-1,4) (2,-1,4)

Polygonal Fields of View

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 18

The following sets of keywords and values describe this
polygonal field of view:

INS-44444_FOV_SHAPE = 'POLYGON'
INS-44444_FOV_FRAME = 'FRAME_FOR_INS-44444'
INS-44444_BORESIGHT = (0.0 0.0 1.0)
INS-44444_FOV_BOUNDARY_CORNERS = (1.0 1.0 4.0
 -1.0 1.0 4.0
 -2.0 -1.0 4.0
 2.0 -1.0 4.0)

Polygonal FOV Definition

Specifying boundary vectors explicitly:

Notes:
 • A polygonal FOV cannot be specified using half angular extents.
 • There is not currently a required order for listing the boundary
corner vectors, but there may be such a requirement in the future.

Navigation and Ancillary Information Facility

N IF

C-Kernel 19

IK Utility Programs

•  No IK utility programs are included in the Toolkit

•  Two IK utility programs are provided on the NAIF
Web site (http://naif.jpl.nasa.gov/naif/utilities.html)

OPTIKS displays field-of-view summary for all FOVs defined in
a collection of IK files.

BINGO converts IK files between UNIX and DOS text formats

Navigation and Ancillary Information Facility

N IF

C-Kernel 20

Additional Information on IK

•  The best way to learn more about IKs is to
examine some found in the NAIF Node archives.

–  Start looking here:
 http://naif.jpl.nasa.gov/naif/data_archived.html

•  Unfortunately NAIF does not yet have an “I-Kernel
Required Reading” document

•  But information about IKs is available in other
documents:

–  header of the GETFOV routine
–  Kernel Required Reading
–  OPTIKS User’s Guide
–  Porting_kernels tutorial
–  NAIF IDs Tutorial
–  Frames Required Reading

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 21

•  IK file example

•  Computing angular extents from corner
vectors returned by GETFOV

Backup

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 22

Low Energy Magnetospheric Measurements System 1 (LEMMS1)

 Since the MIMI_LEMMS1 detector's FOV is circular and it's diameter is 15.0
 degrees, looking down the X-axis in the CASSINI_MIMI_LEMMS1 frame, we have:
 (Note we are arbitrarily choosing a vector that terminates in the Z=1
 plane.)

 ^ Y
 | ins
 |
 | /|
 | / |
 | / |
 | / o |
 |/ 7.50 |
 x--------------->
 X \ | Z
 ins \ | ins
 \ |
 \ |
 \|

 |-- 1.0 --|

Sample IK Data

The following LEMMS1 FOV definition was taken
from the Cassini MIMI IK (cas_mimi_v11.ti):

continues

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 23

The Y component of one 'boundary corner' vector is:

 Y Component = 1.0 * tan (7.50 degrees)
 = 0.131652498

 The boundary corner vector as displayed below is
 normalized to unit length:
\begindata

 INS-82762_FOV_FRAME = 'CASSINI_MIMI_LEMMS1'
 INS-82762_FOV_SHAPE = 'CIRCLE'
 INS-82762_BORESIGHT = (

 0.0000000000000000 0.0000000000000000 +1.0000000000000000

)
 INS-82762_FOV_BOUNDARY_CORNERS = (

 0.0000000000000000 +0.1305261922200500 +0.9914448613738100

)

\begintext

FOV definition from the Cassini MIMI IK (continued):

Sample IK Data

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 24

The angular separation between the boundary
corner vector and the boresight is the angular size.

FORTRAN EXAMPLE

C Retrieve FOV parameters.
 CALL GETFOV(-11111, 1, SHAPE, FRAME, BSGHT, N, BNDS)

C Compute the angular size.
 ANGSIZ = VSEP(BSGHT, BNDS(1,1))

C EXAMPLE

/* Define the string length parameter. */
 #define STRSIZ 80

/* Retrieve the field of view parameters. */
 getfov_c(-11111, 1, STRSIZ, STRSIZ, shape, frame,
 bsght, &n, bnds);

/* Compute the angular separation. */
 angsiz = vsep_c(bsght, &(bnds[0][0]));

Circular FOV Angular Size

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 25

The angular sizes are the angular separations
between the boresight and the boundary vectors.

FORTRAN EXAMPLE

C Retrieve the FOV parameters from the kernel pool.
 CALL GETFOV(-22222, 2, SHAPE, FRAME, BSGHT, N, BNDS)

C Compute the angular separations.
 ANG1 = VSEP(BSGHT, BNDS(1,1))
 ANG2 = VSEP(BSGHT, BNDS(1,2))

C The angle along the semi-major axis is the larger
C of the two separations computed.
 LRGANG = MAX(ANG1, ANG2)
 SMLANG = MIN(ANG1, ANG2)

Elliptical FOV Angular Size - 1

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 26

C EXAMPLE

/* Define the string length parameter. */
 #define STRSIZ 80

/* Retrieve the FOV parameters from the kernel pool. */
 getfov_c(-22222, 2, STRSIZ, STRSIZ, shape, frame,
 bsght, &n, bnds);

/* Compute the angular separations. */
 ang1 = vsep_c(bsght, &(bnds[0][0]));
 ang2 = vsep_c(bsght, &(bnds[1][0]));

/* The angle along the semi-major axis is the larger of the
 two separations computed. */
 if (ang1 > ang2) {
 lrgang = ang1; smlang = ang2; }
 else {
 lrgang = ang2; smlang = ang1; }

Elliptical FOV Angular Size - 2

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 27

The angular extents of the FOV are computed by
calculating the angle between the bisector of
adjacent unit boundary vectors and the boresight.

Instrument

(0,0,0)

Bisectors

Rectangular FOV Angular Size - 1

sml_ang

lrg_ang

Subtended field of view
angles

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 28

FORTRAN EXAMPLE

C Retrieve FOV parameters from the kernel pool.
 CALL GETFOV(-33333, 4, SHAPE, FRAME, BSGHT, N, BNDS)

C Normalize the 3 boundary vectors
 CALL UNORM(BNDS(1,1), UNTBND(1,1), MAG)
 CALL UNORM(BNDS(1,2), UNTBND(1,2), MAG)
 CALL UNORM(BNDS(1,3), UNTBND(1,3), MAG)

C Compute the averages.
 CALL VADD(UNTBND(1,1), UNTBND(1,2), VEC1)
 CALL VSCL(0.5, VEC1, VEC1)

 CALL VADD(UNTBND(1,2), UNTBND(1,3), VEC2)
 CALL VSCL(0.5, VEC2, VEC2)

C Compute the angular separations
 ANG1 = VSEP(BSGHT, VEC1)
 ANG2 = VSEP(BSGHT, VEC2)

C Separate the larger and smaller angles.
 LRGANG = MAX(ANG1, ANG2)
 SMLANG = MIN(ANG1, ANG2)

Rectangular FOV Angular Size - 2

Navigation and Ancillary Information Facility

N IF

Instrument Kernel 29

C EXAMPLE

/* Define the string length parameter. */
 #define STRSIZ 80

/* Retrieve the FOV parameters from the kernel pool. */
 getfov_c(-33333, 4, STRSIZ, STRSIZ, shape, frame,
 bsght, &n, bnds);

/* Normalize the 3 boundary vectors. */
 unorm_c(&(bnds[0][0]), &(untbnd[0][0]), &mag);
 unorm_c(&(bnds[1][0]), &(untbnd[1][0]), &mag);
 unorm_c(&(bnds[2][0]), &(untbnd[2][0]), &mag);

/* Compute the averages */
 vadd_c(&(untbnd[0][0]), &(untbnd[1][0]), vec1);
 vscl_c(0.5, vec1, vec1);
 vadd_c(&(untbnd[1][0]), &(untbnd[2][0]), vec2);
 vscl_c(0.5, vec2, vec2);

/* Compute the angular separations. */
 ang1 = vsep_c(bsght, vec1);
 ang2 = vsep_c(bsght, vec2);

/* Separate the larger and smaller angles. */
 if (ang1 > ang2) {
 lrgang = ang1; smlang = ang2; }
 else {
 lrgang = ang2; smlang = ang1; }

Rectangular FOV Angular Size - 3

Navigation and Ancillary Information Facility

N IF

Reading FKs and IKs

March 2010

Navigation and Ancillary Information Facility

N IF

Reading FKs and IKs 2

See The Real Stuff

•  It may be useful for the student to examine a few existing Frames Kernels
and Instrument Kernels to get a better understanding of the FK and IK
tutorial information.

•  NAIF suggests you use your browser to examine some of the following
“real life” kernels.

•  DEEP IMPACT:
–  ftp://naif.jpl.nasa.gov/pub/naif/pds/data/di-c-spice-6-v1.0/disp_1000/data/fk/*.tf
–  ftp://naif.jpl.nasa.gov/pub/naif/pds/data/di-c-spice-6-v1.0/disp_1000/data/ik/*.ti

•  CASSINI:
–  ftp://naif.jpl.nasa.gov/pub/naif/pds/data/co-s_j_e_v-spice-6-v1.0/cosp_1000/data/fk/*.tf
–  ftp://naif.jpl.nasa.gov/pub/naif/pds/data/co-s_j_e_v-spice-6-v1.0/cosp_1000/data/ik/*.ti

•  MESSENGER:
–  ftp://naif.jpl.nasa.gov/pub/naif/pds/data/mess-e_v_h-spice-6-v1.0/messsp_1000/data/fk/*.tf
–  ftp://naif.jpl.nasa.gov/pub/naif/pds/data/mess-e_v_h-spice-6-v1.0/messsp_1000/data/ik/*.ti

•  MARS EXPRESS:
–  ftp://naif.jpl.nasa.gov/pub/naif/MEX/kernels/fk/*.TF
–  ftp://naif.jpl.nasa.gov/pub/naif/MEX/kernels/ik/*.TI

Navigation and Ancillary Information Facility

N IF

Exception Handling

March 2010

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 2

•  What Exceptions Are
•  Language Dependencies
•  C and Fortran Error Handling Features
•  Error Messages
•  Error Handling Actions
•  Error Device
•  Customize Error Handling
•  Get Error Status
•  Signal Errors
•  Icy Error Handling
•  Mice Error Handling
•  Recommendations

Topics

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 3

•  Run time error conditions
–  Files

»  Required files not loaded.
»  Gaps in data.
»  Corrupted or malformed files (e.g. ftp’d in wrong mode).

–  Invalid subroutine/function arguments
»  String values unrecognized.
»  Numeric values out of range.
»  Data type/dimension mismatch.

–  Arithmetic errors
»  Divide by zero, square root of a negative number.

–  Environment problems
»  Insufficient disk space for output files.
»  Lack of required read/write permission/privileges.

Exceptions Are… - 1

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 4

•  Valid but unusual conditions
–  Examples are:

»  Normalize the zero vector.
»  Find the rotation axis of the identity matrix.
»  Find the boresight intercept lat/lon for a non-intercept case.
»  Find a substring where the end index precedes the start index.

–  Such cases are normally not SPICE “Error Conditions”
–  Typically must be handled by a logical branch

•  Errors found by analysis tools, such as parsers
–  Examples are:

»  Invalid SQL query.
»  Invalid string representing number (borderline case).

–  Such cases are normally not SPICE “Error Conditions”
–  However, if a SPICE parsing routine failed because it couldn’t open

a scratch file, THAT would be an “error condition.”

Exceptions Are… - 2

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 5

Language Dependencies

•  SPICELIB and CSPICE provide essentially identical error
handling capabilities.

•  Icy and Mice provide similar error handling functionality;
this functionality is quite different from that of CSPICE.

–  These systems do rely on CSPICE for most error detection.
–  Icy and Mice provide no API for customizing underlying CSPICE error

handling behavior.
–  Short, long, and traceback error messages are merged into a single,

parsable, message.
–  Use IDL or MATLAB features to customize error handling…

»  to prevent your program from stopping
»  to capture SPICE error messages

•  Most of this tutorial deals with SPICELIB and CSPICE error
handling.

–  There is a bit on Icy and Mice near the end.

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 6

•  Error handling in SPICE: safety first
–  Trap errors where they occur; don’t let them propagate

»  Don’t let errors “fall through” to the operating system.
–  Supply meaningful diagnostic messages

»  Incorporate relevant run-time data.
»  Supply context in human-readable form.

–  Don’t depend on callers to handle errors
»  Normally, “error flags” are not returned to callers.

–  Stop unless told not to
»  Don’t try to continue by making “smart guesses.”

•  Subroutine interface for error handling
–  Interface routines called within SPICE may be called by users’

application programs

Fortran and C Error Handling Features - 1

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 7

•  Signal errors
–  Create descriptive messages when and where an error is detected

»  Short message, long message, (explanation), traceback
–  “Signal” the error: set error status, output messages

»  By default, CSPICE error output goes to stdout (not stderr)
•  Retrieve error information

–  Get status and error messages via subroutine calls
•  Customize error response---actions taken when an

error occurs.
–  Set error handling mode (“action”)
–  Set error output device
–  Set message selection

•  Inhibit tracing
–  To improve run-time performance (only for thoroughly debugged

code)

Fortran and C Error Handling Features - 2

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 8

•  Short message
–  Up to 25 characters.
–  Can easily be compared with expected value.

»  Example: SPICE(FILEOPENFAILED).

•  Long message
–  Up to 1840 characters.
–  Can contain values supplied at run time.

»  Example: 'The file <sat077.bsp> was not found.'

•  Traceback
–  Shows call tree above routine where error was signaled.

»  Not dependent on system tracing capability.
»  Don’t need a “crash” to obtain a traceback.

Error Messages

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 9

•  ABORT
–  Designed for safety.

»  Output messages and traceback to your screen or stdout.
»  Stop program; return status code if possible.

•  RETURN
–  For use in programs that must keep running.
–  Attempts to return control to the calling application.
–  Preserves error information so calling application can respond.

»  Output messages to current error device.
»  Set error status to “true”: FAILED() will return “true.”
»  Set “return” status to “true”: RETURN() will return “true.”
»  Most SPICE routines will return on entry. Very simple

routines will generally execute anyway.

Error Handling Actions - 1

--continues--

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 10

»  Capture traceback at point where error was signaled.
»  Inhibit error message writing and error signaling.
»  Must call RESET to resume normal error handling.

Error Handling Actions - 2

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 11

•  Destination of error messages
–  Screen/stdout (default)
–  Designated file

»  Error diagnostics are appended to the file as errors are
encountered.

–  “NULL” --- suppress output
»  When the NULL device is specified, error messages can

still be retrieved using API calls.

•  Limitations
–  In C, cannot send messages to stderr.
–  In C, writing to a file opened by means other than calling

errdev_c is possible only if CSPICE routines were used to open
the file.

»  These limitations may be removed in a later version of
CSPICE.

Error Device

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 12

•  Set error action
–  CALL ERRACT (‘SET’, ‘RETURN’)
–  erract_c (“set”, LEN, “return”);

»  Length argument is ignored when action is “set”; when
action is “get”, LEN should be set to the available room in
the output string, for example:

»  erract_c (“get”, ACTLEN, action);

•  Set error device
–  CALL ERRDEV (‘SET’, ‘errlog.txt’)
–  errdev_c (“set”, LEN, “errlog.txt”);

•  Select error messages
–  CALL ERRPRT (‘SET’, ‘NONE, SHORT, TRACEBACK’)

»  If tracing is disabled, selecting TRACEBACK has no effect.
–  errprt_c (“set”, LEN, “none, short, traceback”);

Customize Error Handling - 1

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 13

•  Disable tracing
–  Normally done to speed up execution
–  Benefit is highly dependent on application
–  Speed-up has been a few percent to roughly 30%

»  High end estimate based on older, slower tracing
implementation.

–  Use TRCOFF:
»  CALL TRCOFF or trcoff_c();

•  Do this at the beginning of your program.
•  Once disabled you cannot re-enable tracing during a program run.

Customize Error Handling - 2

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 14

•  Use FAILED to determine whether an error has
been signaled
–  IF (FAILED()) THEN …
–  if (failed_c()) { …

•  Use FAILED after calling one or more SPICE
routines in a sequence

–  Normally, it’s safe to call a series of SPICE routines without
testing FAILED after each call

•  Use GETMSG to retrieve short or long error
messages
–  CALL GETMSG (‘SHORT’, SMSG)
–  getmsg_c (“short”, LEN, smsg);

Get Error Status - 1

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 15

•  Use QCKTRC or TRCDEP and TRCNAM to retrieve
traceback message

–  In CSPICE, only f2c’d versions of these routines are available

•  Test value of RETURN() to determine whether
routines should return on entry

–  Only relevant if user code is designed to support RETURN
mode

•  Handle error condition, then reset error status:
–  CALL RESET
–  reset_c();
–  In Icy-based applications you only handle error condition; a

reset is automatically performed by Icy

Get Error Status - 2

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 16

•  Create long error message
–  Up to 1840 characters
–  Use SETMSG

»  CALL SETMSG (‘File <#> was not found.’)
»  setmsg_c (“File <#> was not found.”);

•  Substitute string, integer, or d.p values at run time
–  Use ERRCH

»  CALL ERRCH (‘#’, ‘cassini.bsp’)
»  errch_c (“#”, “cassini.bsp”);

–  Also can use ERRINT, ERRDP
–  In Fortran, can refer to files by logical unit numbers: ERRFNM

Signal Errors - 1

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 17

•  Signal error
–  Use SIGERR to signal error. Supply short error message as

input to SIGERR.
»  CALL SIGERR (‘FILE OPEN FAILED’)
»  sigerr_c (“FILE OPEN FAILED”);

–  “Signaling” error causes SPICE error response to occur
»  Output messages, if enabled
»  Set error status
»  Set return status, if error action is RETURN
»  Inhibit further error signaling if in RETURN mode
»  Stop program if in abort mode

•  Reset error status after handling error
–  CALL RESET()
–  reset_c()

Signal Errors - 2

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 18

•  Error action:
–  By default, a SPICE error signal stops execution of IDL scripts; a SPICE error

message is displayed; control returns to the execution level (normally the
command prompt).

–  Icy sets the CSPICE shared object library’s error handling system to RETURN
mode. No other modes are used.

»  The CSPICE error state is reset after detecting an error.
–  Use the IDL CATCH feature to respond to error condition.

•  Error status
–  Value of !error_state.name

»  ICY_M_BAD_IDL_ARGS - indicates invalid argument list.
»  ICY_M_SPICE_ERROR - indicates occurrence of a SPICE error.

•  Error message
–  CSPICE short, long, and traceback error messages are merged into a single,

parsable, message.
»  The merged error message is contained in the variable !error_state.msg.
»  Example:
 CSPICE_ET2UTC: SPICE(MISSINGTIMEINFO): [et2utc->ET2UTC->UNITIM]
 The following, needed to convert between the
 uniform time scales, could not be found in the
 kernel pool: DELTET/DELTA_T_A, DELTET/K,
 DELTET/EB, DELTET/M. Your program may have failed to load…

Icy Error Handling

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 19

•  Error action:
–  By default, a SPICE error signal stops execution of MATLAB scripts; a SPICE

error message is displayed; control returns to the execution level.
–  Mice sets the CSPICE shared object library’s error handling system to RETURN

mode. No other modes are used.
»  The CSPICE error state is reset after detecting an error.

–  Use the MATLAB try/catch construct to respond to error condition.
•  Error message

–  CSPICE short, long, and traceback error messages are merged into a single,
parsable, message.

»  Example:
 ??? SPICE(MISSINGTIMEINFO): [et2utc->ET2UTC->UNITIM]
 The following, needed to convert between the
 uniform time scales, could not be found in the
 kernel pool: DELTET/DELTA_T_A, DELTET/K,
 DELTET/EB, DELTET/M. Your program may have failed to load…

•  Use the MATLAB function lasterror to retrieve SPICE error
diagnostics. When a SPICE error occurs:

–  the “message” field of the structure returned by lasterror contains the SPICE
error message.

–  the “stack” field of this structure refers to the location in the m-file from which
the Mice wrapper was called (and so is generally not useful).

–  the “identifier” field of this structure currently is not set.

Mice Error Handling

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit Exception Handling 20

•  For easier problem solving
–  Leave tracing enabled when debugging.
–  Always test FAILED after a sequence of one or more consecutive

calls to SPICE routines.
–  Don’t throw away error output. It may be the only useful clue as

to what’s going wrong.
»  Programs that must suppress SPICE error output should

trap it and provide a means for retrieving it.
•  Test FAILED to see whether an error occurred.
•  Use GETMSG to retrieve error messages
•  Use RESET to clear the error condition

–  Use SPICE error handling in your own code where appropriate.
–  When reporting errors to NAIF, have SPICE error message

output available
»  Note whether error output is actually from SPICE routines,

from non-SPICE code, or was generated at the system level.

Recommendations

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit
Common Problems

March 2010

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit: Common Problems 2

•  Prevention
•  The “Common Problems

Required Reading” document
•  Reporting a Problem to NAIF

Topics

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit: Common Problems 3

•  To minimize problems using SPICE:
–  Use a Toolkit obtained directly from NAIF and intended for your

specific environment (platform/OS/compiler/compiler options)
–  Use a current Toolkit

»  Newer Toolkits may have bug fixes and new features you need
•  Toolkits are always backwards compatible, so you should have no problem re-

linking your application to the latest Toolkit

–  Read the pertinent documentation
»  Tutorials, module headers, Required Reading documents,

comments inside kernels
–  Get the correct (usually latest) kernel files

»  Verify that coverage and intended use are suitable
–  If you are using a Fortran Toolkit, be sure your text kernels all use the

line termination appropriate for your platform.
»  Unix/Linux/OSX use <LF>; PC/Windows uses <CR><LF>
»  Using the BINGO utility from the NAIF website to make the

change, if needed, is one solution.

Prevention - 1

continued on next page

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit: Common Problems 4

Prevention - 2

–  Verify use of the correct time system for your need
»  e.g., TDB, UTC, or SCLK?

–  When using SCLK time tags, be sure to form your SCLK string to
match the specification within the SCLK kernel

»  Make sure the fractional part is in the form that is expected
–  Verify that correct reference frames are used

»  e.g., MOON_PA versus MOON_ME?
»  e.g. which version of the IAU_Mars body-fixed frame?

–  Check definitions of geometric quantities
»  Geodetic versus latitudinal coordinates
»  Oblate versus spherical body shapes

–  Check aberration corrections
»  Converged Newtonian light time + stellar aberration, light time +

stellar aberration, light time only, or none?
»  Target orientation corrected for light time?

–  Don’t confuse an instrument reference frame ID with the ID of the
instrument itself (the object ID)

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit: Common Problems 5

•  NAIF has compiled a list of common problems, probable
causes, and solutions encountered by users of the various
SPICE Toolkits:

–  Refer to …/doc/html/req/problems.html or …doc/req/PROBLEMS.REQ,
both of which are provided in each Toolkit package.

•  Some tutorials (e.g. SPK and CK) contain a section
describing common problems.

•  It may be useful to read these documents BEFORE
embarking on extensive SPICE-based programming
projects, since some problems are best solved early in the
software development cycle.

PROBLEMS Required Reading

Navigation and Ancillary Information Facility

N IF

SPICE Toolkit: Common Problems 6

•  If you need help troubleshooting a programming or usage
problem, you can send email to NAIF. At a minimum include
these items in your email message.

–  The SPICE or operating system diagnostic messages written to the
screen or to log files.

–  The name and version of the operating system you’re using.
–  The name and version of the compiler or programming environment

(IDL, Matlab).
–  The Toolkit version you are using, i.e. N0063 (also called N63).
–  Names of the kernel files being used.

»  You may need to provide the kernels themselves if these are not
available to NAIF.

–  Your inputs to SPICE modules that signaled the error.
–  If possible, a code fragment from where the error seems to occur.

•  Send the email to anyone on the NAIF team.

Reporting a Problem to NAIF

Navigation and Ancillary Information Facility

N IF

Toolkit Applications

March 2010

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 2

•  Time conversion tool: chronos
•  SPK generation tool: mkspk
•  SPK merge and subset tool: spkmerge
•  SPK comparison tool: spkdiff
•  CK generation tool: msopck
•  Frame comparison tool: frmdiff
•  Kernel summary tools: brief, ckbrief, spacit
•  Comments manipulation tools: commnt, spacit
•  File format converters: tobin, toxfr, and bingo*

Toolkit applications create or manipulate kernels, or
perform other functions such as time conversion.
Each of these applications is included in the generic
Toolkits.

Toolkit Applications

* bingo is not included in generic Toolkits; it is available only from NAIF’s webpages

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 3

chronos is an application that provides a flexible
interface to the SPICE Toolkit time conversion
capabilities.

chronos supports time conversion between the
following time systems/types:

 Supported Time Systems --> Supported Time Types
------------------------------ ---------------------------
 Universal Coord. Time (UTC) --> SCET, ERT, ETT, LT
 Ephemeris Time (ET) --> SCET, ERT, ETT, SECONDS, LT
S/C On-board Clock Time (SCLK) --> SCLK, HEX, TICKS
 Local Solar Time (LST) --> LST, LSUN

CHRONOS

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 4

Input System/Type

 UTC / SCET (*)
 UTC / ERT
 UTC / ETT
 ET / SCET (*)
 ET / ERT
 ET / ETT
 ET / SECONDS
 SCLK / SCLK (*)
 SCLK / HEX
 SCLK / TICKS
 LST / LST

(*) default input/output types

Output System/Type

 UTC / SCET (*)
 UTC / ERT
 UTC / ETT
 UTC / LT
 ET / SCET (*)
 ET / ERT
 ET / ETT
 ET / SECONDS
 ET / LT
 SCLK / SCLK (*)
 SCLK / HEX
 SCLK / TICKS
 LST / LST (*)
 LST / LSUN

CHRONOS - Input/Output Matrix

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 5

•  chronos normally converts one input time but can
run in batch mode to speed up conversion for
multiple input times.

•  OS shell alias capabilities can be used to define
shortcuts for commonly used time conversions.

•  chronos has an extensive User's Guide.

CHRONOS - Miscellaneous

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 6

Terminal Window
$ chronos
...

CHRONOS Usage

--

 To convert time from one supported system/type to another:

 % CHRONOS -SETUP <setup file name OR kernel file name(s)>

 -FROM <"from" time system>

 [-FROMTYPE <"from" time type>]

 -TO <"to" time system>

 [-TOTYPE <"to" time type>]

 [-FORMAT <output time format picture>]

 -TIME <input time> | -BATCH

 [-SC <sc ID>]

 [-CENTER <cental body ID>]

 [-LANDINGTIME <UTC time of the landing>]

 [-SOL1INDEX <index of the first SOL>]

 [-NOLABEL]

 [-TRACE]

CHRONOS - Usage

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 7

Terminal Window
$ cat chronos.cas
Sample CHRONOS setup file for Cassini

 \begindata

 KERNELS_TO_LOAD = ('naif0007.tls', 'cas00085.tsc')

 SPACECRAFT_ID = -82

 \begintext

$ chronos -setup chronos.cas -from utc -to et -time 1999 JAN 12 12:00
1999-01-12, 12:01:04.184 (ET/SCET)

$ chronos -setup chronos.cas -from utc -to sclk -time 1999 JAN 12 12:00
1/1294833883.185 (SCLK/SCLK)

$ chronos -setup naif0007.tls cas00085.tsc -sc -82 -from sclk -to utc -time
1/1294833883.185

1999-01-12 11:59:59.998 (UTC/SCET)

$ chronos -setup naif0007.tls cas00085.tsc -sc -82 -from sclk -to utc -time
1/1294833883.185 -format 'YYYY-DOYTHR:MN:SC ::RND' -nolabel

1999-012T12:00:00

CHRONOS - Example

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 8

MKSPK

•  mkspk may be used to generate an SPK file from
any of several types of data, such as discrete
states, classic elements, and two-line elements

•  Use of this program is discussed in a separate
tutorial about making SPK files, and in the mkspk
User’s Guide.

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 9

•  The contents of an SPK file or set of SPK
files may be merged or subsetted using
spkmerge

–  Extract an interval of time of interest from a single SPK
file or a set of SPK files.

–  Extract data for one or more objects from a single SPK
file or a set of SPK files.

–  You can combine both the time and object selection
mechanisms for the greatest flexibility.

SPKMERGE

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 10

SPKMERGE - Precedence Rule

•  SPK files created with spkmerge have no
overlapping ephemeris data. The order in
which the source files are specified
determines precedence when sources
have overlapping coverage for a body of
interest.

–  IMPORTANT NOTE: Data from an earlier specified source
file take precedence over data from a later specified
source file when the new (merged) file is created.

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 11

Terminal Window
$ cat spkmerge_cas_example.cmd
;This command file directs spkmerge to take data for
;Cassini, the Sun, the Earth, the Moon, and the Earth-
;Moon barycenter and place them into a single SPK.

leapseconds_kernel = naif0007.tls
spk_kernel = output.bsp
bodies = -82, 10, 301, 399, 3
source_spk_kernel = de403s.bsp
source_spk_kernel = 990825A_SCEPH_EM52_JP0.bsp

$ spkmerge
SPKMERGE -- SPK Merge Tool, Version 3.2, SPICE Toolkit N0057

Enter the name of the command file

> spkmerge_cas_example.cmd

Creating output.bsp

$

SPKMERGE - Example

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 12

SPKDIFF

•  spkdiff is a command line program for comparing
trajectories provided by two SPK files

•  spkdiff compares SPKs by computing a set of geometric
states for a specified body, center and frame over an
interval of time with a fixed time step using one SPK file,
then computing another set of geometric states for the
same or different body, center, and frame at the same times
using the other SPK file, and then subtracting the
corresponding states from each other

•  Depending of the requested output type spkdiff prints to the
screen:

–  only the maximum differences,
–  a complete table of differences, or
–  a statistical analysis of the differences.

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 13

Terminal Window
$ spkdiff

 spkdiff computes differences between geometric states obtained from

 two SPK files and either displays these differences or shows statistics

 about them (see the User's Guide for more details.) The program usage is:

 % spkdiff [options] <first SPK file> <second SPK file>

 Options are shown below. Order and case of keys are not significant.

 Values must be space-separated from keys, i.e. '-n 10', not '-n10'.

 -b1 <first body name or ID>

 -c1 <first center name or ID>

 -r1 <first reference frame name>
 -b2 <second body name or ID>

 -c2 <second center name or ID>

 -r2 <second reference frame name>

 -k <other kernel file name(s)>

 -b <interval start time>

 -e <interval stop time>
 -s <time step in seconds>

 -n <number of states: 2 to 1000000 (default: 1000)>

 -f <output time format (default: TDB seconds past J2000)>

 -t <report type: basic|stats|dump|dumpvf (default: basic)>

SPKDIFF - Usage

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 14

Terminal Window
$ spkdiff mro_psp.bsp mro_psp_rec.bsp
Comparison of 1000 'J2000'-referenced geometric states

of 'MARS RECON ORBITER' (-74) relative to 'MARS BARYCENTER' (4)

from SPK 'mro_psp.bsp'

with 1000 'J2000'-referenced geometric states

of 'MARS RECON ORBITER' (-74) relative to 'MARS BARYCENTER' (4)

from SPK 'mro_psp_rec.bsp'

evenly-spaced with 2617.6524668123 second (0d 0h 43m 37.652467s) step size

within the time interval

from '2007 APR 01 00:01:05.185 TDB' (228657665.18565 TDB seconds)

to '2007 MAY 01 06:25:00.000 TDB' (231272700.00000 TDB seconds)

Relative differences in state vectors:

 maximum average

 Position: 8.4872836561757E-05 1.2312974450656E-05

 Velocity: 8.5232570159796E-05 1.2314285182022E-05

Absolute differences in state vectors:

 maximum average

 Position (km): 3.1341344106404E-01 4.5090516995222E-02

 Velocity (km/s): 2.8848827480682E-04 4.2085874877127E-05

SPKDIFF – Basic Output Example

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 15

Terminal Window
$ spkdiff -t dumpvf mro_psp.bsp mro_psp_rec.bsp | more
Comparison of 1000 'J2000'-referenced geometric states

of 'MARS RECON ORBITER' (-74) relative to 'MARS BARYCENTER' (4)
from SPK 'mro_psp.bsp'

with 1000 'J2000'-referenced geometric states

of 'MARS RECON ORBITER' (-74) relative to 'MARS BARYCENTER' (4)
from SPK 'mro_psp_rec.bsp'

evenly-spaced with 2617.6524668123 second (0d 0h 43m 37.652467s) step size
within the time interval

from '2007 APR 01 00:01:05.185 TDB' (228657665.18565 TDB seconds)
to '2007 MAY 01 06:25:00.000 TDB' (231272700.00000 TDB seconds)

time, down_track_p_diff, normal_to_plane_p_diff, in_plane_p_diff, down_track_v
_diff, normal_to_plane_v_diff, in_plane_v_diff
2.2865766518565E+08 +4.2593079332056E-02 -9.0540866105197E-05 -3.9705894066565E-04 -8.0803561182349E-08
-1.0394439243989E-07 -3.9614350816493E-05

2.2866028283812E+08 +4.2172435702119E-02 +2.3672255851626E-06 -1.1475679619731E-04 +1.3970238250217E-07
+1.4080506259574E-07 -3.9250157214024E-05

2.2866290049059E+08 +4.4830247467488E-02 +9.1590974014175E-05 -7.3802870365833E-04 +5.7800410436763E-07
-1.1724240528272E-07 -4.2099832045985E-05

2.2866551814305E+08 +4.5968515669515E-02 -1.3529652839857E-04 -7.5686845133612E-05 -4.7565892258325E-07
+3.4127364997784E-08 -4.2529268294482E-05
--More--

SPKDIFF – Dump Output Example

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 16

MSOPCK

•  msopck is a program for making CK files from
orientation provided in a text file as a time tagged,
space-delimited table

–  has a simple command line interface
–  requires all setups to be provided in a setup file that follows

the SPICE text kernel syntax
–  can process quaternions (SPICE and non-SPICE flavors), Euler

angles, or matrixes, tagged with UTC, SCLK, or ET
–  for more details see the “Making a CK File” Tutorial

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 17

FRMDIFF

•  frmdiff is a command line program for sampling the orientation
of a reference frame or for computing the difference between
orientations of two reference frames based on provided set(s)
of SPICE kernels

•  In sampling mode, frmdiff computes a set of transformations
from one frame to another frame over a specified interval with
a specified step

•  In comparison mode, frmdiff computes two sets of
transformations for two pairs of “from”-“to” frames and then
computes the difference in rotation and angular velocity
between these transformations over a specified interval with a
specified step

•  Depending on the execution mode and the requested output
type frmdiff prints to the screen:

–  only the maximum rotation or the maximum rotation difference,
–  a complete table of rotations or differences (as angle and axis, SPICE- or

engineering-style quaternions, matrixes, or Euler angles), or
–  a statistical analysis of rotations or differences.

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 18

Terminal Window
$ frmdiff
 % frmdiff [options] <first kernel name> <second kernel name>
 % frmdiff [options] <kernel name>

 % frmdiff [options]

 where kernel can be a CK, an FK, or a PCK. Options are shown below.

 -k <supporting kernel(s) name(s)>

 -f1 <first ``from'' frame, name or ID>

 -t1 <first ``to'' frame, name or ID>
 -c1 <first frame for coverage look up, name or ID>

 -k1 <additional supporting kernel(s) for first file>

 -f2 <second ``from'' frame, name or ID>

 -t2 <second ``to'' frame, name or ID>

 -c2 <second frame for coverage look up, name or ID>

 -k2 <additional supporting kernel(s) for second file>
 -a <compare angular velocities: yes|no>

 -m <frame for angular velocities: from|to>

 -b <interval start time>

 -e <interval stop time>

 -n <number of points: 1 to 1000000 (default: 1000)>

 -s <time step in seconds>
 -f <time format: et|sclk|sclkd|ticks|picture_for_TIMOUT>

 -t <report: basic|stats|dumpaa|dumpm|dumpqs|dumpqo|dumpea|dumpc|dumpg>

 -o <rotation axes order (default: z y x)>

 -x <units for output angles> (only for -t dumpaa and -t dumpea)

FRMDIFF - Usage

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 19

Terminal Window
$ frmdiff -k naif0009.tls DIF_SCLKSCET.00036.tsc di_v17.tf -s 5 -t dumpqo -f sclkd -a yes -m to
dif_sc_2009-01-27.bc > output.txt

$ cat output.txt

Sampling of 16864 rotations

from 'J2000' (1) to 'DIF_SPACECRAFT' (-140000)

computed using

naif0009.tls DIF_SCLKSCET.00036.tsc di_v17.tf

dif_sc_2009-01-27.bc

with a 5.0000000000000 second (0:00:00:05.000000) step size

within the non-continuous (with 2 gaps) time period

from '2009 JAN 27 00:01:06.713' TDB (286286466.71354 TDB seco...

to '2009 JAN 28 00:01:05.346' TDB (286372865.34683 TDB seco...

including angular velocities relative to 'to' frame.

Times are decimal SCLKs computed using SCLK ID -140.

time, q_sin1, q_sin2, q_sin3, q_cos, av_x, av_y, av_z

2.8628543276953E+08 +6.9350853049532E-01 +3.7594179111024E-01 -6.1...

2.8628543776953E+08 +6.9350851552324E-01 +3.7594215798843E-01 -6.1...

FRMDIFF – Sampling Example

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 20

Terminal Window
$ frmdiff -k naif0009.tls cas00130.tsc cas_v40.tf -s 10 -b 2009-JAN-09 00:00 -e 2009-JAN-10 00:00 -t
dumpaa 09009_09025pa_fsiv_lud2.bc 09006_09011ra.bc > output.txt

$ cat output.txt

Comparison of 3143 rotations
from 'J2000' (1) to 'CASSINI_SC_COORD' (-82000)
computed using
naif0009.tls cas00130.tsc cas_v40.tf

09009_09025pa_fsiv_lud2.bc

with 3143 rotations
from 'J2000' (1) to 'CASSINI_SC_COORD' (-82000)
computed using

naif0009.tls cas00130.tsc cas_v40.tf
09006_09011ra.bc

with a 10.000000000000 second (0:00:00:10.000000) step size
within the non-continuous (with 1 gaps) time period

from '2009 JAN 09 15:17:06.359' TDB (284786226.35996 TDB seco...
to '2009 JAN 10 00:01:06.184' TDB (284817666.18419 TDB seco...

Times are TDB seconds past J2000.

angle is shown in radians.

time, angle, axis_x, axis_y, axis_z
+2.8478622635996E+08 +5.4958832051797E-05 +8.2101753099566E-01 +4....
+2.8478623635996E+08 +5.4931030131424E-05 +8.2046010733260E-01 +4....

FRMDIFF – Comparison Example

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 21

•  brief displays the bodies and associated time
coverage in an SPK file or set of SPK files.

–  brief also works on binary PCK files
•  ckbrief displays the structure(s) and associated

time coverage in a CK file or set of CK files.
•  spacit displays a segment by segment summary

of the contents of a CK, SPK, binary PCK, or EK/
ESQ file.

–  spacit also identifies the SPK or CK data type present in each
segment.

The contents of binary kernels can be summarized
with the kernel summary tools.

Kernel Summary Applications

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 22

•  brief is a simple command line program for
summarizing the contents of SPK or binary PCK
files

•  the files to be summarized can listed on the
command line, given in a meta-kernel provided on
the command line, or provided in a list file

•  brief provides command line options for
–  displaying coverage boundaries as date UTC, DOY UTC, or ET

seconds past J2000 (default time format is calendar ET)
»  to display time as UTC an LSK file must be provided on the

command line
–  displaying centers of motions along with the bodies
–  treating all input files as if they were a single file
–  displaying summary only for files covering a specified time or

time range or containing data for a specified body
–  displaying summary in tabular format or grouped by coverage
–  and many others ...

BRIEF

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 23

Terminal Window
$ brief

BRIEF -- Version 3.0.0, January 14, 2008 -- Toolkit Version N0063

 BRIEF is a command-line utility program that displays a summary for

 one or more binary SPK or binary PCK files. The program usage is:

 % brief [-options] file [file ...]

 The most useful options are shown below. For the complete set of

 options, run BRIEF with the -h option. The order of options is not

 significant. The case of option keys is significant: they must be

 lowercase as shown below.

 -c display centers of motion/relative-to frames

 -t display summary in a tabular format

 -a treat all files as a single file

 -utc display times in UTC calendar date format (needs LSK)

 -utcdoy display times in UTC day-of-year format (needs LSK)

 -etsec display times as ET seconds past J2000

 An LSK file must be provided on the command line to display times in

 UTC formats. FK file(s) must be provided on the command line to

 display names of any frames that are not built into the Toolkit.

BRIEF - Usage

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 24

Terminal Window
$ brief de405s.bsp m01_cruise.bsp

BRIEF -- Version 3.0.0, January 14, 2008 -- Toolkit Version N0063

Summary for: de405s.bsp

Bodies: MERCURY BARYCENTER (1) SATURN BARYCENTER (6) MERCURY (199)
 VENUS BARYCENTER (2) URANUS BARYCENTER (7) VENUS (299)

 EARTH BARYCENTER (3) NEPTUNE BARYCENTER (8) MOON (301)

 MARS BARYCENTER (4) PLUTO BARYCENTER (9) EARTH (399)

 JUPITER BARYCENTER (5) SUN (10) MARS (499)

 Start of Interval (ET) End of Interval (ET)

 ----------------------------- -----------------------------
 1997 JAN 01 00:01:02.183 2010 JAN 02 00:01:03.183

Summary for: m01_cruise.bsp

Body: MARS SURVEYOR 01 ORBITER (-53)
 Start of Interval (ET) End of Interval (ET)

 ----------------------------- -----------------------------

 2001 APR 07 16:25:00.000 2001 OCT 24 05:00:00.000

BRIEF - Example

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 25

•  ckbrief is a simple command line program for
summarizing the contents of CK files

•  the files to be summarized can listed on the
command line, given in a meta-kernel provided on
the command line, or provided in a list file

•  ckbrief provides command line options for
–  displaying coverage at interpolation interval level
–  displaying coverage boundaries as date UTC, DOY UTC, SCLK,

or encoded SCLK (default time format is calendar ET)
»  to display times as ET, UTC, or SCLK, an LSK file and

SCLK file(s) must be provided on the command line
–  Displaying frames with respect to which orientation is provided
–  Displaying the names of the frames associated with CK IDs

»  an FK file(s) defining these frames must be provided on the
command line

–  displaying summary only for files with data for a given CK ID
–  and many others ...

CKBRIEF

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 26

•  There often are coverage gaps within a CK segment
•  Using the ‘-dump’ option allows to get a complete list of

continuous coverage intervals for each segment

Sample CK
Segment Type 3 Instances of

Available
Pointing Data

Segment coverage reported
by ckbrief with ‘-dump’

Segment Coverage Reported
by ckbrief without ‘-dump’

Time

Coverage Gaps

CKBRIEF – Interval Summary

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 27

Terminal Window
$ ckbrief

CKBRIEF -- Version 5.0.0, February 11, 2009 -- Toolkit Version N0063

 CKBRIEF is a command-line utility program that displays a summary for
 one or more binary CK files. The program usage is:

 % ckbrief [-options] file [file ...]

 The most useful options are shown below. For the complete set of
 options, run CKBRIEF with the -h option. The order of options is not
 significant. The option keys must be lowercase as shown below.

 -dump display interpolation intervals
 -rel display relative-to frames (may need FK)
 -n display frames associated with CK IDs (may need FK)
 -t display summary in a tabular format
 -utc display times in UTC calendar date format (needs LSK&SCLK)
 -utcdoy display times in UTC day-of-year format (needs LSK&SCLK)
 -sclk display times as SCLK strings (needs SCLK)

 LSK and SCLK files must be provided on the command line to display times
 in UTC, ET, or SCLK formats. FK file(s) must be provided on the command
 line to display names of any frames that are not built into the Toolkit.

 CKBRIEF – Usage

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 28

Terminal Window
$ ckbrief -sclk 981116_981228pa.bc sclk.ker

CKBRIEF -- Version 5.0.0, February 11, 2009 -- Toolkit Version N0063

Summary for: 981116_981228pa.bc

Object: -82000
 Interval Begin SCLK Interval End SCLK AV
 ------------------------ ------------------------ ---
 1/1289865849.116 1/1293514473.118 N

$ ckbrief -utc sclk.ker naif0007.tls 990817_990818ra.bc

CKBRIEF -- Version 5.0.0, February 11, 2009 -- Toolkit Version N0063

Summary for: 990817_990818ra.bc

Object: -82000
 Interval Begin UTC Interval End UTC AV
 ------------------------ ------------------------ ---
 1999-AUG-17 17:30:01.418 1999-AUG-17 23:05:42.039 N
 1999-AUG-17 23:05:45.289 1999-AUG-18 06:06:05.874 N
 1999-AUG-18 06:06:09.124 1999-AUG-18 11:52:17.741 N
 1999-AUG-18 11:52:20.991 1999-AUG-18 13:30:00.953 N

 CKBRIEF – Example

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 29

Terminal Window
$ ckbrief mgs_spice_c_kernel_2004-099.bc MGS_SCLKSCET.00053.tsc naif0007.tls -dump
-rel -utc

CKBRIEF -- Version 5.0.0, February 11, 2009 -- Toolkit Version N0063

Summary for: mgs_spice_c_kernel_2004-099.bc

Segment No.: 1

Object: -94000

 Interval Begin UTC Interval End UTC AV Relative to FRAME
 ------------------------ ------------------------ --- -----------------
 2004-APR-08 00:00:59.809 2004-APR-08 06:53:47.805 Y J2000
 2004-APR-08 06:54:07.805 2004-APR-08 06:54:07.805 Y J2000
 2004-APR-08 06:54:19.805 2004-APR-08 06:54:35.805 Y J2000
 2004-APR-08 06:54:51.805 2004-APR-08 06:54:55.805 Y J2000
 2004-APR-08 06:55:07.805 2004-APR-08 06:55:07.805 Y J2000
 2004-APR-08 06:55:23.805 2004-APR-08 06:55:23.805 Y J2000
 2004-APR-08 06:55:35.805 2004-APR-08 11:59:55.802 Y J2000
 2004-APR-08 12:00:55.802 2004-APR-08 23:59:55.795 Y J2000

 CKBRIEF - ‘-dump’ Example

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 30

SPACIT

•  spacit may be used to obtain a more detailed
summary of an SPK or CK file than that offered by
brief or ckbrief, respectively

–  spacit may also be used to summarize a binary PCK or an EK/
ESQ.

–  spacit is an interactive program
»  It will prompt you for all needed inputs
»  It displays short menus where you choose the action

desired

•  spacit may also be used to manage comments,
and to convert between binary and transfer format

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 31

•  Every kernel should contain metadata – called
“comments” – describing the file contents,
intended usage, etc.

•  In binary kernels – SPKs, CKs, binary PCKs, and
EKs – comments are stored in a special area of the
file called the “comment area.”

•  commnt can read, extract, add, or delete comments
stored in the comment area

–  Caution: you cannot add or delete comments if the kernel file is
not in native format for the machine on which you’re working.

»  You can convert a non-native binary format file to native
binary format by converting the file to “transfer format”
using toxfr and then converting it back to binary format
using tobin.

»  Or use the bingo utility (available only from the NAIF
website).

Comment Manipulation Tools

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 32

•  commnt is both a command line utility and an
interactive menu-driven program

•  In command line mode, commnt provides options to
–  print comments to the screen
 $ commnt -r kernel_file
–  extract comments to a text file
 $ commnt –e kernel_file text_file
–  add comments from a text file
 $ commnt –a kernel_file comment_file
–  delete comments
 $ commnt –d kernel_file

•  Important to note that
–  When comments are added, they are appended at the end of the

existing comments
–  Comments should be deleted ONLY to be replaced with better

comments

COMMNT

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 33

Terminal Window
$ commnt -r de405.bsp | more
; de405.bsp LOG FILE
;
; Created 1999-10-03/14:31:58.00.
;
; BEGIN NIOSPK COMMANDS

LEAPSECONDS_FILE = /kernels/gen/lsk/naif0007.tls
SPK_FILE = de405.bsp
 SOURCE_NIO_FILE = /usr2/nio/gen/de405.nio
 BODIES = 1 2 3 4 5 6 7 8 9 10 301 399 199 299 499
 BEGIN_TIME = CAL-ET 1950 JAN 01 00:00:41.183
 END_TIME = CAL-ET 2050 JAN 01 00:01:04.183

; END NIOSPK COMMANDS

A memo describing the creation of the DE405 generic planet ephemeris is avail
able from NAIF or from the author: Dr. Myles Standish of JPL's Solar System Dy
namics Group. Because this memo was produced using the TeX processor and inclu
des numerous equations

 >>> Beginning of extract from Standish's DE405 memo <<
...

COMMNT - Command Line Example

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 34

Terminal Window
$ commnt

 Welcome to COMMNT Version: 6.0.0
 (Spice Toolkit N0050)

 COMMNT Options

 (Q) Quit.
 (A) Add comments to a binary file.
 (R) Read the comments in a binary file.
 (E) Extract comments from a binary file.
 (D) Delete the comments in a binary file.

 Option: E

Enter the name of the binary file.

Filename? de405.bsp

Enter the name of the comment file to be created.

Filename? de405_comments.txt

The comments were successfully extracted.

COMMNT – Interactive Example

Navigation and Ancillary Information Facility

N IF

Toolkit Applications 35

•  With modern Toolkits (N0052 and later) the porting of DAF-based
binary kernels* between computers having dissimilar binary
standards is usually not necessary.

–  The advent of binary kernel readers that detect the binary style and do run-
time translation if needed generally makes porting unnecessary for DAF-
based types.

–  Refer to the “Porting Kernels” tutorial for more on this topic.

•  If true porting is needed (because you must modify or append to
a kernel):

–  use toxfr on the source computer and tobin on the destination computer
–  or use bingo on the destination computer

»  NOTE: bingo is NOT available in Toolkits; it must be downloaded from
the NAIF website

* DAF-based binary kernels are SPK, CK and binary PCK

File Format Conversion Tools

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications

March 2010

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 2

•  NAIF distributes a set of additional applications not included
in the generic Toolkits. This set includes programs for:

–  making, modifying, validating, inspecting, and analyzing SPK files:
»  pinpoint, dafcat, bspidmod, dafmod, spy

–  making and modifying CK files
»  prediCkt, ckslicer, ckspanit, dafcat, cksmrg, dafmod

–  making SCLK files
»  makclk

–  computing derived quantities
»  orbnum, optics, spy

–  determining SPICE kernel type and binary format
»  archtype, bff

–  converting between binary and text kernel formats
»  bingo

•  Executables and User’s Guides for selected computer
environments are available from the NAIF server at:

–  http://naif.jpl.nasa.gov/naif/utilities.html

Summary

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 3

•  pinpoint is a program for creating SPK files and topocentric
frames FK files for objects whose position is a constant offset with
respect to another object

–  Ground stations
–  Landing sites, sites along a rover path
–  Relative positions of manipulator joints, etc.

•  pinpoint is a command line program with the following usage:
pinpoint -def deffile -spk spkfile [-pck tkfile] [-fk fk] [flags]

–  “deffile” is an input definitions file following text kernel file format and
containing a set of keywords defining ID, center, reference frame, position (as
XYZ or Gaussian Lat/Lon/R) and time coverage boundaries and optionally
velocity and topocentric frame axes specifications for one or more objects

»  The contents of “deffile” are included in the comment area
–  “spkfile” is an output SPK file containing a type 8 SPK segment for each of the

objects specified in the “deffile”
–  “tkfile” is an optional input PCK file (needed if positions in the “deffile” are

given as Lat/Lon/Alt) or FK file (needed if one or more of the frames specified
in “deffile” is not one of the frames built into the Toolkit)

–  “fk” is an optional output topocentric frames FK file

PINPOINT

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 4

Terminal Window
$ more mer1_meridiani.def

 Sample PINPOINT input for MER-1 landing site coordinates.

 \begindata

 SITES = ('LS')

 LS_CENTER = 499

 LS_FRAME = 'IAU_MARS'

 LS_IDCODE = -253900

 LS_XYZ = (+3.3764222E+03 -3.2664876E+02 -1.1539218E+02)

 LS_BOUNDS = (@2001-01-01-00:00:00.000, @2100-01-01-00:00:00.000)

 \begintext

$ pinpoint -def mer1_meridiani.def -spk mer1_meridiani.bsp

$ brief mer1_meridiani.bsp
Brief. Version: 2.2.0 (SPICE Toolkit N0057)

Summary for: mer1_meridiani.bsp

Body: -253900* w.r.t. MARS (499)

 Start of Interval (ET) End of Interval (ET)

 -------------------------------- --------------------------------

 2001 JAN 01 00:00:00.000 2100 JAN 01 00:00:00.000

PINPOINT Example

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 5

•  dafcat is a program for concatenating binary DAF files by simply
copying all data segments from all input files, in the order they are
provided, into the output file

–  Works on SPKs, CKs, and binary PCKs
»  will not merge different types of kernels together, i.e. will not merge SPKs

with CKs, CKs with PCKs, etc.
»  for merging SPKs in most cases spkmerge should be used instead because

it provides a much more powerful and sophisticated capability

•  dafcat is a command line program with the following usage
dafcat output_file

–  “output_file” is the output file name and is the program’s only argument
–  Input file names should be provided from standard input

»  this is very convenient for use with Unix shell pipes

•  dafcat does not put any information into the comment area of the
output file, leaving this responsibility to the user (use commnt to do
so)

DAFCAT

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 6

Terminal Window
$ dafcat m01_merged.bsp

DAF binary files concatenation program version 1.00

spk_m_od33905-33993_rec_v1.bsp
spk_m_od33992-34065_rec_v1.bsp
^D
Concatenating files:

 spk_m_od33905-33993_rec_v1.bsp

 spk_m_od33992-34065_rec_v1.bsp

to:

 m01_merged.bsp

$ ls -1 spk_m_od*_rec_v1.bsp | dafcat m01_merged_2.bsp

DAF binary files concatenation program version 1.00

Concatenating files:

 spk_m_od32371-32458_rec_v1.bsp

 ...

to:

 m01_merged_2.bsp

DAFCAT Example: SPK

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 7

Terminal Window
$ dafcat m01.bc

DAF binary files concatenation program version 1.00

m01_sc_2004-04-20.bc
m01_sc_2004-04-21.bc
^D
Concatenating files:

 m01_sc_2004-04-20.bc

 m01_sc_2004-04-21.bc

to:

 m01.bc

$ ls -1 m01_sc_2004-04-2*.bc | dafcat m01.bc

DAF binary files concatenation program version 1.00

Concatenating files:

 m01_sc_2004-04-20.bc

 m01_sc_2004-04-21.bc

to:

 m01.bc

DAFCAT Example: CK

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 8

•  bspidmod is a program for altering the object IDs in a binary SPK file
–  can be used to modify IDs in an SPK file(s) produced with a “bogus” spacecraft ID (or a

simulation spacecraft ID)
–  can be used to replace “good” IDs with “bogus” IDs if two different trajectories for the

same object need to be used in the same program at the same time (for example for
comparison)

•  bspidmod is a command line program with the following usage:
bspidmod -spki inpspk -idi inpid -ido outid -mod item -oflg

–  “inpspk” is the input SPK file; “inpid” and “outid” are the current ID and new ID
–  “item” indicates which IDs are to be replaced:

•  TARGET -- only target IDs are replaced,
•  CENTER -- only center IDs are replaced, or
•  OBJECT -- both target and center IDs are replaced

»  Replacements are made only when “inpid” matches an ID found in the input SPK
–  “-oflg” flag indicating that change should be made directly in the input file; if not

specified, the program produces output file with name that has “_out” appended to the
name of the input file

»  In order for changes to be made in the input file it must the in native binary format;
if it is not, bingo may be used to convert it to the native binary format

–  A note stating which IDs were modified is put in the comment area

BSPIDMOD

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 9

Terminal Window
$ brief mer2_crus_sim_id.bsp
Brief. Version: 2.2.0 (SPICE Toolkit N0057)

Summary for: mer2_crus_sim_id.bsp

Body: -255

 Start of Interval (ET) End of Interval (ET)

 -------------------------------- --------------------------------

 2003 JUL 09 00:15:00.000 2004 JAN 04 04:25:42.557

$ bspidmod -spki mer2_crus_sim_id.bsp -idi -255 -ido -254 -mod target -oflg
 The file mer2_crus_sim_id.bsp has been updated.

$ brief mer2_crus_sim_id.bsp
Brief. Version: 2.2.0 (SPICE Toolkit N0057)

Summary for: mer2_crus_sim_id.bsp

Body: MER-2 (-254)

 Start of Interval (ET) End of Interval (ET)

 -------------------------------- --------------------------------

 2003 JUL 09 00:15:00.000 2004 JAN 04 04:25:42.557

BSPIDMOD Example

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 10

•  dafmod is a program for altering selected segment attributes in a binary
SPK, CK, or PCK file

–  in an SPK file it can alter the target, center, or reference frame ID
–  in a CK or binary PCK file it can alter the object or reference frame ID

•  dafmod is an interactive program. When executed it prompts the user for
–  name of the file to be modified
–  “item” to be modified

»  the set of items depends on the kernel type
–  “old” item value
–  “new” item value

•  dafmod puts into the comment area a warning note stating which items
in which segments of the file were changed

•  dafmod works only on files in native binary format
–  bingo may be used to convert a non-native binary kernel to native binary format

DAFMOD

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 11

Terminal Window
$ brief mer2_crus_sim_id.bsp

Summary for: mer2_crus_sim_id.bsp

Body: -255

...

$ dafmod

DAFMOD -- Version 2.0.0, January 30, 2008 -- Toolkit Version N0063

(... banner providing usage instructions ...)

1) File : mer2_crus_sim_id.bsp
2) Item : target
3) Old Value: -255
4) New Value: -254
The file mer2_crus_sim_id.bsp has been updated.

$ brief mer2_crus_sim_id.bsp

Summary for: mer2_crus_sim_id.bsp

Body: MER-2 (-254)

DAFMOD Example: SPK

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 12

Terminal Window
$ ckbrief -rel mro_sc_pred.bc mro.tsc naif0009.tls

Summary for: mro_sc_pred.bc

...

 2009-AUG-15 23:31:02.347 2009-AUG-30 00:00:58.388 Y -74900

$ dafmod

DAFMOD -- Version 2.0.0, January 30, 2008 -- Toolkit Version N0063

(... banner providing usage instructions ...)

1) File : mro_sc_pred.bc
2) Item : frame
3) Old Value: -74900
4) New Value: 16
The file mro_sc_pred.bc has been updated.

$ ckbrief -rel mro_sc_pred.bc mro.tsc naif0009.tls

Summary for: mro_sc_pred.bc

...

 2009-AUG-15 23:31:02.347 2009-AUG-30 00:00:58.388 Y MARSIAU

DAFMOD Example: CK

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 13

SPY

•  Spy is a command-driven utility for validating, inspecting, and
analyzing SPK files

•  Spy can:
–  Dump SPK file contents

»  Data
»  Summary information
»  Comment area
»  Bookkeeping information

–  Sample data from a set of loaded kernels
»  Sample position, distance, velocity, derived velocity, speed, acceleration,

acceleration magnitude, osculating elements
–  Check SPK files

»  Validate SPK structure
»  Check sampled data for bounds violations
»  Locate invalid double precision numbers

–  Find some geometric events
»  Distance: find times when specified constraints on observer-target distance

are met
»  Elevation: find times when specified constraints on elevation of target in

specified frame are met

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 14

SPY: Selected Features

•  Operating modes
–  Interactive, batch, shell command line

•  Auxiliary files
–  Start-up file, command files, log file, save file

•  Interactive command support
–  Command history: recall, repetition, and command editing; editor selection;

command error detection; (limited) automatic command error correction
•  User default support

–  Set, show, reset default values
•  Input options

–  Define user symbols in commands
–  Embed prompts in commands

•  Output options
–  Dump subsets of SPK data
–  Show epoch and packet deltas in data dumps
–  Set sample count or density
–  Set time and number formats
–  Set angular units
–  Set coordinate system for sampled data
–  Control error diagnostic verbosity

•  Online help: command language summary

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 15

SPY Example: Dump SPK Data
Terminal Window

Spy > dump data spk testspk.bsp segment index 13 stop packet 2;

Dump of SPK File testspk.bsp
==

Segment number 13

Segment Summary:

 Segment ID : SPY test segment: type 18 subtype 0
 Target Body : Body 1800
 Center Body : Body 1899
 Reference Frame : Frame 17, ECLIPJ2000

 SPK Data Type : Type 18
 Description : Mex/Rosetta Hermite/Lagrange Interpolation
 UTC Start Time : 2000 JAN 01 11:59:05.816
 UTC Stop Time : 2000 JAN 01 12:32:15.816

 ET Start Time : 2000-JAN-01 12:00:10.000000 (TDB)
 ET Stop Time : 2000-JAN-01 12:33:20.000000 (TDB)
 DAF Begin Address: 35287
 DAF End Address : 37890

Segment Parameters:

 Packet Count : 200
 Directory Count : 1

 Window Size - 1 : 6
 Polynomial Degree: 13
 Subtype : 0
 Description : Hermite interpolation, 12-element packets

Time Tags and Packets:

 State Components: Position X, Y, Z (km)

 Velocity X, Y, Z (km/s)
 Velocity X, Y, Z (km/s)
 Accel. X, Y, Z (km/s^2)

 1 2000-JAN-01 12:00:10.000000 (TDB) 1.00103333E+03 1.00203333E+03 1.00303333E+03 1.00403333E+03 1.00503333E+03 1.00603333E+03
 1.00703333E+03 1.00803333E+03 1.00903333E+03 1.01003333E+03 1.01103333E+03 1.01203333E+03
 2 2000-JAN-01 12:00:20.000000 (TDB) 2.00103333E+03 2.00203333E+03 2.00303333E+03 2.00403333E+03 2.00503333E+03 2.00603333E+03
 2.00703333E+03 2.00803333E+03 2.00903333E+03 2.01003333E+03 2.01103333E+03 2.01203333E+03

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 16

SPY Example: Sample State Vectors

Terminal Window

Spy > load naif0009.tls;
Spy > load de421.bsp;
Spy > sample states
 observer earth
 target moon
 start time 2008 oct 28 00:00:00.000000 TDB
 stop time 2008 oct 28 00:01:00.000000 TDB
 frame eclipJ2000
 aberration correction none
 coordinates latitudinal
 time format numeric E23.16
 number format F13.6
 step size 10.0;

Sample STATE Results

==

 Target : moon

 Observer : earth

 Frame : eclipJ2000
 Aberration Correction: none

 Coordinate System : latitudinal

 0.2784240000000000E+09 395800.315095 -156.260092 -4.660937 0.035837 0.000145 -0.000005

 0.2784240100000000E+09 395800.673459 -156.258644 -4.660983 0.035836 0.000145 -0.000005

 0.2784240200000000E+09 395801.031820 -156.257196 -4.661028 0.035836 0.000145 -0.000005

 0.2784240300000000E+09 395801.390177 -156.255748 -4.661074 0.035836 0.000145 -0.000005

 0.2784240400000000E+09 395801.748532 -156.254300 -4.661120 0.035835 0.000145 -0.000005

 0.2784240500000000E+09 395802.106883 -156.252851 -4.661165 0.035835 0.000145 -0.000005
 0.2784240600000000E+09 395802.465231 -156.251403 -4.661211 0.035835 0.000145 -0.000005
==

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 17

SPY Example: Check SPK Integrity

Terminal Window

Spy > check integrity spk testspk.bsp;

Structure Inspection of SPK File testspk.bsp
==
Segment Number 11

Segment Summary:

 Segment ID : SPY test segment: type 15
 Target Body : Body 1501
 Center Body : Body 1599
 Reference Frame : Frame 17, ECLIPJ2000

 SPK Data Type : Type 15
 Description : Two-Body with J2 Precession
 UTC Start Time : 2000 JAN 01 11:59:05.816
 UTC Stop Time : 2000 JAN 01 12:32:15.816
 ET Start Time : 2000-JAN-01 12:00:10.000000 (TDB)

 ET Stop Time : 2000-JAN-01 12:33:20.000000 (TDB)
 DAF Begin Address: 35259
 DAF End Address : 35274

%% Error: Invalid Unit Periapsis Pole Vector

 The periapsis pole vector should have unit length but in fact has length 4.58257569E+04.

One error diagnostic and no warnings generated for SPK file testspk.bsp
==

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 18

•  prediCkt is a program for making CK files from a set
of orientation specification rules and schedules
defining when these rules are to be applied

–  has a simple command line interface
–  requires orientation and schedule specification to be provided in a

setup file that follows the SPICE text kernel syntax
–  requires all supporting kernels -- SPK, PCK, etc -- to be provided in

a meta kernel
–  for more details see “Making CK Tutorial”

PREDICKT

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 19

•  ckslicer is a program for subsetting a CK file
•  ckslicer is a command line program with the following usage

 ckslicer -lsk <lsk_file_name>
 -sclk <sclk_file_name(s)>
 -inputck <ck_file_name>
 -outputck <ck_file_name>
 -id <naif_id>
 -timetype <utc|sclk|ticks>
 -start <start_time>
 -stop <stop_time>

•  ckslicer is useful in the situation when only a portion of a CK
covering a short interval of time is needed (for example when the
whole CK is not needed and it takes up a lot of space) or to cut
parts from a few CKs with the intent to merge them together (if
reconstructed CKs from different sources have too much overlap
to simply “cat” them together)

•  A note stating which subset was extracted is put into the
comment area of the output CK file

CKSLICER

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 20

Terminal Window
$ dir mgs_sc_ab1_v2.bc
-rw-rw-r-- 1 naifuser 195535872 Jul 17 1999 mgs_sc_ab1_v2.bc

$ ckslicer -lsk naif0007.tls -sclk MGS_SCLKSCET.00054.tsc -inputck mgs_sc_ab1_v2.bc
-outputck mgs_sc_ab1_970915.bc -id -94000 -timetype utc -start 1997-SEP-15 18:00 -
stop 1997-SEP-15 21:00

CKSLICER: Version 1.0.1 July 17, 1999; Toolkit Version N0057

$ dir mgs_sc_ab1_970915.bc
-rw-rw-rw- 1 naifuser 480256 Apr 25 10:23 mgs_sc_ab1_970915.bc

$ ckbrief mgs_sc_ab1_970915.bc naif0007.tls MGS_SCLKSCET.00054.tsc -utc

CKBRIEF Version: 2.0.0, 2001-05-16. SPICE Toolkit Version: N0057.

Summary for: mgs_sc_ab1_970915.bc

Object: -94000

 Interval Begin UTC Interval End UTC AV

 ------------------------ ------------------------ ---

 1997-SEP-15 18:00:00.001 1997-SEP-15 21:00:00.000 Y

CKSLICER Example

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 21

•  ckspanit is a program for modifying interpolation interval
information in type 3 CK segments

–  it can also convert a type 1 CK to a type 2 or 3 CK

•  ckspanit is used when one is dealing with a type 3 CK containing
many small gaps within segments. It allows you to alter the CK in
such a way that SPICE will interpolate over those gaps

•  ckspanit is a command line program with the following usage
ckspanit -in inp_ck -out out_ck -tol threshold [-frm fk]

–  “threshold” is the longest time interval over which interpolation is to be
permitted in the output CK file

»  must be specified in SCLK ticks
•  For example if 1 tick is 1/256 of a second and interpolation over 30 second intervals is

needed, “threshold” must be set to 256*30=7680

–  “fk” is optional FK file name, needed only if the base frame in the input CK is
not one of the frames built into the Toolkit

CAUTION: before running ckspanit, make sure that interpolation over larger
gaps is appropriate for the vehicle or structure you are dealing with. You
should add appropriate comments to the new CK file.

CKSPANIT

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 22

Terminal Window
$ ckbrief m01_sc_2004-04-22.bc naif0007.tls ORB1_SCLKSCET.00078.tsc -utc -dump
CKBRIEF Version: 2.0.0, 2001-05-16. SPICE Toolkit Version: N0057.

Summary for: m01_sc_2004-04-22.bc

Segment No.: 1

Object: -53000

 Interval Begin UTC Interval End UTC AV

 ------------------------ ------------------------ ---

 2004-APR-22 00:00:05.455 2004-APR-22 18:53:29.054 Y

 2004-APR-22 18:55:05.054 2004-APR-22 21:44:22.979 Y

 2004-APR-22 21:51:34.974 2004-APR-22 23:59:58.919 Y

$ ckspanit -in m01_sc_2004-04-22.bc -out m01_sc_2004-04-22_sp.bc -tol 153600

$ ckbrief m01_sc_2004-04-22_sp.bc naif0007.tls ORB1_SCLKSCET.00078.tsc -utc -dump
CKBRIEF Version: 2.0.0, 2001-05-16. SPICE Toolkit Version: N0057.

Summary for: m01_sc_2004-04-22_sp.bc

Segment No.: 1

Object: -53000

 Interval Begin UTC Interval End UTC AV

 ------------------------ ------------------------ ---

 2004-APR-22 00:00:05.455 2004-APR-22 23:59:58.919 Y

CKSPANIT Example

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 23

•  cksmrg is a program for merging data from two or more uniform
CK segments (same ID, base frame and type) provided in a single
CK file

•  cksmrg is used for eliminating gaps between segments (that
cannot be removed by ckspanit) and removing duplicate data
points contained in different segments

•  cksmrg is a command line program with the following usage
cksmrg -k|-kernels <meta kernel name|kernel file names>
 -i|-input <input ck file name>
 -o|-output <output ck file name>
 -s|-segid <output ck segment id string>
 -f|-fileid <output ck file id string>
 -b|-body <body id|name>
 -r|-reference <reference id|name>
 -a|-av <drop|keep|make|makeavrg>
 -t|-tolerance <tolerance (number units)>
 [-c|-correction <time delta|cor. table file>]

CAUTION: cksmrg should not be used to merge CKs from different
sources, nor should it be used to merge overlapping predict CKs

CKSMRG

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 24

Terminal Window
$ ckbrief m01.bc naif0007.tls ORB1_SCLKSCET.00078.tsc -utc -rel
. . .

Object: -53000

 Interval Begin UTC Interval End UTC AV Relative to FRAME

 ------------------------ ------------------------ --- -----------------

 2004-APR-20 00:00:03.622 2004-APR-20 23:59:56.288 Y MARSIAU

 2004-APR-21 00:00:02.288 2004-APR-21 23:59:59.455 Y MARSIAU

$ cksmrg -k naif0007.tls ORB1_SCLKSCET.00078.tsc -i m01.bc -o m01s.bc -s 'CKSMRGed'
-f 'CKSMRGed' -b -53000 -r 'MARSIAU' -a keep -t 60 seconds
. . .

(cksmrg displays quite a lot of diagnostics and progress information)

. . .

$ ckbrief m01s.bc naif0007.tls ORB1_SCLKSCET.00078.tsc -utc -rel
. . .

Object: -53000

 Interval Begin UTC Interval End UTC AV Relative to FRAME

 ------------------------ ------------------------ --- -----------------

 2004-APR-20 00:00:03.622 2004-APR-21 23:59:59.455 Y MARSIAU

CKSMRG Example

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 25

•  makclk is a program for converting a SCLKSCET file to an SCLK kernel
–  SCLKSCET is a time correlation file used by most JPL missions
–  it is an ASCII text file providing piece-wise linear clock correlation function as

an array of triplets consisting of the reference on-board time, the reference
UTC time and the clock rate

–  NAIF found that in many cases it is much easier to write an application to first
make a SCLKSCET file and then convert it to an SCLK kernel using makclk
than to write an application to make an SCLK kernel from “scratch”

•  makclk is an interactive program prompting for a single input - the name
of the setup file

•  The setup file uses KEYWORD=VALUE assignments to specify input files
(SCLKSCET, template SCLK, and LSK), output files (SCLK kernel and
log), and control parameters (spacecraft ID, partition tolerance, time
filtering flag, and rate adjustment flag)

•  makclk User’s Guide provides detailed information about the setup file
parameters and the SCLKSCET file format and contents.

MAKCLK

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 26

Terminal Window
$ more makclk.setup
SCLKSCET_FILE = flc_sclkscet.00007
OLD_SCLK_KERNEL = flc_template.tsc

FILE_NAME = flc_sclkscet.00007.tsc

NAIF_SPACECRAFT_ID = -77

LEAPSECONDS_FILE = naif0009.tls

PARTITION_TOLERANCE = 10

LOG_FILE = flc_sclkscet.00007.log

$ more flc_sclkscet.00007
(... SCLKSCET SFDU header ...)

CCSD3RE00000$$scet$$NJPL3IS00613$$data$$

*____SCLK0_____ ________SCET0________ _DUT__ __SCLKRATE__

 0.000 2000-001T11:58:55.816 64.184 1.000000000
 189345665.000 2006-001T00:00:00.816 64.184 0.000010000

 189345666.000 2006-001T00:00:00.817 65.184 1.000000000

 268620868.000 2008-188T12:53:23.211 65.184 0.999998631

 276588129.000 2008-280T18:00:53.314 65.184 0.999999788

 281552200.000 2008-338T04:55:23.270 65.184 1.000000029

 284040077.000 2009-001T00:00:00.341 65.184 0.000010000
 284040078.000 2009-001T00:00:00.342 66.184 1.000000029

 287261113.000 2009-038T06:43:55.535 66.184 1.000000131

 291848718.000 2009-091T09:04:01.136 66.184 1.000000166

CCSD3RE00000$$data$$CCSD3RE00000$$sclk$$

MAKCLK Example

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 27

Terminal Window
$ more flc_template.tsc
KPL/SCLK
 \begindata

 SCLK_KERNEL_ID = (@2009-04-07/12:00)

 SCLK_DATA_TYPE_77 = (1)

 SCLK01_TIME_SYSTEM_77 = (2)

 SCLK01_N_FIELDS_77 = (2)

 SCLK01_MODULI_77 = (4294967296 256)
 SCLK01_OFFSETS_77 = (0 0)

 SCLK01_OUTPUT_DELIM_77 = (1)

 SCLK_PARTITION_START_77 = (0.0000000000000E+00)

 SCLK_PARTITION_END_77 = (1.0995116277750E+12)

 SCLK01_COEFFICIENTS_77 = (0.E+00 0.E+00 1.E+00)

 \begintext

$ makclk
.....

 Enter the name of the command file

> flc_sclkscet.00007.setup

flc_sclkscet.00007.tsc created.

$

MAKCLK Example (continued)

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 28

•  orbnum is a program for generating a SPICE orbit number file containing
orbit start/stop times and orbit numbers along with some additional
derived quantities (orbital elements and coordinates of sub-spacecraft
and sub-solar points)

–  The orbit number increment can be specified as occuring at one of these events:
periapsis, apoapsis, ascending equatorial node crossing, or descending equatorial node
crossing

•  orbnum is a command line program with the following usage
orbnum -pref pref_file -num init_orbit -file orbnum_file

–  “pref_file” is a preferences file using text kernel syntax, specifying setup parameters
along with the kernels containing data to be used to search for orbit start and stop events
-- spacecraft trajectory SPKs, center body PCK, spacecraft SCLK, etc.

–  “init_orbit” is the number to be assigned to the first orbit determined using the kernels
provided; subsequent orbits are assigned by incrementing “init_orbit” by 1

•  If any of the command line arguments and some of the setup file
parameters have not been provided, the program will prompt for them

•  The program will also prompt for additional information such as the time
span within which the search for orbit events is to be performed

ORBNUM

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 29

Terminal Window
$ more mex_orbnum.setup
\begindata
TARGET = -41

OBSERVER = 499

EVENT_DETECTION_FRAME = 'MARSIAU’

EVENT_DETECTION_KEY = 'PERI’

ELEMENTS_INERTIAL_FRAME = 'MARSIAU'

ABERRATION_CORRECTION = 'NONE'
ORBIT_PARAMS = ('Sub Sol Lon', 'Sub Sol Lat', ..)

TEXT_KERNELS = ('de-245-masses.tpc’, ’NAIF0007.TLS', 'mex_030722_step.tsc’, ..)

BIN_KERNELS = ('ORMF_PSTPIX_DB_00001.bsp', ’DE405S.BSP’)

SAFETY_MARGIN = 0.5

\begintext

$ orbnum -pref mex_orbnum.setup -num 1 -file mex_orbnum.orb
....Loading Kernels

Start UTC (RET for default = 2004 JAN 13 15:54:19.8):<RETURN>
End UTC (RET for default = 2004 AUG 05 02:10:24.8):<RETURN>

Working, please wait.

Program Finished!

ORBNUM Example

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 30

•  optiks is a utility program that generates information about
instrument fields of view (FOV) from parameters present in IK and
FK files

–  FOVs must be defined using the keywords required by the GETFOV routine

•  optiks is a command line program used in one of two ways
optiks [options]... kernel ...

optiks [options]... meta-kernel ...

•  optiks uses a set of SPICE kernels specified on the command line;
one or more of these kernels may be a meta-kernel

•  The output data are organized in two tables
–  The first table lists the angular extents (size) of circular, elliptical, and

rectangular FOVs. Using command line options “-units” and “-half” the user can
select the unit of measure for the angular measurements, and whether half or full
FOV angular extents are listed.

–  The second table contains FOV boresights in a user specified frame at a
particular epoch, specified using the “-epoch” option

OPTIKS

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 31

Terminal Window
$ optiks -frame CASSINI_SC_COORD cas_iss_v09.ti cas_v37.tf naif0007.tls
cas00084.tsc
. . .

Kernels Loaded:

. . .

FOV full-angular extents computed in RADIANS

Field of View Shape Length Width

------------- ----- ------ -----

CASSINI_ISS_NAC RECTANGULAR +0.006108652382 +0.006108652382

CASSINI_ISS_NAC_RAD CIRCULAR +3.141592653590 +3.141592653590

CASSINI_ISS_WAC RECTANGULAR +0.060737457969 +0.060737457969

CASSINI_ISS_WAC_RAD CIRCULAR +3.141592653590 +3.141592653590

FOV boresights computed at epoch 2001-JAN-01 12:00

FOV boresights computed in frame CASSINI_SC_COORD

Field of View Boresight Vector

------------- ----------------

CASSINI_ISS_NAC (+0.000575958621, -0.999999819520, -0.000170972424)

CASSINI_ISS_NAC_RAD (+1.000000000000, -0.000000000000, +0.000000000000)

CASSINI_ISS_WAC (+0.001218344236, -0.999999225446, +0.000254451360)

CASSINI_ISS_WAC_RAD (+1.000000000000, -0.000000000000, +0.000000000000)

OPTIKS Example

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 32

•  archtype is a program that displays the file architecture and type
of a SPICE kernel; it is useful for scripting applications

–  To identify the architecture and type archtype uses the same mechanism as
the FURNSH routine

•  archtype has a simple command line interface and requires only
one argument -- the name of a kernel file:
archtype kernel_name

•  Archtype prints architecture and type to standard output as two
space delimited acronyms

–  Architecture can be:
»  ‘DAF’ or ‘DAS’ for binary kernels
»  ‘KPL’ for text kernels

–  Type can be ‘SPK’, ‘PCK’, ‘IK’, ‘CK’, ‘EK’, ‘LSK’, ‘FK’

•  If architecture and/or type cannot be determined, the program
displays ‘UNK’

•  In order for text kernels to be recognized, the first few characters
of the file must contain ‘KPL/<type>’ (i.e. ‘KPL/IK’, ‘KPL/FK’, etc.)

ARCHTYPE

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 33

Terminal Window
$ archtype 020514_SE_SAT105.bsp
DAF SPK

$ archtype 04135_04171pc_psiv2.bc
DAF CK

$ archtype cas00084.tsc
KPL SCLK

$ archtype cas_v37.tf
KPL FK

$ archtype cpck05Mar2004.tpc
KPL PCK

$ archtype naif0008.tls
KPL LSK

$ archtype .cshrc
UNK UNK

ARCHTYPE Examples

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 34

•  bff is a program that displays the binary file format of one or a few
SPICE kernels

•  bff has a simple command line interface requiring kernel names
to be listed on the command line:
bff kernel_name [kernel_name ...]

•  bff prints the binary file format string (‘BIG-IEEE’ or ‘LTL-IEEE’) to
standard output

–  when run on a single kernel, it prints only the format string
–  when run on more than one kernel, it prints the format string followed by the

file name on a separate line for each file

•  If an input file is not a binary kernel, the program displays the
format string ‘N/A’

•  If the binary file format cannot be determined (for DAS files
produced by applications linked to SPICE Toolkit N0051, April
2000 or earlier), the program displays the format string ‘UNK’

BFF

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 35

Terminal Window
$ bff mer2_surf_rover.bsp
BIG-IEEE

$ bff ./*.bc ./*.bsp ./*.tf ./*.xsp
BIG-IEEE ./MRO_PHX_EDL_07260_PASS1_sc_20070917181502.bc

LTL-IEEE ./070416BP_IRRE_00256_14363.bsp

LTL-IEEE ./mars_north.bsp

BIG-IEEE ./mer2_surf_rover.bsp

LTL-IEEE ./sb406-20pb.bsp

LTL-IEEE ./zero_offset.bsp

N/A ./vo.tf

N/A ./mgn06127.xsp

$

BFF Examples

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 36

•  bingo is a program that converts:
–  binary SPICE kernels between IEEE and PC binary formats
–  text format SPICE kernels between DOS and UNIX text formats

•  bingo has a simple command line interface:
bingo [option] input_kernel output_kernel

–  “option” is a flag specifying the conversion direction: ‘-ieee2pc’ or ‘-pc2ieee’ for binary
kernels and ‘-unix2dos’ or ‘-dos2unix’ for text format kernels

–  “input_kernel” is the input kernel file name
–  “output_kernel” is the output kernel file name. If the output file exists, the program

overwrites it.

•  The conversion direction flag does not need to be specified for
DAF-based binary file conversions (SPK, CK, binary PCK) and
post-N0051 DAS-based binary file conversions (EK, DBK, DSK)

–  The program automatically determines the input file format and performs conversion to
the other format

•  The conversion flag must be specified for pre-N0051 DAS-based
binary file conversions, and for text file conversions

BINGO

Navigation and Ancillary Information Facility

N IF

Non-Toolkit Applications 37

Terminal Window
DAF-based binary kernel conversions:

$ bingo de405s_ieee.bsp de405s_pc.bsp

$ bingo de405s_pc.bsp de405s_ieee.bsp

Modern DAS-based binary kernel conversions:

$ bingo 10A_ieee.bdb 10A_pc.bdb

$ bingo 10A_pc.bdb 10A_ieee.bdb

Text kernel conversions:

$ bingo -unix2dos naif0008_unix.tls naif0008_dos.tls

$ bingo -dos2unix naif0008_dos.tls naif0008_unix.tls

BINGO Examples

Navigation and Ancillary Information Facility

N IF

SPICE Geometry Finder (GF)
Subsystem

Searching for times when specified
 geometric events occur

March 2010

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 2

•  GF Subsystem Overview
•  GF Search Examples
•  SPICE Windows
•  Geometric Search Types and

Constraints
•  Development Plans
•  Backup

Topics

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 3

GF Subsystem Overview

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 4

•  The SPICE Geometry Finder (GF) subsystem finds
times when specified geometric events occur.

–  A “geometric event” is an occurrence of a given geometric quantity
satisfying a specified condition. For example:

»  Mars Express distance from Mars is at a local minimum
(periapse)

»  Elevation of the Cassini orbiter is above a given threshold angle
as seen from DSS-14

»  Titan is completely occulted by Saturn
»  The Mars Reconnaissance Orbiter is in the penumbral shadow of

Mars
»  The Saturn phase angle as seen by the Cassini orbiter is 60

degrees
–  Each GF search is conducted over a user-specified time window.

»  A “time window” is a union of time intervals.
–  The result of a GF search is the time window over which the

specified condition is met.

Purpose

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 5

•  The current version of the GF subsystem provides the
following high-level API routines; these search for
events involving the respective geometric quantities
listed below:

–  GFDIST: Observer-target distance
–  GFOCLT: Occultations or transits
–  GFPOS: Position vector coordinates
–  GFRFOV: Ray containment in a specified instrument’s field of view

(FOV)
–  GFRR: Observer-target range rate
–  GFSEP: Target body angular separation
–  GFSNTC: Ray-body surface intercept coordinates
–  GFSUBC: Sub-observer point coordinates
–  GFTFOV: Target body appearances in a specified instrument’s field

of view (FOV)
–  GFUDS: User-defined scalar quantity (Fortran and C only)

GF High-Level API Routines

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 6

•  The current Fortran and C SPICE Toolkits provide
mid-level API routines that provide additional
capabilities:

–  Progress reporting, which can be customized by the user
–  Interrupt handling which can be customized by the user

»  In Fortran, no default interrupt detection is available
–  User-customizable search step and refinement routines
–  User-adjustable root finding convergence tolerance

•  The GF mid-level search API routines are:
–  GFEVNT: All scalar numeric quantity searches
–  GFFOVE: Target or ray in FOV searches
–  GFOCCE: Occultation searches

GF Mid-Level API Routines

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 7

GF Documentation

•  The GF module headers and API reference guides contain
complete example programs for each GF API routine.

–  These may be the best source of documentation for quickly
getting started using the GF routines.

•  The GF Required Reading document gf.req contains
–  Extensive, moderately advanced example programs
–  A set of “computational recipes” that outline how to use the GF

subsystem to solve various popular search problems
–  Discussions of mid-level GF APIs available only in the Fortran and C

Toolkits
–  Discussion of technical details of the GF subsystem
–  Discussion of anticipated problems that may arise while using the GF

subsystem
•  Documentation on SPICE windows:

–  The WINDOWS Required Reading windows.req
–  The Other Functions tutorial
–  API documentation for SPICE window routines

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 8

GF Search Examples

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 9

Distance Local Extremum Search

Find the time of apoapse of the Mars Express Orbiter (MEX)

Mars

MEX

Mars-MEX position
vector

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 10

Distance Inequality Search

Find the time period when the Mars Reconnaissance Orbiter
(MRO) is within 500km of the Opportunity rover.

Mars

MRO

. ..

Opportunity

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 11

Range Rate Extremum Search

Find the times when the range rate of a lunar reflector, as seen
by an Earth station, attains an absolute extremum.

Moon

Earth

Station

Reflector

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 12

Angular Separation Inequality Search -1

Find the time period when the angular separation of the Mars-to
Mars Reconnaissance Orbiter (MRO) and Mars-to-Opportunity
Rover position vectors is less than 3 degrees. Both targets are
modeled as points.

Mars

MRO

Rover location

Angular separation of position vectors

. ..

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 13

Angular Separation Inequality Search -2

Find the time period when the angular separation of the figures
of the Moon and Sun, as seen from the Earth, is less than 1
degree. Both targets are modeled as spheres.

Moon

Angular separation of
figures

Earth

Sun

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 14

Occultation/Transit Search

Find the ingress and egress times of an occultation of Phobos by
Mars, as seen from Earth. Both targets are modeled as triaxial
ellipsoids.

Mars

Phobos in
partial transit

Earth

Phobos in
partial

occultation

Phobos in
annular
transit

Phobos in full
occultation

Point target
in transit

Point target
in occultation

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 15

Target in FOV Search

Find the time period when Titan appears in the FOV of the
Cassini ISS Narrow Angle Camera (NAC). The target is an
ephemeris object; the target shape is modeled as an ellipsoid.
(Point targets are also supported.)

Titan

Cassini
orbiter

Cassini ISS NAC FOV

The FOV shape may
be any of:
Rectangle
Circle

Ellipse
Polygon

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 16

Ray in FOV Search

Find the time period when the star having Hipparcos catalog
number 6000 appears in the FOV of the Cassini ISS Narrow
Angle Camera (NAC). The target direction is modeled as a ray,
optionally corrected for stellar aberration.

Cassini
orbiter

Cassini ISS NAC FOV

The FOV shape may
be any of:
Rectangle
Circle

Ellipse
Polygon

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 17

 Position Coordinate Local Extremum Search

Planetocentric
Latitude 23.4 deg.

Path of sub-solar point
on unit sphere (in red)

J2000 Z

J2000 Y
J2000 X

Earth-Sun direction
Unit sphere

Find the time(s) at which the planetocentric latitude
of the Earth-Sun vector, expressed in the J2000
frame, is at a local maximum.

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 18

Position Coordinate Equality Search

Find the time(s) at which the Z component of the
Earth-Sun vector, expressed in the J2000 frame, is 0.

Path of sub-solar point
on unit sphere (in red)

J2000 Z

J2000 X

J2000 Y

Earth-Sun direction at epoch
of J2000 equator crossing

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 19

Position Coordinate Inequality Search -1

Find the time period when the elevation of the DSS-13 to
Mars Reconnaissance Orbiter (MRO) spacecraft vector,
expressed in the DSS-13 topocentric frame, is greater
than 6 degrees.

DSS-13_TOPO Z

DSS-13_TOPO Y

DSS-13_TOPO X

Direction to MRO

6 deg. elevation

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 20

Position Coordinate Inequality Search -2

MRO s/c frame +Y axis

MRO s/c frame +Z axis

= MRO s/c frame +X axis

Mars

MRO

Colatitude of MRO-Mars
position vector in MRO s/c

frame

Find the time period when the Mars Reconnaissance Orbiter’s
(MRO) off-nadir angle exceeds 5 degrees. Solution requires CK-
based “MRO spacecraft frame.”

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 21

Sub-Observer Point Coordinate Equality Search

Find the time at which the planetocentric latitude of
the sub-spacecraft point, using the “near point”
definition, is 25 degrees.

Planetocentric
Latitude 25 deg.

Path of sub-spacecraft
point (in red)

Body-fixed Z

Body-fixed Y

Body-fixed X

Spacecraft

Outward surface
normal direction at
sub-spacecraft point

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 22

Surface Intercept Coordinate Equality Search

Find the time at which the planetographic longitude
of a given camera boresight surface intercept is -45
degrees.

Planetographic
Longitude -45 deg.

Path of boresight
intercept (in red) Camera boresight

direction at epoch of
meridian crossing

Body-fixed Z

Body-fixed Y

Body-fixed X

Spacecraft

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 23

Surface Intercept “Box” Search

Find the time period when the planetographic longitude of a given camera
boresight surface intercept is between -70 and -45 degrees, and the intercept
latitude is between 0 and 30 degrees.
The solution requires four (cascading) inequality searches.

Planetographic Longitude
-45 to -70 deg.

Path of boresight
intercept (in red)

Spacecraft

Camera boresight
direction Planetographic Latitude

0 to 30 deg.

Body-fixed Z

Body-fixed Y

Body-fixed X

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 24

Surface Intercept Coordinate Equality Search

Find the time at which the ring plane intercept of the Cassini to DSS-13
vector, corrected for transmission light time (stellar aberration
correction is unnecessary), has radius 300000km.
The solution requires a dynamic frame for which one axis points along
the radiation path.

DSS-13

Path of radiation
intercept (in red)

Cassini to DSS-13
radiation direction

IAU_SATURN Z

IAU_SATURN Y

IAU_SATURN X

Cassini orbiter

Earth

“Ring plane” ellipsoid: 1cm
thick, radius 600000 km,

centered at Saturn’s center

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 25

User-Defined Quantity Extremum Search

Find the time period when the angular separation of the
geometric and apparent positions of Titan as seen from the
Cassini orbiter attains an absolute maximum.

Geometric
position of

Titan
Angular separation of

position vectors

Apparent position of
Titan (computed using

LT+S correction)

Cassini orbiter

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 26

SPICE Windows

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 27

•  The GF system uses the SPICE “window” data structure to
represent time periods.

–  A SPICE window contains zero or more disjoint intervals arranged in
ascending order. The endpoints of the intervals are double precision
numbers.

•  The time period over which a GF search is conducted is
called the “confinement window.”

–  Confinement windows often consist of a single time interval, but may
contain multiple intervals.

•  The time period representing the result of a GF search is
called the “result window.”

–  Result windows often consist of multiple intervals.
–  Result windows can contain “singleton” intervals: intervals for which the

left and right endpoints coincide.
»  Results of equality, local extremum, and unadjusted absolute

extremum searches will consist of zero or more singleton intervals.

SPICE Windows -1

Time [t0, t1] [t2, t3] [t4,t5]

Time

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 28

•  SPICE windows support a form of set arithmetic:
–  SPICE provides routines to compute unions, intersections, and

differences of windows, plus numerous additional window functions.
•  An important, non-arithmetic SPICE window operation is

contraction:
–  Shrinking each window interval by increasing the left endpoint and

decreasing the right endpoint

•  The result window from one search can be used as the
confinement window for another.

–  This is often a convenient and efficient way of performing
searches for times when multiple constraints are met.

–  This technique can be used to accelerate searches in cases
where a fast search can be performed to produce a small
confinement window for a second, slower search.

»  See the example program “CASCADE” in gf.req.

SPICE Windows -2

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 29

Cascading Search -1

Example: accelerate a solar occultation search.
First search for times when the angular separation of the figures of the Sun and
Moon, as seen from DSS-14, is less than 3 degrees.
Use the result window of the angular separation search as the confinement
window of an occultation search.
Because the angular separation search is much faster than the occultation
search (on the original confinement window), the total search time is greatly
reduced.

Original confinement window

Result of occultation search

Result of angular separation search: second confinement window

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 30

Cascading Search -2

Example: find times of visibility of MRO from DSS-14.
First find times when the elevation of MRO in the DSS-14_TOPO frame is above 6
degrees.
Use the result window of the elevation search as the confinement window of a
Mars occultation search.
Subtract the result of the occultation search from that of the elevation search.

Original confinement window

Result of occultation search

Result of elevation search: second confinement window

Result of window subtraction: visibility window

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 31

Kernel Data Availability Window

Spacecraft ephemeris availability window “C”

Original confinement window “A”

Reconstructed pointing availability window “B”

Data availability window “A1” = B intersect C

Confinement window “A2” = A intersect A1

Given an initial confinement window, restrict that window to times when required
CK and SPK data are available.
Use CKCOV and SPKCOV to find CK and SPK availability windows. Contract CK
window slightly to avoid round-off problems. Contract SPK window by a few
seconds if discrete differentiation is used by search algorithms (e.g. for
acceleration or for “is function decreasing?” tests).

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 32

CK Data Availability: Divide and Conquer

Predicted pointing availability window “C”

Union of search results: final result window

Result of search over A1

Original confinement window “A”

Reconstructed pointing availability window “B”

Confinement window “A1” = A intersect B

Confinement window “A2” = (A intersect C) minus A1

Result of search over A2

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 33

Geometric Search Types and Constraints

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 34

•  The GF subsystem deals with two types of
geometric quantities:
– “Binary state functions”: functions of time that can

be “true” or “false.” Examples:
» Occultation state, such as: “Titan is fully occulted by

Saturn at time t”
»  Visibility state: A target body or object modeled as a ray

(for example, a star) is visible in a specified instrument
FOV at time t

– Scalar numeric functions of time, for example
» Observer-target distance
»  Latitude or longitude of an observer-target vector, sub-

spacecraft point, or ray-surface intercept point
» Angular separation of two target bodies as seen by an

observer

Types of Geometric Quantities

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 35

•  Binary state searches find times when a
specified binary state function takes the value
“true.”

–  SPICE window arithmetic can be used to find the times when
a binary state function is “false.”

Binary State Searches

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 36

•  Numeric searches find times when a scalar numeric
quantity satisfies a mathematical constraint. The
supported constraints are:

–  The function
»  equals a specified reference value.
»  is less than a specified reference value.
»  is greater than a specified reference value.
»  is at a local maximum.
»  is at a local minimum.
»  is at an absolute maximum.
»  is at an absolute minimum.
»  is at an “adjusted” absolute maximum: the function is within a

given tolerance of the absolute maximum.
»  is at an “adjusted” absolute minimum: the function is within a

given tolerance of the absolute minimum.
•  Examples for a Distance search follow.

Numeric Searches

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 37

Solve Distance Equality

Time

D = f(t)

D0

Find time window during which Distance = D0
GF API input arguments defining constraint:
 RELATE = ‘=‘!

 ADJUST = 0.D0!

 REFVAL = D0!

[] Confinement
Window

D
is

ta
nc

e

Result
Window

[t0, t0] [t1, t1] [t2, t2] [t3, t3]

Time

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 38

Solve Distance < Inequality

Time

D = f(t)

D0

Find time window during which Distance < D0
GF API input arguments defining constraint:
 RELATE = ‘<‘!

 ADJUST = 0.D0!

 REFVAL = D0!

[] Confinement
Window

D
is

ta
nc

e

Result
Window

[t0, t1] [t2, t3]

Time

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 39

Solve Distance > Inequality

Time

D = f(t)

D0

Find time window during which Distance > D0
GF API input arguments defining constraint:
 RELATE = ‘>‘!

 ADJUST = 0.D0 !

 REFVAL = D0!

[] Confinement
Window

D
is

ta
nc

e

Result
Window

[t0, t1] [t2, t3] [t4,t5]

Time

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 40

Find Local Minima

[t0,t0]

Time

D = f(t)

Find time window during which Distance is a local minimum.
GF API input arguments defining constraint:

 RELATE = ‘LOCMIN’!
 ADJUST = 0.D0 !

 REFVAL = 0.D0

[] Confinement
Window

D
is

ta
nc

e

Result
Window

(REFVAL is not used in this case
but should be initialized for portability)

[t1,t1]

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 41

Find Local Maxima

[t0,t0]

Time

D = f(t)

Find time window during which Distance is a local maximum.
GF API input arguments defining constraint:

 RELATE = ‘LOCMAX’!
 ADJUST = 0.D0 !

 REFVAL = 0.D0

[] Confinement
Window

D
is

ta
nc

e

Result
Window

(REFVAL is not used in this case
but should be initialized for portability)

Not
Solutions

Local extrema are
always in the
interior of the
confinement
window,
never on the
boundary

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 42

Find the time at which Distance is an absolute minimum.
GF API input arguments defining constraint:
 RELATE = ‘ABSMIN’!

 ADJUST = 0.D0!

 REFVAL = 0.D0!

Find Absolute Minimum

[t0,t0]

Time

D = f(t)
DMIN

[] Confinement
Window

D
is

ta
nc

e

Result
Window

(REFVAL is not used in this case
but should be initialized for portability)

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 43

Find Absolute Maximum

[t0,t0]

Time

D = f(t)

DMAX

Find the time at which Distance is an absolute maximum.
GF API input arguments defining constraint:

 RELATE = ‘ABSMAX’!
 ADJUST = 0.D0!

 REFVAL = 0.D0!

[] Confinement
Window

D
is

ta
nc

e

Result
Window

(REFVAL is not used in this case
but should be initialized for portability)

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 44

Find Adjusted Absolute Minimum

[t0, t1]

Time

D = f(t)

[t2 , t3]

DMIN

DADJ
ADJ0

Find time window during which Distance < DADJ = DMIN + ADJ0
GF API input arguments defining constraint:
 RELATE = ‘ABSMIN’
 ADJUST = ADJ0 (ADJ0 > 0)
 REFVAL = 0.D0 (REFVAL is not used in this case but should be initialized for portability)

[] Confinement
Window

D
is

ta
nc

e

Result
Window

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 45

Find Adjusted Absolute Maximum

[t0, t1]

Time

D = f(t)

[t2, t3]

DMAX

DADJ
ADJ0

Find time window during which Distance > DADJ = DMAX - ADJ0
GF API input arguments defining constraint:

 RELATE = ‘ABSMAX’
 ADJUST = ADJ0 (ADJ0 > 0)
 REFVAL = 0.D0 (REFVAL is not used in this case but should be initialized for portability)

[] Confinement
Window

D
is

ta
nc

e

Result
Window

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 46

Plans for further GF Development

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 47

•  NAIF plans to add the following GF capabilities in
future SPICE Toolkit releases:

–  Currently being prepared for release in N0064 SPICE Toolkit:
»  Range rate search
»  User-defined scalar quantity search

–  Planned for release in later SPICE Toolkits:
»  Eclipse search for extended bodies
»  Illumination angle search
»  Body-centered phase angle search
»  User-defined binary state quantity search

Plans

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 48

Backup Topics

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 49

•  Root Finding
•  Workspace
•  API Example: GFDIST

Backup Topics

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 50

Root Finding

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 51

•  To produce a final or intermediate result window, the GF
subsystem must accurately locate the endpoints of the window’s
intervals. These endpoints are called “roots.”

–  The green regions below (rectangles and vertical line segment) represent
intervals of a window.

–  Roots are indicated by the red, vertical arrows.

•  Elsewhere, “root finding” often refers to solving f(x) = 0.
•  In the GF setting, roots are boundaries of time intervals over which

a specified constraint is met.
–  Roots can be times when a binary state function changes values.

•  Most popular root finding methods, e.g. Newton, secant, bisection,
require the user to first “bracket” a root: that is, determine two
abscissa values such that a single root is located between those
values.

•  The GF subsystem solves a more difficult problem: it performs a
global search for roots. That is, given correct inputs, it finds all
roots within a user-specified confinement window.

–  The user is not asked to bracket the roots.

Root Finding

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 52

•  The GF subsystem asks the user to specify a time
step (often called the“step size”) that will be used
to bracket roots.

–  For binary state searches, the step size is used to
bracket the endpoints of the intervals of the result
window.

»  The step size must be shorter than any event of
interest, and shorter than any interval between
events that are to be distinguished.

–  For numeric searches, the step size is used to bracket
the endpoints of the intervals of the window on which
the geometric quantity is monotonically decreasing.

»  The step size must be shorter than any interval on
which the function is monotonically increasing or
decreasing.

–  In both cases, the step size must be large enough so the
search completes in a reasonable amount of time.

Step Size Selection

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 53

Monotone Windows -1

Time

D = f(t)

Example: monotone windows for a distance function
Note that:

 Extrema occur only at window interval boundaries.
 Each window interval contains at most one root of an equality condition.
 Within each window interval, the solution of an inequality is a single (possibly empty) interval.

[] Confinement
Window

D
is

ta
nc

e

[] [] “f(t) Decreasing” Window

“f(t) Increasing” Window [] []

D0

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 54

Monotone Windows-2

Time

D = f(t)

The shortest interval on which the function is monotonically
increasing or decreasing may be LONGER than the event of interest.
For example, consider the search for times when D < D0. The result
window consists of the interval [t0, t1] shown below.

[] Confinement
Window

D
is

ta
nc

e

[] “f(t) Decreasing” Window

[]

D0

[t0, t1]

“f(t) Increasing” Window

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 55

•  In the diagram below, the green boxes denote intervals of a
window.

•  The start of the first interval is bracketed by the first and second
times; the end of the first interval is bracketed by the third and
fourth times. The start of the second interval is bracketed by the
fourth and fifth times.

•  The step size is a critical determinant of the completeness
of the solution:

–  If the step size were equal to 3*delta, the first interval would not be
seen.

–  If the step size were equal to 2*delta, the first and second intervals
would not be seen as distinct.

Bracketing Interval Endpoints

step size
“delta”

window interval 1

t1 t4 t3 t2

window interval 2

t5

…

t6 t7
step = 3*delta

step = 2*delta

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 56

•  Once an interval endpoint is bracketed, the GF subsystem
performs a refinement search to locate the endpoint
precisely (shown by the red arrows).

–  The default tolerance for convergence is 1.e-6 second.
•  The refinement search is usually relatively fast compared to

the interval bracketing search.

Solving for Interval Endpoints

step size
“delta”

window interval 1

t1 t4 t3 t2

window interval 2

t5 t6 t7

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 57

•  For binary state searches, the window whose endpoints are
found IS the result window.

–  The search is done once the endpoint refinement step has been
completed for each interval over which the state is true.

•  For numeric searches, once the monotone windows have
been found, the result window still must be computed:

–  Local and absolute extrema can be found without further
searching.

–  Equalities, inequalities, and adjusted absolute extrema require
a second search pass in which each monotone interval is
examined.

»  These searches don’t require sequential stepping and are
usually relatively fast compared to the interval bracketing search.

•  Since the roots are found by a search process, they are
subject to approximation errors.

–  NOTE: The geometric condition may not be satisfied at or near the
endpoints of the result window’s intervals.

•  Usually data errors are large enough so that the accuracy of
the result is poorer than its precision.

The Result Window

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 58

Workspace

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 59

•  GF numeric scalar searches can require relatively
large amounts of memory to store intermediate
results.

–  For Fortran Toolkits, user applications must declare a buffer of
workspace windows.

–  For C, IDL, and MATLAB Toolkits, users need only specify the
maximum number of workspace window intervals that are needed;
these Toolkits will dynamically allocate the amount of memory
required by the specified workspace window interval count.

•  In most cases, users need not accurately compute the
required amount of workspace; it’s usually safe to
specify a number much larger than the amount
actually needed.

–  For example, if the result window is anticipated to contain 100
intervals, specifying a workspace window interval count of 10000 will
very likely succeed.

–  See the GF Required Reading and the API documentation for details.

Specifying Workspace Dimensions

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 60

API Example: GFDIST

Solve for Distance Constraints

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 61

•  GFDIST finds times when a specified constraint on the
distance between two ephemeris objects is met.

–  The distance is the norm of a position vector
–  The position vector is defined using a subset of the inputs accepted

by SPKPOS:
»  Target
»  Observer
»  Aberration Correction

–  The constraint is a numeric relation: equality or inequality relative to
a reference value, or attainment of a local or absolute extremum.

•  The search is conducted within a specified
confinement window.

•  The search produces a result window which indicates
the time period, within the confinement window, over
which the constraint is met.

API Example: GFDIST

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 62

•  Due to use of SPICE windows, some of the GFDIST
set-up code differs substantially across languages.

–  We’ll show how to perform the set-up unique to each language.
»  Note: there’s no set-up to do in the MATLAB case; hence there’s

no MATLAB-specific set-up slide.
–  The rest of the code is sufficiently parallel across languages to

justify showing only the Fortran code.
–  Note however that the treatment of workspace differs across

languages: only in Fortran does the user application have to pass
the workspace array to the GF API routine.

Language Differences

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 63

Declare confinement window, result window, and workspace array
 INCLUDE ‘gf.inc’
 …
 INTEGER LBCELL
 PARAMETER (LBCELL = -5)
 INTEGER MAXWIN
 PARAMETER (MAXWIN = 200000)
 DOUBLE PRECISION CNFINE (LBCELL : MAXWIN)
 DOUBLE PRECISION RESULT (LBCELL : MAXWIN)
 DOUBLE PRECISION WORK (LBCELL : MAXWIN, NWDIST)

Initialize confinement and result windows. Workspace need not be initialized
here.
 CALL SSIZED (MAXWIN, CNFINE)
 CALL SSIZED (MAXWIN, RESULT)

Initialization…typically done once per program execution

Fortran Set-up

Choose a “large” value for window size (called
“MAXWIN” here), if you’re not sure what size is
required. The actual requirement depends on
underlying geometry, confinement window, and search
step size.

Include GF parameters
such as NWDIST

Fortran constant and variable declarations

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 64

Declare confinement and result windows, as well as size of workspace.

 #include “SpiceUsr.h”
 …

 #define NINTVL 100000
 #define MAXWIN (2 * NINTVL)

 SPICEDOUBLE_CELL (cnfine, MAXWIN);
 SPICEDOUBLE_CELL (result, MAXWIN);

C Set-up

Choose a “large” value for window size (called “MAXWIN”
here), if you’re not sure what size is required. Actual
requirement depends on underlying geometry, confinement
window, and search step size. The window size must be twice
the maximum number of intervals the window is meant to hold.

Include CSPICE macro, typedef,
and prototype declarations

C constant and variable declarations

These macro calls declare CSPICE
window structures and set their
maximum sizes.

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 65

Icy windows are created dynamically:
 cnfine = cspice_celld (MAXWIN)

The output result window is created by CSPICE_GFDIST; it
does not require a constructor call by the user application.

IDL Set-up

Choose a “large” value for window size (called
“MAXWIN” here), if you’re not sure what size is
required. Actual requirement depends on underlying
geometry, confinement window, and search step size.
The window size must be twice the maximum number
of intervals the window is meant to hold.

IDL window creation

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 66

Tell your program which SPICE files to use (“loading” files)
CALL FURNSH ('spk_file_name')
CALL FURNSH ('leapseconds_file_name')

The next step is to insert times into the confinement window. The
simplest confinement window consists of a single time interval.

Convert UTC start and stop times to ephemeris time (TDB), if needed:
CALL STR2ET ('utc_start', tdb_0)
CALL STR2ET ('utc_stop', tdb_1)

Insert start and stop times into the confinement window:
CALL WNINSD (tdb_0, tdb_1, CNFINE)

All Languages: Additional Set-up

Better yet, replace these two calls with a
single call to a “meta-kernel” containing
the names of all kernel files to load.

Initialization…typically done once per program execution

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 67

Choose:
–  Geometric input arguments:

»  Target
»  Observer
»  Aberration correction

–  Constraint arguments:
»  Relation
»  Reference value, if applicable
»  Adjustment value, if applicable

–  Search step size

Then call GFDIST:
 CALL GFDIST (target, ‘correction’, observer, ‘relate’,

 refval, adjust, step, cnfine, mw, nw, work, result)

Execute the Search -1

inputs output Input/output

Search execution…done as many times as necessary during program execution

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 68

Extract intervals from the result window:
 DO I = 1, WNCARD(RESULT)

 [Fetch the endpoints of the Ith interval of the result window.]
 CALL WNFETD(RESULT, I, START, FINISH)
 [use START, FINISH…]
 END DO

•  Note:
–  The result window may be empty.
–  The constraint might not be satisfied at or near the endpoints of any interval of RESULT.

»  Consider using the window contraction routine WNCOND to shrink the intervals of
the result window slightly, so the constraint is met on the entire result window.

»  Caution: DON’T use WNCOND for minimum, maximum, or equality searches---the
result window will disappear! (WNCOND is ok for adjusted absolute extrema search
results, though, since the result intervals are not singletons.)

»  Caution: using WNCOND may not be desirable if the window is an intermediate
result: subsequent, derived results might be made less accurate.

Execute the Search -2

Search execution, continued

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 69

•  TARGET* and OBSERVER*: Character names or NAIF IDs for the
end point and origin of the position vector (Cartesian position and
velocity vectors) whose length is the subject of the search. Below,
we’ll simply call this length “the distance.”

–  The position vector points from observer to target.

•  CORRECTION: Specification of what kind of aberration
correction(s), if any, to apply in computing the distance.

–  Use ‘LT+S’ to use the apparent position of the target as seen by the
observer. ‘LT+S’ invokes light time and stellar aberration corrections.

–  Use ‘NONE’ to use the uncorrected (aka “geometric”) position, as given
by the source SPK file or files.

 See the headers of the subroutines GFDIST and SPKEZR, the document
SPK Required Reading, or the “Fundamental Concepts” tutorial for details.
See the “Reading an SPK” tutorial backup charts for examples of
aberration correction magnitudes.

* Character names work for the target and observer inputs only if built into SPICE or if registered using the
SPICE ID-body name mapping facility. Otherwise use the SPICE numeric ID in quotes, as a character string.

Arguments of GFDIST - 1
INPUTS

Navigation and Ancillary Information Facility

N IF

Geometry Finder Subsystem 70

•  RELATE, REFVAL, ADJUST: parameters specifying a constraint to be met
by the distance.

–  RELATE may be any of ‘=‘, ‘>’, ‘<‘, ‘LOCMAX’, ‘LOCMIN’, ‘ABSMAX’, ‘ABSMIN’
–  If RELATE is an equality or inequality operator, REFVAL is the corresponding

double precision reference value. Units are km.
»  For example, if the constraint is “distance = 4.D5 km,” then RELATE is ‘=‘

and REFVAL is 4.D5.
–  If RELATE specifies an absolute maximum or minimum, ADJUST is the

adjustment value. Units are km.
»  Set ADJUST to 0.D0 for a simple absolute maximum or minimum.
»  Set ADJUST to a positive value ADJ for either DISTANCE > absolute max -

ADJ or DISTANCE < absolute min + ADJ.
•  STEP: search step size, expressed as TDB seconds.
•  CNFINE: the confinement window over which the search will be performed.
•  MW, NW, WORK: the maximum capacity of each workspace window, the

number of workspace windows, and the workspace array.

•  RESULT: the window of times over which the distance constraint is
satisfied.

Arguments of GFDIST - 2
INPUTS

OUTPUTS

Navigation and Ancillary Information Facility

N IF

Summary of Key Points

March 2010

Navigation and Ancillary Information Facility

N IF

Summary of Key Points 2

Which Pieces of SPICE Must I Use?

•  There’s not a simple answer
–  Depends on what task you wish to accomplish
–  Depends on what mission you are working on

•  The next several charts highlight some key points
–  We assume you have already looked at the major SPICE

tutorials, or already have some familiarity with SPICE.
–  We assume you have successfully downloaded and installed

the SPICE Toolkit.

•  Consider printing this tutorial and keeping it near
your workstation

Navigation and Ancillary Information Facility

N IF

Summary of Key Points 3

Reminder of Key Subsystems

•  SPK: Position (and velocity) of things
•  PCK: Size/shape/orientation of target bodies

–  For binary PCKs, only orientation is provided; use a text PCK to obtain
size/shape

•  IK: Instrument field-of-view geometry
•  CK: Orientation of spacecraft or spacecraft structures

that move
•  FK: Definition/specification of non-core reference

frames, including instrument mounting alignments
•  LSK: UTC (SCET) ET time conversions
•  SCLK and LSK: SCLK ET time conversions

Navigation and Ancillary Information Facility

N IF

Summary of Key Points 4

Primary Kernel Interfaces - 1

SPK

PCK

IK

CK

FK

LSK

SCLK

EK/ESQ

SPKEZR, SPKPOS,
SPKCOV, SPKOBJ

SXFORM, PXFORM,
SPKEZR, SPKPOS,
BODVRD

GETFOV, G*POOL

SXFORM, PXFORM
SPKEZR, SPKPOS,
CKCOV, CKOBJ
(CKGPAV, CKGP)

STR2ET, TIMOUT,
SCE2C, SCT2E,
SCE2S, SCS2E

SCS2E, SCE2S
SXFORM, PXFORM,
SPKEZR, SPKPOS

EKFIND, EKG*

Notes: FURNSH is used to load (provide access to) all SPICE kernels.
 API names shown are for FORTRAN versions:
 - use lower case and add an “_c” when using C
 - use lower case and prepend “cspice_” when using Icy (IDL) and Mice (MATLAB)

Which SPICE interface modules are most commonly
called to use data obtained from a given kernel type?

SXFORM, PXFORM,
SPKEZR, SPKPOS

Navigation and Ancillary Information Facility

N IF

Summary of Key Points 5

Primary Kernel Interfaces - 2

Module Name SPK PCK IK CK FK LSK SCLK

SPKEZR, SPKPOS Y M M M M M
SXFORM, PXFORM M M M M M M
CKGP, CKGPAV M Y M M M
GETFOV Y
G*POOL M M
STR2ET, TIMOUT Y
SCS2E, SCE2S Y Y
CHRONOS (time conversion app.) M M M M Y M

Yes = the indicated kernel type is needed
Maybe = the indicated kernel type may be needed

For a given module, which kind(s)
of kernel(s) will or may be needed?

Kernel Type(s) Needed

Navigation and Ancillary Information Facility

N IF

Summary of Key Points 6

Kernel “Coverage” Cautions

•  Your set of kernels must:
–  contain data for all “objects” of interest

»  Sometimes you must include intermediary objects that provide a
connection

–  contain data covering the time span of interest to you
»  Watch out for data gaps within that time span
»  Watch out for the difference of ~66 seconds between ET and UTC

–  contain all the kernel types needed by SPICE to answer your question
»  As the previous charts allude, you may need one or more kernels

that are not obvious
–  be managed (loaded) properly if there are overlapping (competing)

data within the set of files you are using

Navigation and Ancillary Information Facility

N IF

Summary of Key Points 7

What Kernels are Available?

•  It depends on the mission or task you are working on…
•  If you're working with JPL mission data, there are three

categories of kernel data available to you.
–  Mission operations kernels – those used by the flight teams to fly the

mission and prepare the archival science products
–  Archived kernels – those that have been selected from (or made from)

the mission ops kernels, and then are well organized and documented
for the permanent PDS archive

–  Generic kernels – those that are used by many missions and are not
tied to any one mission

»  Note that appropriate generic kernels are usually included in the
PDS SPICE archived kernels data sets mentioned above

•  The situation may be very similar for non-JPL missions, but
this is really up to whatever agency/institution is producing
the kernels.

Navigation and Ancillary Information Facility

N IF

Summary of Key Points 8

How Can I Find Possibly
Useful Toolkit Modules?

•  Review the previous charts
•  Look at the appropriate SPICE tutorial(s)
•  Look at the “Most Used xxx APIs” document …/doc/html/info/

mostused.html
•  Search the permuted index:

–  spicelib_idx for the FORTRAN toolkits …/doc/html/info/spicelib_idx.html
»  This index also correlates entry point names with source code files.

–  cspice_idx for the C toolkits …/doc/html/info/cspice_idx.html

–  icy_idx for the IDL toolkits …/doc/html/info/icy_idx.html

–  mice_idx for the MATLAB toolkits …/doc/html/info/mice_idx.html

•  Read relevant portions of a SPICE “required reading”
reference document (e.g. “spk.req)

–  …/doc/html/req/spk.html for the hyperlinked html version (best)
–  …/doc/spk.req for the plain text version

Navigation and Ancillary Information Facility

N IF

Summary of Key Points 9

How Can I Understand How
To Use Those Modules?

•  The primary user-oriented documentation about each
module is found in the “header” located at the top of each
source code file and in the module’s HTML page in the
API reference guide.

–  (More documentation is found at the additional entry points for
those FORTRAN modules that have multiple entry points.)

•  Reference documentation for major subsystems is found
in like-named “required reading” documents (e.g.
spk.req, ck.req, etc.)

•  The SPICE tutorials contain much helpful information.
•  See “SPICE Documentation Taxonomy” in the tutorials

collection for additional reading suggestions.

Navigation and Ancillary Information Facility

N IF

Summary of Key Points 10

Does NAIF Provide Any Examples?

•  Nearly all module headers contain one or more working
examples

•  “Most Useful SPICELIB Subroutines” has code fragments
…/doc/html/info/mostused.html

•  The “required reading” reference documents often contain
examples …/doc/html/req/index.html

•  Four tutorials offer programming examples
•  Some simple “cookbook” programs are found in the Toolkit

…/src/cookbook/…
•  Make use of the SPICE Programming Lessons available

from the NAIF server
–  ftp://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Lessons/

Navigation and Ancillary Information Facility

N IF

Obtaining SPICE Components
Offered by NAIF

Emphasis on Kernels

March 2010

Navigation and Ancillary Information Facility

N IF

2

Overview

•  Many SPICE products are available from the NAIF
server

–  These are mostly products produced at JPL by NAIF
–  Access is available using the http or ftp protocol

»  Note: starting with “http” leads to “ftp”
–  See the next page for URLs

•  SPICE products made by other organizations are
controlled by those organizations

–  Some may be available from the NAIF server
–  Some may be available at other public servers, or on restricted

servers, or not at all
–  As a general rule, NAIF has no cognizance of these products

Navigation and Ancillary Information Facility

N IF

3

•  NAIF home page
 http://naif.jpl.nasa.gov

•  Here you may access all official SPICE products produced by NAIF
- kernels (generic, mission ops, PDS archived)
- software (Toolkits and individual application programs)
- documents
-  tutorials
-  programming lessons
-  problem solving tips
-  rules about using SPICE
-  links to useful resources

•  SPICE announcements (by NAIF)
 http://naif.jpl.nasa.gov/mailman/listinfo/spice_announce

•  SPICE discussion (by anyone)
 http://naif.jpl.nasa.gov/mailman/listinfo/spice_discussion

NAIF Server HTTP URLs

Navigation and Ancillary Information Facility

N IF

4

Getting SPICE Kernels

•  The remaining charts discuss where to find the
various categories of SPICE kernel files

–  Operational flight project kernels, for (mostly JPL) active flight
projects

–  PDS archived kernels, those formally delivered to and accepted
by NASA’s Planetary Data System

–  Generic kernels, used by many flight projects and other
endeavors

Navigation and Ancillary Information Facility

N IF Obtaining Operational Flight Project Kernels - 1

5

2a - Select the project name to get access to
all products available for that project
(see next page)

2b - Select the kernel type to get access to all
kernels of that type for that project. The number
tells how many kernels of that type are available.
(see next page)

- or -

1 - Select the
mission class
of interest

Navigation and Ancillary Information Facility

N IF Obtaining Operational Flight Project Kernels - 2

6

Access to kernels and
other products available
for the named project

Access to kernels of
the selected type for
the named project

SPK file

Detached file label
(plain text)

aareadme.txt

•
•
•

Description of file
naming scheme

Navigation and Ancillary Information Facility

N IF

7

Overview:
Obtaining PDS Archived Kernels

•  Two methods are available for obtaining PDS
archived kernels.

–  Directly from the NAIF server, using your browser: recommended!
»  Unless you have reason to do otherwise, download the entire

archival data set using the ftp URL
•  That way you’ll get all the latest data, the associated “furnsh kernels”, and

the best documentation.

»  If the data set is large and you need only a portion of it (based
on start/stop time), use the “Subsetter” link to obtain the
smaller amount of data needed.

–  Using a web browser to access the PDS central catalog interface,
typing “SPICE” and the mission name or acronym in the text
search box

»  NAIF suggests you use this method only if you wish to obtain
one or a few kernels that fit specific search criteria

•  Pictorial examples are shown on the next several
pages

Navigation and Ancillary Information Facility

N IF

8

Obtaining Archived Kernels
from the NAIF Server - 1

If you select “PDS Archive Area” on the NAIF
web page you can follow a path like this one.
 - You can use the ftp URL along with Unix “wget”
or the FileZilla tool, or some other equivalent, to
download the entire data set–recommended, if not
too large! Otherwise see the next page.
 - Or you can select specific kernels from the
kernel folders, and/or “furnsh” meta- kernels and
other items from the extras folder

Index of ftp://naif.jpl.nasa.gov/pub/naif/pds/
data/co-s_j_e_v-spice-6-v1.0/cosp_1000/	

Navigation and Ancillary Information Facility

N IF

9

Obtaining Archived Kernels
from the NAIF Server - 2

For “large” data sets that might take a long time to download, if
you really need just a subset of the data covering a limited
amount of time you should use the “Subsetter Link” for the data
set of interest.

This process will automatically select just the kernels that fall
within or overlap the time bounds you specify, construct a new
“FURNSH” kernel(s) containing the names of this subset of
kernels (thus making it easy for you to load the subset into your
program), and create a custom wget script you may use to
download these files to your computer.

Navigation and Ancillary Information Facility

N IF Obtaining Archived Kernels
from the PDS Central Catalog - 1

10

1 - Enter “spice” and the
project name or acronym in
the data search box

2 - Click on the SPICE kernels
data set returned by the search

continues on next page

Navigation and Ancillary Information Facility

N IF Obtaining Archived Kernels
from the PDS Central Catalog - 2

11

Use the PDS browser if you wish
to query for kernels meeting
specific criteria.

Click on “NAIF Online Archives”
to get to the data set. From there
you can download the complete
data set (recommended!) or
individual components.

Click on the data set ID to see a
summary of the entire data set

Recommended

continued from previous page

continues on next page

Navigation and Ancillary Information Facility

N IF Obtaining Archived Kernels
from the PDS Central Catalog - 3

•  Unless you have a specific reason to do otherwise
you should download the complete archived SPICE
data set for the mission of interest

•  Complete SPICE data sets exist on the NAIF server
fully expanded–not bundled in a Zip or tar file

•  Use GNU wget or FileZilla or a similar utility to
download the complete SPICE data set

–  Possible wget usage, and an example using Deep Impact
»  wget -m -nH --cut-dirs=5 -nv (insert the URL of the "Volume

FTP Link" for the SPICE data set here)
»  wget -m -nH --cut-dirs=5 -nv ftp://naif.jpl.nasa.gov/pub/naif/

pds/data/di-c-spice-6-v1.0/disp_1000/
–  FileZilla info

»  http://filezilla-project.org/client_features.php

12

Solar System Science Operations Division

An Introduction to the
ESA SPICE Server

March 2010

Solar System Science Operations Division

Overview

•  All the SPICE data products produced by the
ESA SPICE Support Team are available from the
ESA SPICE server

•  Some products produced outside of ESA are
also available from the ESA SPICE server:
–  Generic Kernels produced by NAIF
–  Mission specific kernels produced by Scientific

Institutes in Europe (e.g. Belgium Royal Observatory,
DLR)

Solar System Science Operations Division

ESAC SPICE Server Basics

•  ESA SPICE Server URL
ftp://ssols01.esac.esa.int/pub

•  Here you may access all the SPICE products related to ESA
Planetary Missions:

–  Kernels (generic and flight projects)
–  Software (GeoLib – Planetary Science Archive ‘PSA’ SPICE-based

Generic Software)
–  Past Workshops Documentation

•  ESA SPICE Support Contact
esa_spice@sciops.esa.int

•  ESA SPICE Web Portal (under construction)
www.sciops.esa.int/spice

Solar System Science Operations Division

Getting ESA Missions SPICE Kernels

•  All the ESA Planetary Missions SPICE kernels are
available on:
–  ESA SPICE Server

 ftp://ssols01.esac.esa.int/pub/data/SPICE
–  NAIF Server

 ftp://naif.jpl.nasa.gov/pub/naif
 http://naif.jpl.nasa.gov/

•  SPICE notifications available on request
–  For all ESA Planetary Missions SPICE kernels production
–  For general SPICE information
–  Interested? Send your query to esa_spice@sciops.esa.int

Solar System Science Operations Division

Archived Kernels

•  There are PSA/PDS archived kernels for the following
missions:
–  Rosetta
–  Mars Express
–  Venus Express

•  Two methods for obtaining PSA/PDS archived kernels
are available:
–  Directly from the ESA SPICE Server, using your browser or an

FTP client (under construction).
–  Using the generic PSA interface, using your web-browser

www.sciops.esa.int/psa

•  These kernels are also available from the NAIF node of
the Planetary Data System.

Navigation and Ancillary Information Facility

N IF

Shape Model Subsystem Preview

March 2010

Navigation and Ancillary Information Facility

N IF

DSK 2

•  Overview
•  Requirements
•  DSK Data Representations
•  DSK System Components
•  DSK Software Components
•  DSK API Examples
•  Using Shape with Orientation Data
•  DSK Development Status

SPICE DSK Topics

Navigation and Ancillary Information Facility

N IF

DSK 3

•  NAIF is developing a new SPICE kernel type: DSK (“digital
shape kernel”)

•  The SPICE DSK system deals with data sets describing
topography of solar system objects, or more generally,
shapes of 3-dimensional objects. Examples:

–  Digital elevation models (DEM) for the surfaces of Mars or the Moon
–  Tessellated plate model for the surface of a natural satellite, asteroid or

comet nucleus

•  The DSK system facilitates high-accuracy, SPICE-based
geometric computations using “complex” shape data

–  Currently SPICE uses only triaxial ellipsoid shape models, which support
low-accuracy computations

Overview

Navigation and Ancillary Information Facility

N IF

DSK 4

•  All “requirements” listed here are of an informal
nature

–  Derived from customer interaction and NAIF team members’
experience using SPICE

•  Overall requirement: facilitate high-accuracy
geometry computations involving surfaces of
extended bodies.

•  Examples of computations that should be
supported:

»  Location of “sub-observer point” and height of observer
above surface

»  Ray-surface intercept point
»  Occultation/transit state of a point target
»  Limb and terminator location
»  Illumination angles at a specified surface point
»  Determine if a target is in an instrument’s field of view (FOV)

Requirements -1

Navigation and Ancillary Information Facility

N IF

DSK 5

•  System should support efficient random access data search
–  For example: for a given (LONGITUDE, LATITUDE) coordinate pair, return

radius (distance from body center) of the corresponding surface point

•  System should support rapid, high volume data extraction
(“bulk read”)

–  Required for efficient use by graphics applications

•  System should be able to use data sets spread across multiple
files

–  Some current data sets exceed 2Gbytes in size
–  Larger data sets should be expected in the future
–  Impractical to store all needed data in one file

•  System should be able to work with models for different bodies
simultaneously.

–  For example: support simultaneous use of data sets for Mars and Phobos.

Requirements -2

Navigation and Ancillary Information Facility

N IF

DSK 6

•  System should be able to work with multiple models for
different parts of the surface of a specified body
simultaneously.

–  Support simultaneous use of multiple data sets having different
resolutions, or even different mathematical representations, for different
regions of the surface.

•  Data files should be portable
•  Data files should support inclusion of metadata
•  Tools should be provided for:

–  summarizing contents of data files
–  accessing metadata in data files
–  merging or subsetting data files
–  ingesting data from other types of files

»  For example: Bob Gaskell’s and Peter Thomas’ shape models

Requirements -3

Navigation and Ancillary Information Facility

N IF

DSK 7

•  Digital elevation model (DEM)
–  Maps longitude/latitude to “elevation”

»  Elevation of a surface point can be defined as distance from the
origin of a body-fixed reference frame

»  Elevation can be defined as height above a reference ellipsoid
–  Example: image created from MGS laser altimeter (MOLA) Mars DEM

DSK Data Representations -1

Navigation and Ancillary Information Facility

N IF

DSK 8

•  Plate model
–  Surface of object is represented as a collection of triangular

plates
–  More flexible than digital elevation model: arbitrary 3-D surface

can be modeled
»  Surface could be a complicated shape with multiple surface

points having the same latitude and longitude
•  Examples: “dumbbell”-shaped asteroid, caves, arches

–  Less efficient than digital elevation model of similar resolution in
terms of storage and computational speed

DSK Data Representations -2

Phobos Itokowa

Navigation and Ancillary Information Facility

N IF

DSK 9

•  DSK shape representations are polymorphic:
–  DSK shape representations are called “Data Types.”
–  Each data type has its own mathematical representation of a surface
–  Each data type has associated software that implements common functionality,

such as the ability to return a radius (distance of surface point from body center)
value for a specified latitude and longitude.

–  Each data type may have additional, unique functionality.
»  For example, type 2 has accessor routines that return plate and vertex data.

These functions are not applicable to other data types.

DSK Data Representations -3

DEM packed
16-bit integer
radius data with
scale factor and
offset

Type 1 Type 2

TRIANGULAR
PLATE MODEL

DSK Shape Data

Type 3

DOUBLE
PRECISION
RADIUS DATA

Type 4
DEM packed 16-
bit integer radius
data with scale
factor and offset---
stereographic
projection

…

Navigation and Ancillary Information Facility

N IF

DSK 10

•  DSK Files
–  Use the SPICE DAS file architecture

»  Binary, direct access
»  System-independent buffering built in
»  Comment area built in

•  DSK Software
–  SPICE software which enables users to create and use DSK kernels

»  Writer routines
»  Reader routines
»  High-level API routines

•  For example: routines dealing with observer-target geometry

»  Supporting utility programs

DSK System Components

Navigation and Ancillary Information Facility

N IF

DSK 11

•  Writers
–  Routines that enable a SPICE-based application to create a DSK kernel

»  Open new DSK kernel for write access
»  Open existing DSK kernel for write access
»  Start new DSK segment (“segments” are partial DSK data sets containing data

for a given region on a specified object)
»  Add data to DSK segment

•  Readers
–  Routines that extract data from a DSK file

»  Return elevation of surface at given longitude/latitude
»  Return specified attributes, for example the surface normal vector, for a

specified longitude and latitude
»  Rapidly obtain data for large portion of surface (“bulk read”)
»  Return DSK attributes such as number of plates, pixel size, min/max elevation,

etc.
•  High-level functions (including, but not limited to, the following):

–  Compute sub-observer point on surface and height of observer above surface
–  Compute intercept of ray with surface
–  Determine whether a portion of a target body’s surface is within the FOV of

specified instrument at specified time.
–  Determine occultation/transit state of a point target
–  Compute limb and terminator location
–  Compute Illumination angles at a specified surface point

DSK Software Components -1

Navigation and Ancillary Information Facility

N IF

DSK 12

•  Utility programs that
–  Create DSK files: import other surface shape data sets into SPICE DSK

format
–  Port DSK files
–  Provide comment area access
–  Summarize DSK file contents
–  Subset or merge DSK files
–  Downsample DSK files
–  Convert one DSK data type to another

»  Example: create type 2 DSK file from type 1

DSK Software Components -2

Navigation and Ancillary Information Facility

N IF

DSK 13

•  Get radius at surface point (inputs are in red, outputs in
blue):

–  CALL DSKRAD (TARGET, LON, LAT, RADIUS)
»  Inputs: target body name, longitude and latitude of point of interest
»  Output: radius (distance from target center) at surface point

•  Find sub-observer point on target:
–  CALL SUBPT (METHOD, TARGET, ET, ABCORR, OBSRVR, SPOINT, ALT)

»  SUBPT is a generic, high-level API. SUBPT doesn’t assume the surface
is modeled by a DSK.

»  Input “METHOD” indicates surface model and sub-point definition
•  For ellipsoids, METHOD may be set to ‘near point’ or ‘intercept’
•  For DSKs, set METHOD to ‘DSK intercept’, indicating that the sub-point is

defined as the closest intersection to the observer of the observer-target center
ray with the surface, and DSK model is to be used.

•  Note that SPICE should not assume DSK is to be used just because a DSK for
the target body is loaded; may be too inefficient for some applications. Caller
must say which model is to be used.

»  Other inputs: target body name, epoch, aberration correction, observer
name.

»  Outputs: sub-observer point in Cartesian coordinates, expressed in the
body-fixed frame associated with the target, and altitude of the observer
above the sub-point.

DSK API Examples

Navigation and Ancillary Information Facility

N IF

DSK 14

Writing Shape and Orientation Kernels

Tessellated Plates
Shape Model

Lists of plate
model vertices
and associated
plates, and
optionally,
albedo data for
each plate

Planetary constants
kernel containing

rotation data for the
body, and possibly

tri-axial shape

Some source of
rotation state
information (pole
RA/DEC and
prime meridian
location)

Text editor
(Usually done by

NAIF)

Text editor
(Usually done by

NAIF)

MKDSK
Program

(SPICE Toolkit)

Digital Terrain
 Shape Model

Triaxial Ellipsoid
Shape Model

Axes dimensions
for tri-axial
ellipsoid

LAT/LON and height
above ellipsoid or
distance from center
of frame

Digital
shape kernel

DSK

PCK

Orientation

X

Y

Z

MKDSK
Program

(SPICE Toolkit)

Navigation and Ancillary Information Facility

N IF

DSK 15

Using Shape and Orientation Kernels

MKPLAT
Program

(SPICE Toolkit) Tessellated Plates
Shape Model

Lists of plate
model vertices
and associated
plates, and
optionally,
albedo data for
each plate

Planetary constants
kernel containing

rotation data for the
body, and possibly

tri-axial shape

Some source of
rotation state
information (pole
RA/DEC and
prime meridian
location)

Text editor
(Usually done by

NAIF)

Text editor
(Usually done by

NAIF)

Program to
make a DSK

(SPICE Toolkit)

Digital Terrain
 Shape Model

Triaxial Ellipsoid
Shape Model

Axes dimensions
for tri-axial
ellipsoid

LAT/LON and height
above ellipsoid or
distance from center
of frame

Digital
shape kernel

Your Application Program

spicelib,
cspice,
Icy or
Mice

SPICE routines for
obtaining rotation
state and shape,
and then
computing derived
quantities

DSK

PCK

Orientation

X

Y

Z

Pick one*
shape model

Shape
* Sometimes the
triaxial model is
needed in addition to
one of the other two

Other data
as needed

Navigation and Ancillary Information Facility

N IF

DSK 16

•  History
–  Precursor “Plate Model” system was delivered to NEAR and Hayabusa

and used successfully on those missions
–  A prototype version of the DSK system was delivered to the DAWN

project in November 2006. This software has been integrated into the
SOA (Science Opportunity Analyzer) program.

»  SOA uses DSK files to import shape model data for Vesta and Ceres.
»  SOA also uses DSK software, along with custom, higher-level DSK-

based software provided by NAIF, to perform geometric
computations involving target body shape data.

–  This prototype has also been provided to a number of other interested
groups.

•  Plans
–  Development of the full DSK subsystem had been stalled, but has now

started up again.
–  Release date of a full beta-test version of the DSK system is TBD.

DSK Development Status

Navigation and Ancillary Information Facility

N IF

SPICE Development Plans
and Possibilities

March 2010

Navigation and Ancillary Information Facility

N IF

Plans and Possibilities for Further Development 2

Outline

•  Work in progress

•  Future possibilities

•  Your suggestions?

Navigation and Ancillary Information Facility

N IF

Plans and Possibilities for Further Development 3

Work In Progress

•  Extension of the shape model subsystem
–  The task is to add two new shape model capabilities:

»  plate model, for small, irregularly shaped bodies, and
»  digital elevation model

 to the existing tri-axial shape model found in PCK
–  Status

»  A prototype of the plate model has been given to several
projects

»  Work was on hold for quite some time due to JNISpice task
»  Work has now resumed, but there is a long way to go
»  The prototype plate model interfaces will change somewhat
»  Dates for release of “alpha-test” and “final” versions are

unknown

Navigation and Ancillary Information Facility

N IF

Plans and Possibilities for Further Development 4

New Language Interfaces

•  Java Native Interface (JNISpice)
–  An alpha-test release was made in February, 2010
–  Official addition to the Toolkit later this year (date is TBD)

•  Python
– Considerable prototyping has been done
– Whether or not this effort will proceed, and when, is

uncertain

Navigation and Ancillary Information Facility

N IF

Plans and Possibilities for Further Development 5

Other Possibilities - 1

•  Provide a GUI tool that will contrast a set of SPK files,
thus aiding you in selecting the one(s) of interest

•  Provide a GUI tool for easier creation of a SPICE
frame, and visualization thereof

•  Provide a “predict spk” tool that makes it easy to
construct an SPK file from simple rules

•  Add more high-level computations, such as
instrument footprint coverage

•  Star catalog integrated with SPICE capabilities

Navigation and Ancillary Information Facility

N IF

Plans and Possibilities for Further Development 6

Other Possibilities - 2

Provide a GUI interface
to a limited set of

SPICE computations.

In this example, compute
the illumination angles on
Mars at LON 114.7 and
LAT -14.7 as seen from
Mars Express on 2004 JAN
4 08:52:00. The user can
pick either a planetocentric
or planetodetic reference
frame.

“GEOCALC”

Navigation and Ancillary Information Facility

N IF

Plans and Possibilities for Further Development 7

Still Other Possibilities?

•  Additional target models: rings, gravity, atmosphere,
magnetosphere, …

•  Develop a more flexible and extensible instrument
modeling mechanism

Navigation and Ancillary Information Facility

N IF

Plans and Possibilities for Further Development 8

What do You Suggest?

•  NAIF solicits suggestions from the user
community.

–  Caution: we’re a small team and have a large backlog, so we
can’t promise any particular action.

•  We’re interested in programmatic ideas as well as
technical ones.

–  Should NAIF promote use of SPICE beyond NASA’s planetary
science program?

–  What amount of cooperation and interoperability with foreign
partners is appropriate and achievable?

Navigation and Ancillary Information Facility

N IF

SPICE Introduction

March 2010

Navigation and Ancillary Information Facility

N IF

Tutorials Introduction 2

•  Implementation of a precursor to SPICE was
initiated by scientists in 1984 as part of a
major initiative to improve archiving and
distribution of space science data in all NASA
disciplines

•  Responsibility for leading SPICE development
was assigned to the newly-created Navigation
and Ancillary Information Facility (NAIF),
located at the Jet Propulsion Laboratory

•  Today’s SPICE system dates from about 1991

History

Navigation and Ancillary Information Facility

N IF

Tutorials Introduction 3

•  The original focus of SPICE was on ancillary data and
associated software needed by scientists for:

–  initial science data analysis
–  science archive preparation

•  The scope of SPICE usage has grown to cover the full
lifecycle of a mission as well as post-mission archive uses.

Mission concept
development

Mission
design

Mission design
validation

Detailed science
observation planning

Mission operations
support

Initial science
data analysis

Science archive
user support

Breadth of Use

Mission Lifecycle Archive

Science archive
preparation

Navigation and Ancillary Information Facility

N IF

Tutorials Introduction 4

•  SPICE is used on all NASA planetary exploration projects
–  Examples: All Mars missions, Cassini, Deep Impact, Messenger, Juno

•  Limited SPICE data have been (or are being) created for some past
missions

–  Examples: Voyager, Viking Orbiter
•  SPICE is used to some degree in support of some space physics

and astrophysics missions
–  Examples: Hubble Telescope, Spitzer Telescope, IBEX, Wise, Kepler

•  SPICE was or is used on many non-NASA missions
–  Russia’s Mars 96; ESA’s Huygens Probe, Smart-1, Mars Express, Rosetta and

Venus Express; Japan’s Hayabusa and SELENE; India’s Chandrayaan-1

•  SPICE will be used on at least one NASA earth science
mission

•  SPICE ephemerides are used at some terrestrial observatories
•  SPICE is used by NASA’s Deep Space Network for both scheduling

and operating the DSN antennas.

Major SPICE Users*

* Not all are supported by NAIF; some are using SPICE on their own.

Navigation and Ancillary Information Facility

N IF

Tutorials Introduction 5

•  SPICE is the U.S. Planetary Data System’s normal means for
archiving ancillary data

–  (But it’s not a formal requirement)

•  SPICE data for European planetary missions are archived in
ESA’s Planetary Science Archive

–  Some of these data will be mirrored on the NAIF server

•  SPICE data for some Japanese and Indian missions will be
available in the future from their local archives

–  Already the case for Hayabusa

•  SPICE, or some SPICE ideas, might play a role in the future
International Planetary Data Alliance (IPDA)

–  An IPDA “project” is looking into this question

Ancillary Data Archives

Navigation and Ancillary Information Facility

N IF

Tutorials Introduction 6

•  SPICE system components are freely distributed
–  Projects pay for local deployment and operation, done either

by their own personnel, or by NAIF, or a combination
–  There are no U.S. ITAR restrictions on distribution

•  Users get complete source code and much
documentation

Distribution

Navigation and Ancillary Information Facility

N IF

Tutorials Introduction 7

Quality of Training Materials

•  This set of tutorials has been presented and
revised numerous times

–  No matter how hard we try, it seems impossible to:
» Get all the facts absolutely right and up-to-date
» Get the level of detail “right” for every student
» Get all of the language clear, complete and concise
»  Present everything in the “correct” order

•  These training materials are meant to
supplement–not replace–the subroutine headers
and the “required reading” reference documents
that are the primary sources for user information
about SPICE

Navigation and Ancillary Information Facility

N IF

Motivation for Developing SPICE

March 2010

Navigation and Ancillary Information Facility

N IF

Motivation for SPICE 2

•  Scientists said they would like to:

-  use common tools and methods throughout a project’s
lifecycle, and for all projects (national and international)

-  understand the calculations and transformations used to
produce observation geometry data

-  be able to produce custom geometry calculations themselves,
whenever and however they want

-  have the ability to revise the fundamental data and software
tools used to produce their own observation geometry data

Why Did NAIF Build SPICE?

Navigation and Ancillary Information Facility

N IF

Motivation for SPICE 3

Trajectory
Data

S/C
Orientation

Data

SEDR
Parameters
Database

SEDR
Commands

SEDR
Generation SEDR

EDR EDR

SEDR
Science
Results

Scientist’s Data
Analysis Program

EDR*
Generation Science

Telemetry

“SEDR” - Supplemental Experiment Data Record

* EDR = Experiment Data Record = "raw" science instrument data

What Existed Prior to SPICE ?

Science
Instrument
Data

Scientist’s
Software
Modules

Navigation and Ancillary Information Facility

N IF

Motivation for SPICE 4

•  The SEDR Generation program was built and operated at
JPL
–  Scientist’s requirements on SEDR had to be provided long before launch

»  Late or post-launch updates were hard/expensive to accommodate
•  Difficult to change WHAT gets computed
•  Difficult to change HOW items are computed (algorithms, parameters)
•  Difficult to change TIMEs at which items get computed

–  Generally only one SEDR file produced for each period of time
»  Result: the scientist can’t get better ancillary data if/when better

inputs (e.g. spacecraft trajectory or orientation) are determined
–  SEDR generation was done “in the blind”

»  Operators were not familiar with processes used to make the inputs
»  Operators were not familiar with scientist’s processing schemes
»  Result: SEDR may not optimally meet science team’s expectations

–  SEDR system was not exportable to other institutions

SEDR System Characteristics

Navigation and Ancillary Information Facility

N IF

Motivation for SPICE 5

Selected
SPICE

Modules

Scientist’s
Software
Modules

Scientist’s Data
Analysis Program

SPICE
Kernels

Collection

Wonderful
Science
Results

The SPICE Idea

Science
Telemetry

Navigation and Ancillary Information Facility

N IF

Motivation for SPICE 6

•  The customer has great flexibility in deciding:
–  what observation geometry parameters are computed
–  at what times or at what frequency these parameters are computed
–  for what time span these parameters are computed
–  electing if/when to re-do parameter computations using new

(better) or otherwise different kernels or other data as inputs
•  The customer also has:

–  common tools and methods that can be reused on many tasks
–  good visibility into algorithms and data used in geometry

calculations
•  The flight project operations center can:

–  concentrate on producing better kernel data, rather than on
producing lots of SEDRs and frequently updating the SEDR
software

•  The SPICE process may be replicated anywhere

SPICE Benefits vs. SEDR

Navigation and Ancillary Information Facility

N IF

Motivation for SPICE 7

SPICE Detriments vs. SEDR

•  End users ("consumers") must do some non-trivial
programming to read SPICE kernels and compute
whatever is needed

•  If the mission operations center is other than JPL,
the appropriate project folks need to learn how to
produce SPICE kernels

•  In some areas of SPICE the offering of choices to
allow correct handling of different situations may
present complexity that is unwarranted for
“simple” problems

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts

March 2010

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 2

•  Preface
•  Time
•  Reference Frames
•  Coordinate Systems
•  Positions and States
•  Aberration Corrections

Topics

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 3

Preface

•  This tutorial introduces terminology and concepts
used in the later SPICE tutorials.

•  Some of this material is more difficult than what
follows in later presentations.

–  A complete understanding of this material is not essential in
order to use SPICE.

•  Still, we think this information may be helpful,
so… on we go!

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 4

•  An epoch is an instant in time specified by some
singular event

–  Passage of a star across your zenith meridian
–  Eclipse of a spacecraft signal as it passes behind a solid body

•  Clocks
–  More mundane specifications are given as a count: “regular”

oscillations of a pendulum, quartz crystal, or electromagnetic
radiation from a specified source, measured from an agreed
upon reference epoch.

–  Careful specification of epochs using clocks requires reference
to the particular clock and the location of that clock.

•  Time Systems
–  Agreed upon standards for “naming” epochs, measuring time,

and synchronizing clocks

Time

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 5

•  International Atomic Time (TAI)
–  Statistical time scale

»  Based on data from ~200 atomic clocks in over 50 national
laboratories

–  Maintained by Bureau International des Poids et Mesures
(BIPM)

–  Unit is the SI (System International) second
»  duration of 9192631770 periods of the radiation

corresponding to the transition between two hyperfine
levels of the ground state of the cesium 133 atom

–  Count of atomic seconds past the astronomically determined
instant of midnight 1 Jan 1958 00:00:00

•  Coordinated Universal Time (UTC)
–  Civil Time at Greenwich England (~GMT)
–  Usual Calendar Formats plus Hour:Minute:Second.fraction
–  UTC + 10 seconds + number of leap seconds = TAI

»  Valid only after Jan 01, 1972

Atomic Time and UTC

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 6

•  Astronomical Time (UT1) is an hour
representation of the angle between the
Greenwich zenith meridian and the location of the
“computed mean sun.”

•  Used prior to atomic time for civil time keeping

UT1

Astronomical Time

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 7

Ideally, UTC noon and astronomical noon at Greenwich (UT1) should occur
simultaneously. However, the earth’s rotation is not uniform. Eventually,
UTC noon and astronomical noon at Greenwich get out of sync.

When the mismatch becomes greater than 0.9 atomic
seconds, a “leap second” is added to (or removed from)
the end of a designated UTC day—normally either June 30
or December 31.

The variations in the earth’s rotation that cause leap
seconds to be needed are not predictable.

Tying UTC to Earth’s Rotation

UT1

UTC

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 8

•  “Normal” sequence of
UTC time tags
–  1998 Dec 31 23:59:58.0
–  1998 Dec 31 23:59:59.0
–  1999 Jan 01 00:00:00.0
–  1999 Jan 01 00:00:01.0

•  Sequence with a
Positive Leapsecond
–  1998 Dec 31 23:59:58.0
–  1998 Dec 31 23:59:59.0
–  1998 Dec 31 23:59:60.0
–  1999 Jan 01 00:00:00.0
–  1999 Jan 01 00:00:01.0

•  Sequence with a
Negative Leapsecond
–  1998 Dec 31 23:59:57.0
–  1998 Dec 31 23:59:58.0
–  1999 Jan 01 00:00:00.0
–  1999 Jan 01 00:00:01.0

Leapseconds (+ and -)

Leap seconds complicate the task of
finding the duration between two
UTC epochs:

•  You need to know when past leap
seconds occurred to compute
durations defined by pairs of past
UTC epochs.

•  Durations defined by pairs of future
UTC epochs are indeterminate if leap
seconds could occur in the interim.

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 9

•  Barycentric Dynamical Time (TDB) and Ephemeris
Time (ET) are synonyms in SPICE documentation.

•  TDB is
–  Mathematical Ideal used in the equations of motion.
–  Used as the independent time variable for many SPICE

subroutine interfaces.
–  Related to ideal Time at the Solar System Barycenter (TCB) by

a scale factor, so that TDB advances on average at the same
rate as TAI.

Barycentric Dynamical Time

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 10

•  Terrestrial Dynamical Time (TDT)
–  IAU has adopted the name “Terrestrial Time” (TT)

»  But called TDT throughout SPICE documentation
–  Ideal Time (proper time) on Earth at sea level
–  TDT = TAI + 32.184 seconds

•  TDB and TDT have same reference epoch
(approximately 1 Jan 2000, 12:00:00 at Greenwich
England)

•  TDB and TDT advance at different rates.
–  Variations are small ~ 1.6 milliseconds
–  Variations are periodic with a period of 1 sidereal year (to first

order)
–  Variations are due to relativistic effects

»  TDB = TDT + 0.001657 sin(E + 0.01671sin(E))
•  Use of TDT in the SPICE system is quite limited.

–  SCLK kernels
–  Duration computations involving UTC

Terrestrial Dynamical Time

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 11

•  Spacecraft have onboard clocks to control
scheduling of observations, maneuvers, attitude
adjustments, etc.

•  Used to time stamp data
•  Fundamental unit of time is the “tick”

–  Smallest increment possible for spacecraft clock

•  Spacecraft clock time is a count of ticks since
some reference tick.

•  The duration of the tick drifts with respect to other
time systems.

Spacecraft Clocks

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 12

•  SCLK string formats vary from one spacecraft clock to the
next.

–  Cassini: Maximum reading for partition 1 = 1/4294967295.255
»  Partition number: 1
»  Seconds: 4294967295
»  Ticks (for Cassini, unit = 1/256 second): 255

–  Galileo: Maximum reading for partition 1 = 1/16777215:90:09:07
»  Partition number: 1
»  "RIM" count (unit = 60 2/3 seconds): 16777215
»  "Mod 91" count (unit = 2/3 second): 90
»  "RTI" count (unit = 1/15 second): 9
»  "Mod 8" count (unit = 1/120 second): 7

•  Format of spacecraft clock and relationship between tick
count and other time systems (usually UTC) is captured in a
SPICE SCLK kernel

–  Pronounced “ess-clock”
»  sometimes the more vulgar “sclock” pronunciation is used

More about Spacecraft Clocks

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 13

•  A reference frame is an ordered set of three
mutually orthogonal (possibly time dependent) unit-
length direction vectors, coupled with a location
called the frame’s “center” or “origin.”

–  SPICE documentation frequently uses the shorthand
“frame.”

– A reference frame is also called a “basis,” but SPICE
documentation very rarely uses this term.

Reference Frames: Definition

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 14

•  A frame’s center is an ephemeris object whose location is
coincident with the origin (0, 0, 0) of a reference frame.

–  The center of the IAU_<body> frame is <body>.
–  The center of any inertial frame is (in SPICE) the solar system barycenter.

»  Even for frames naturally associated with accelerated bodies, such as
MARSIAU.

•  A frame’s center plays little role in specification of states
–  Origin cancels out when doing vector arithmetic

»  Whether positions of objects A and B are specified relative to centers
C1 or C2 makes no difference:

 (A – C1) – (B – C1) = (A – C2) – (B – C2) = A – B
–  But the center *is* used in computing light time to centers of non-inertial

frames
»  When the aberration-corrected state of Titan as seen from the Cassini

orbiter is computed in the body-fixed IAU_Titan frame, light time is
computed from Titan’s center to the Cassini orbiter, and this light
time is used to correct both the state and orientation of Titan.

Reference Frame Center

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 15

•  Inertial
–  Non-rotating

»  With respect to fixed stars
–  Non-accelerating origin

»  Velocity is typically non-zero; acceleration is negligible
–  Examples:

»  J2000 (also called ICRF), B1950
•  Non-Inertial

–  Examples
»  Body-fixed

•  Centered at body center
•  Topocentric

»  Instrument
»  Dynamic frames

•  For example, frames defined by time-dependent vectors

Types of Reference Frames

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 16

•  Mean Equator
–  Model gives mean direction of

north pole of earth accounting
for precession

–  Defines z-axis of frame
–  Defines a mean plane of

equator

•  Mean Ecliptic
–  Model gives mean direction of

the “pole” of the earth's orbit
–  Defines a mean plane of the

ecliptic

•  Intersection of planes at a
particular epoch
determines x-axis

Ecliptic Plane

Frames Defined by Dynamics

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 17

J2000 (ICRF) Frame

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 18

•  Rotating frames rotate with
respect to Inertial Frames.
Directions of axes are not
constant w.r.t. inertial
frames

•  Centers may accelerate
•  Examples:

–  Body-fixed frames are tied to
the surface of a body and
rotate with it.

–  Spacecraft-fixed frames are
defined by the time-varying
orientation of a spacecraft

Rotating Frames

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 19

•  Defined with simple models
for position of spin axis
and motion of prime
meridian

•  Z-axis points to the “north”
side of the invariable plane
of the solar system

•  Invariable plane is
perpendicular to the
angular momentum vector
of the solar system

IAU Bodyfixed Frames

IAU = International Astronomical Union

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 20

•  Topocentric frames are
attached to a surface

•  Z-axis is parallel to the
gravity gradient or
orthogonal to reference
spheroid x points North

z points “up”

y points West
Azimuth (increases
in clockwise
direction, measured
from +x axis)

Elevation (angle between
vector and x-y plane)

Topocentric Frames

One example of a topocentric frame. There
are other types of topocentric frames: for
example, the z-axis could point down, the x-
axis North, and the y-axis East.

Position Vector

Orthogonal
projection of
vector onto x-y
plane

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 21

•  Defined relative to structures
–  Spacecraft
–  Scan platform
–  Instrument

»  For example you might have:
•  z-axis lies along instrument boresight
•  x and y axes defined by instrument characteristics

Spacecraft and Instrument Frames

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 22

•  The state of an object is its position and velocity
relative to a second object
–  In SPICE, these objects are often referred to as “target” and

“observer” or “center”
–  E.g. Saturn relative to Saturn barycenter; Titan relative to Huygens

probe

•  In the SPK subsystem a state is a six dimensional
vector
–  First three components are Cartesian position: x, y, z
–  Second three components are Cartesian velocity: dx/dt, dy/dt, dz/dt
–  Units are km, km/sec

•  A state is specified relative to a reference frame

State Vectors

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 23

•  To perform algebraic operations on states they
must be in the same frame.

•  Position-only frame transformations require only
a rotation* matrix given as a function of time.

»  PB (t) = RA to B(t) PA(t)

•  Position and velocity frame transformations
require that we differentiate the above equation

»  dPB (t) /dt = dRA to B(t)/dt PA(t) + RA to B(t) d PA(t)/dt

•  We can use a 6x6 matrix to combine these two
transformations into a single equation

Transforming States

* Assuming both frames are right-handed

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 24

SB(t) = TA to B(t)SA(t)

where

Si(t) =

and

TA to B(t) =

Pi(t)

dPi(t)/dt i = A or B (
RA to B(t)

dRA to B(t)/dt RA to B(t)

0 ()

)

The SPICELIB routines SXFORM and PXFORM return state
transformation and position transformation matrices respectively.

Transforming States

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 25

•  Planetocentric
–  Latitude: measured from X-Y plane
–  Longitude: increases counterclockwise w.r.t. the +Z axis

»  +Z points to the north side of the invariable plane
–  Radius: measured from center of object

•  Planetographic, Geodetic, Planetodetic
–  Tied to a reference surface
–  Latitude: for a point on a reference ellipsoid, angle measured

from X-Y plane to the surface normal at the point of interest.
For other points, equals latitude at the nearest point on the
reference ellipsoid.

–  Longitude
»  -odetic: same as for planetocentric
»  -ographic: longitude of sub-observer point, for a distant,

fixed observer in the J2000 frame, increases with time
–  Height above reference surface

Coordinate Systems

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 26

•  Within the SPICE system, “aberration corrections”
are adjustments made to state vectors and time-
dependent reference frames to accurately reflect
the apparent–as opposed to the actual–state and
attitude of a target object as seen from a specified
observer at a specified time.

–  Actual, uncorrected states from an ephemeris are called
“geometric” states.

–  When computing state vectors, SPICE users may request
geometric or aberration-corrected states.

•  Aberration corrections are needed to accurately
answer questions such as:

–  In which direction must a remote sensing instrument be pointed
to observe a target of interest?

–  For a given pointing direction and observation time, what target
body surface location would be observed by a remote sensing
instrument?

–  In which direction must an antenna be pointed to transmit a
signal to a specified target?

Aberration Corrections: Introduction

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 27

Example: Predicted vs Actual Photo
We compare the predicted appearance of a photograph from an optical camera
against the actual photograph. We show three predictions derived using different
aberration corrections: NONE, LT ("light time only"), and LT+S ("light time plus
stellar aberration").
For each prediction, we use red overlays to indicate the expected location in the
photo of the images of an extended target body (for example, a natural satellite), of
features on the surface of the target body, and of a star.

NONE
Predicted images using
uncorrected target position
and orientation and
uncorrected star direction
vector

LT
Predicted images using light
time-corrected target
position and orientation and
uncorrected star direction
vector

LT+S
Predicted images using light
time and stellar aberration-
corrected target position, light
time-corrected target
orientation, and stellar
aberration-corrected star
direction vector

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 28

Prediction Without Corrections

Predicted target body, surface feature,
and star image locations (in red)

Actual image

Using geometric target positions, target images in photos or other remote-sensing
observations don’t appear at their predicted locations.

Actual image

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 29

Light Time Corrections

Observer’s position at time ET

Target’s (geometric) position
and orientation at time ET Target’s position and

orientation at time ET-LT
(light time corrected
position and orientation)

Light travels this path in LT seconds

At time ET, the observer’s camera records photons emitted from the target at
time ET-LT, where LT is the one-way light time. The camera "sees" the
target's position and orientation at ET-LT.

Note: The angular separation of
the geometric and light time
corrected positions as seen by
the observer has been
exaggerated for readability.

Target’s angular
velocity vector

Target’s
velocity
vector

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 30

Prediction Using Light Time Corrections

Using the light time corrected target position and orientation, the predicted
locations in the photo of the target image and surface features have changed, but
the accuracy of the prediction may still be poor.

Predicted target body, surface feature,
and star image locations (in red)

Actual image

Actual image

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 31

Stellar Aberration Correction

Observer’s position at time ET

To the observer, light appears to travel this path

At time ET, the observer’s camera records photons emitted from the target at
time ET-LT, where LT is the one-way light time.
The vector from the observer at ET to the location of the target at ET-LT is
displaced by a physical phenomenon called stellar aberration. The displaced
vector yields the apparent position of the target.

Target’s apparent position
and orientation

Observer’s velocity
relative to SSB

Note: The angular separation of
the geometric, light time
corrected, and apparent
positions as seen by the
observer has been exaggerated
for readability.

Target’s (geometric) position
and orientation at time ET

Target’s position and
orientation at time ET-LT
(light time corrected
position and orientation)

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 32

Prediction Using "LT+S" Corrections

Predicted target body, surface feature, and star
image locations (in red)

Using the light time and stellar aberration-corrected target position, light time-
corrected target orientation, and stellar aberration-corrected star direction, we
obtain a significantly improved image location predictions.
Remaining prediction errors may be due to, among other causes, pointing
error, spacecraft and target ephemeris errors, and timing errors.

Actual image
Actual image

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 33

Effect of Aberration Corrections - 1

•  Angular offsets between corrected and
uncorrected position vectors over the time span
2004 Jan 1--2005 Jan1

–  Mars as seen from MEX:
»  LT+S vs NONE: .0002 to .0008 degrees
»  LT vs NONE: .0006 to .0047 degrees

–  Earth as seen from MEX:
»  LT+S vs NONE: .0035 to .0106 degrees
»  LT vs NONE: .0000 to .0057 degrees

–  MEX as seen from Earth:
»  LT+S vs NONE: .0035 to .0104 degrees
»  LT vs NONE: .0033 to .0048 degrees

–  Sun as seen from Mars:
»  LT+S vs NONE: .0042 to .0047 degrees
»  LT vs NONE: .0000 to .0000 degrees

Navigation and Ancillary Information Facility

N IF

Fundamental Concepts 34

Effect of Aberration Corrections - 2

•  Angular offsets between corrected and uncorrected position
vectors over the time span 2004 Jan 1--2008 Jan1

–  Saturn as seen from CASSINI:
»  LT+S vs NONE: .0000 to .0058 degrees
»  LT vs NONE: .0001 to .0019 degrees

–  Titan as seen from CASSINI:
»  LT+S vs NONE: .0000 to .0057 degrees
»  LT vs NONE: .0000 to .0030 degrees

–  Earth as seen from CASSINI:
»  LT+S vs NONE: .0000 to .0107 degrees
»  LT vs NONE: .0000 to .0058 degrees

–  CASSINI as seen from Earth:
»  LT+S vs NONE: .0000 to .0107 degrees
»  LT vs NONE: .0000 to .0059 degrees

–  Sun as seen from CASSINI:
»  LT+S vs NONE: .0000 to .0059 degrees
»  LT vs NONE: .0000 to .0000 degrees

Navigation and Ancillary Information Facility

N IF

Porting Kernels

March 2010

Navigation and Ancillary Information Facility

N IF

Porting Kernels 2

Porting Issues - 1

•  Data formats vary across platforms, so data files
created on platform “X” may not be usable on
platform “Y.”

–  Binary data formats: different platforms use different bit
patterns to represent numbers (and possibly characters).

–  Text formats: different platforms use different mechanisms
to represent “lines” in text files.
›❯  Usually a “line terminator character sequence” indicates end-
of-line.

•  We say two platforms have “compatible” binary or text formats
if they use the same binary or text data representations.

•  We say that a file is “native” if its format is that used on the
computer being used by you.

Navigation and Ancillary Information Facility

N IF

Porting Kernels 3

Porting Issues - 2

•  Toolkit software can often read kernels obtained
from an incompatible platform
–  Binary SPK, CK, or PCK kernels from one system can be

read on an incompatible system (e.g. any pair of PC, Mac,
Sun).

–  Text kernels from one system can be read on an
incompatible system (e.g. any pair of PC, Mac, Sun) when
using a C, IDL or MATLAB toolkit.

•  The Toolkit cannot read certain kernels from
incompatible platforms
–  Text kernels, if using a FORTAN toolkit
–  DAS-based files, such as E-kernels (ESQ) or shape model

kernels (DSK)

Navigation and Ancillary Information Facility

N IF

Porting Kernels 4

Porting Issues - 3

•  When the Toolkit cannot read an incompatible kernel,
conversion to native format is required to make the kernel
usable. Several options are available.
–  Use bingo for both binary and text kernels

›❯  Available only from the NAIF website; not provided in Toolkit
packages

–  For text kernels, file transfer using ftp in ASCII mode will perform
the required format conversion on the fly.
–  Web browsers often do text format conversion.

  However ASCII mode may not be available – sftp clients usually
don’t provide it. In such cases other tools such as dos2unix and
unix2dos, or bingo, must be used.

–  For binary kernels, the SPICE toxfr and tobin tools may be used
to convert files to and from SPICE transfer format

  This is an ASCII format that may be transferred in the same
way as other ASCII files.

Navigation and Ancillary Information Facility

N IF

Porting Kernels 5

Compatible Environments
for Text Kernels

 Groupings of Text Compatible
Environments

End of line indicator

1 PC using Windows or N T <CR><LF>
2 Unix

PC with LINUX

Macintosh OSX (Motorola or
Intel ch ip)

<LF>

Since text kernels are only text files…

Navigation and Ancillary Information Facility

N IF

Porting Kernels 6

Compatible Environments
for Binary Kernels

 Groupings of Binary Compatible
Environments

Binary Representation

1 PC/ Windows

PC/Linux

Mac Pro (Intel chip) (the new ones)

IEEE - Little endian

2 Sun

Mac Power PC (Motorola chip)

IEEE - Big endian

Navigation and Ancillary Information Facility

N IF

Porting Kernels 7

Caution Using Email

•  NAIF recommends against the use of email to
transfer kernels…

 …unless tests prove successful using the same conditions/
computers intended for current use. Possible causes of
problems are:

–  incompatible binary or text representations (as already discussed).
–  an attachment size limit somewhere in the e-mail chain.
–  the sender’s or recipient’s mail client modifies the kernel based on file

name or presumed content.

•  When you must email kernels, compress either
with zip, or gzip (or stuffit), then send the
compressed file as an email attachment.

Navigation and Ancillary Information Facility

N IF

Porting Kernels 8

Binary Kernels - Caveats

•  If the kernel you are using is a non-native binary kernel
you can read this file but you may not write data to this
file.

–  The reading is accomplished using run-time conversion
–  You can not use the SPICE Toolkit’s “commnt” or “spacit” programs,

or any other means, to write information into the comment area, or to
delete information from the comment area.

–  You cannot append additional data to the kernel.

•  Run-time conversion does not work for E-kernel (ESQ)
or shape model (DSK) kernels.

–  More generally, it does not yet work for any file built upon the SPICE
“DAS” architecture.

Navigation and Ancillary Information Facility

N IF

Porting Kernels 9

Binary Kernels
Allowed Operations

•  You may “load” and read both non-native and native
binary kernels in the same runtime instance

•  You may merge any combination of native and non-
native SPK files

–  The resultant, merged SPK file will be in native format

Navigation and Ancillary Information Facility

N IF

Getting and Installing
the SPICE Toolkit

March 2010

Navigation and Ancillary Information Facility

N IF

Installing the SPICE Toolkit 2

Getting Toolkit

•  All instances of the SPICE Toolkit are available 24x7
from the NAIF WWW server

 http://naif.jpl.nasa.gov/naif/toolkit.html

•  No password or identification is needed
•  To download a Toolkit package

–  Select language – FORTRAN, C, IDL, or MATLAB
–  Select computer platform/OS/compiler combination
–  Download all toolkit package components

»  package file – toolkit.tar.Z (or toolkit.exe),
 cspice.tar.Z (or cspice.exe),
 icy.tar.Z (or icy.exe), or
 mice.tar.Z (or mice.exe)
»  Installation script (if present) – import*.csh
»  Accompanying documents - README, dscriptn.txt, whats,new

Navigation and Ancillary Information Facility

N IF

Installing the SPICE Toolkit 3

•  The packages provided on the NAIF server have
been built and tested by NAIF on these particular
environments.

•  We highly recommend you NOT try to port any
instance of the Toolkit to some other
environment, especially without consulting with
NAIF first.

–  There are both portability issues and compiler optimization
issues that must be carefully dealt with.

Don’t Port it Yourself

Navigation and Ancillary Information Facility

N IF

Installing the SPICE Toolkit 4

Terminal Window

•  To install the Toolkit, follow the directions given in the README. Normally
this consists of the following (not applicable for PC Windows):

prompt> chmod u+x importSpice.csh
prompt> ./importSpice.csh
prompt> rm toolkit.tar

•  For PC Windows, execute the toolkit.exe application (or cspice or icy or
mice) to expand the archive.

> toolkit

•  You now have the expanded toolkit (or cspice or icy or mice) package.

Installing Toolkit

Navigation and Ancillary Information Facility

N IF

Installing the SPICE Toolkit 5

Configuring Your Computer

•  For some programming environments there are
required additional steps to prepare for
programming using SPICE.

•  For some programming environments there are
recommended additional steps to make program
development easier.

•  Read the “Preparing for Programming” tutorial
and the “README” file found in the Toolkit
download directory for more information!

Navigation and Ancillary Information Facility

N IF

Installing the SPICE Toolkit 6

•  Try the executables
–  Use tobin to convert the SPICE transfer format SPK and CK

files supplied with the Toolkit to local binary.
»  cook_01.tsp, cook_02.tsp, cook_01.tc, and cook_02.tc are

found in the ../data directory
–  Use brief, ckbrief or spacit to summarize the converted kernels.

•  Problems may occur if operating systems or
compiler versions are out of sync

–  Rebuild the Toolkit using the script “makeall.csh” (or
“makeall.bat”) located in the “top level” directory (toolkit or
cspice or icy or mice).

•  In the rare circumstance that things still don’t
work, contact your System Administrator or NAIF.

Checking It Out

Navigation and Ancillary Information Facility

N IF

Installing the SPICE Toolkit 7

•  Getting the Toolkit using command line FTP

Backup

Navigation and Ancillary Information Facility

N IF

Installing the SPICE Toolkit 8

Terminal Window

prompt> ftp naif.jpl.nasa.gov

Connected to naif.jpl.nasa.gov
220 Welcome to the NAIF FTP service.

Name (your.sight:your_name): anonymous
331 Please specify the password
Password: your@e.mail.address
230-
230- ==
230- | Jet Propulsion Laboratory |
230- | * * * W A R N I N G * * * |
230- | Property of the |
230- | UNITED STATES GOVERNMENT |
230- ==
230-
230 Login successful. Have fun.
Remote system type is UNIX.
Using binary mode to transfer files.

ftp> cd pub/naif/toolkit/<FORTRAN or C or IDL or MATLAB>
250 CWD command successful.
ftp> dir

Command line FTP - 1

Navigation and Ancillary Information Facility

N IF

Installing the SPICE Toolkit 9

Terminal Window

ftp> dir
Mac_OSX_Absoft
Mac_OSX_IFORT
Mac_OSX_g77
PC_Cygwin
PC_Linux
PC_Windows_Digital
PC_Windows_IFORT
PC_Windows_Lahey
Sun_Solaris

FORTRAN C

Command line FTP - 2

ftp> dir
Mac_OSX_Apple_C
Mac_OSX_Intel_C
PC_Cygwin_C
PC_Linux_C
PC_Linux_C_64bit
PC_Windows_Visual_C
Sun_Solaris_C
Sun_Solaris_GCC
Sun_Solaris_GCC_64bit

ftp> dir
Mac_OSX_Apple_C
Mac_OSX_Intel_C
PC_Linux_C
PC_Windows_Visual_C
Sun_Solaris_C
Sun_Solaris_GCC

IDL

The environments available at the time you download
the Toolkit may differ from those shown here.

ftp> dir
Mac_OSX_Apple_C
Mac_OSX_Intel_C
PC_Linux_C
PC_Windows_Visual_C

MATLAB

Navigation and Ancillary Information Facility

N IF

Installing the SPICE Toolkit 10

Terminal Window

ftp> cd <environment>/packages
ftp> binary
200 Type set to I
ftp> get toolkit.tar.Z
 (or toolkit.exe
 or cspice.tar.Z or cspice.exe
 or icy.tar.Z or icy.exe
 or mice.tar.Z or mice.exe)
. . .
ftp> ascii
200 Type set to A
ftp> get importSpice.csh
 (or importCSpice.csh
 or importIcy.csh
 or importMice.csh)
 (not availabe for Windows environment)
ftp> get README
ftp> get dscriptn.txt
ftp> get whats.new
ftp> quit

Command line FTP - 3

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE
“Icy”

How to Access the CSPICE library from the
Interactive Data Language (IDL)©

March 2010

© ITT Inc.

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 2

Topics

•  Icy Benefits
•  How does it work?
•  Distribution
•  Icy Operation
•  Vectorization
•  Simple Use of Icy Functionality

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 3

•  Ease of use: Icy operates as an extension to the IDL
language regime.

•  Icy supports more than three-hundred CSPICE routines.
•  Icy calls usually correspond to the call format of the

underlying CSPICE routine, returning IDL native data types.
•  Icy has some capability not available in CSPICE such as

vectorization.
•  CSPICE error messages return to IDL in a form usable by the

catch error handler construct.

Icy Benefits

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 4

•  The IDL environment includes an intrinsic capability to use
external routines.

–  Icy functions as an IDL Dynamically Loadable Module
(DLM). A DLM consists of a shared object library
(icy.so/.dll) and a DLM text definition file (icy.dlm).
»  The shared library contains a set of IDL callable C interface routines

that wrap a subset of CSPICE wrapper calls.
»  The text definition file lists the routines within the shared library and

the format for the routine’s call parameters.
•  Using Icy from IDL requires you register the Icy DLM with IDL

to access the interface routines. Several means exist to do
so:

–  on Unix/Linux, start IDL from the directory containing icy.dlm
and icy.so

How Does It Work? (1)

continued on next page

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 5

How Does It Work? (2)

–  from the IDL interpreter (or from a command script), execute the
dlm_register command
IDL> dlm_register,’_path_to_directory_containing_icy.dlm_’
»  IDL> dlm_register, ‘/naif/icy/lib/icy.dlm’
»  IDL> dlm_register, ‘c:\naif\icy\lib\icy.dlm’

–  copy icy.dlm and icy.so (icy.dll) to IDL's binary directory
{The IDL install directory}/bin/bin.user_architecture
»  /usr/local/itt/idl64/bin/bin.linux.x86/
»  C:\ITT\IDL64\bin\bin.x86\

–  append to the IDL_DLM_PATH environment variable the
directory name containing icy.dlm and icy.so (icy.dll) e.g.:
setenv IDL_DLM_PATH "<IDL_DEFAULT>:_path_to_directory_containing_icy.dlm_”

 Caveat: with regards to the Icy source directory, icy/src/icy, do not invoke IDL from the directory,
do not register the directory, and do not append to IDL_DLM_PATH the directory. This directory
contains an “icy.dlm” but no “icy.so.”

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 6

When a user invokes a call to a DLM routine:

 1. IDL calls…
 2. the interface routine in the shared object
 library, linked against…
 3. CSPICE, which performs its function and
 returns the result…
 4. to IDL…

… transparent from the user’s perspective.

How Does It Work? (3)

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 7

Icy Distribution

•  NAIF distributes the Icy package as an independent product
analogous to SPICELIB and CSPICE.

•  The package includes:
–  the CSPICE source files
–  the Icy interface source code
–  platform specific build scripts for Icy and CSPICE
–  IDL versions of the SPICE cookbook programs, states, tictoc,

subpt, and simple
–  an HTML based help system for both Icy and CSPICE, with the

Icy help cross-linked to CSPICE
–  the Icy shared library and DLM file. The system is ready for use

after installation of the these files
•  Note: You do not need a C compiler to use Icy.

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 8

Icy Operation (1)

•  A user may occasionally encounter an IDL math exception:

 % Program caused arithmetic error: Floating underflow

–  This warning occurs most often as a consequence of CSPICE
math operations.

•  In all known cases, the SIGFPE exceptions caused by
CSPICE can be ignored. CSPICE assumes numeric underflow
as zero.

–  A user can adjust IDL’s response to math exceptions by setting
the !EXCEPT variable:
»  !EXCEPT = 0 suppresses the SIGFPE messages, and even more

(e.g. a fatal error).
»  !EXCEPT = 1, the default, reports math exceptions on return to the

interactive prompt.
•  NAIF recommends this be used.

»  !EXCEPT = 2 reports exceptions immediately after executing the
command.

continued on next page

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 9

Icy Operation (2)

•  A possible irritant exists in loading kernels using
the cspice_furnsh function.

– Kernels are loaded into your IDL session, not into your
IDL scripts. This means:

»  loaded binary kernels remain accessible (“active”)
throughout your IDL session

»  data from loaded text kernels remain in the kernel pool (in
the IDL memory space) throughout your IDL session

– Consequence: some kernel data may be available to one
of your scripts even though not intended to be so.

»  You could get incorrect results!
»  (If you run only one script during your IDL session, there’s

no problem.)

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 10

– Mitigation: two approaches
»  Load all needed SPICE kernels for your IDL session at

the beginning of the session, paying careful attention
to the files loaded and the loading order (loading order
affects precedence)

•  Convince yourself that this approach will provide ALL of the
scripts you will run during this IDL session with the appropriate
SPICE data

» At or near the end of every IDL script you write:
•  provide a call to cspice_unload for each kernel loaded

using cspice_furnsh
•  provide a call to cspice_kclear to remove ALL kernel

data from the kernel pool

Icy Operation (3)

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 11

Icy Vectorization (1)

•  Several common Icy functions include use of vectorized
arguments, a capability not available in C or FORTRAN
toolkits.

–  Note: IDL indexes arrays using a base value of zero as opposed
to FORTRAN, which uses a base value of one.

»  Example: access the first element of an IDL 1xN array using array
[0], the second element using array[1], etc.

•  Example: use Icy to retrieve state vectors and light-time
values for 1000 ephemeris times.

–  Create an array of 1000 ephemeris times with step size of 10
hours, starting from July 1, 2005.

cspice_str2et, 'July 1, 2005', start

et = dindgen(1000)*36000.d + start

continued on next page

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 12

–  Retrieve the state vectors and corresponding light times from
Mars to earth at each et, in the J2000 frame, using LT+S
aberration correction:!

cspice_spkezr, 'Earth', et, 'J2000', 'LT+S', 'MARS', state, ltime

–  Access the ith state 6-vector corresponding to the ith ephemeris
time with the expression

state_i = state[*,i]

•  Convert the ephemeris time vector et from the previous
example to UTC calendar strings with three decimal places
accuracy.
format = 'C'

prec = 3

cspice_et2utc, et, format, prec, utcstr!

Icy Vectorization (2)

continued on next page

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 13

–  The call returns utcstr, an array of 1000 strings each ith string
the calendar date corresponding to et[i]. Access the ith string of
utcstr corresponding to the ith ephemeris time with the expression

utcstr_i = utcstr[i]

•  Convert the position components of the N state vectors to
latitudinal coordinates (the first three components of a state
vector - IDL uses a zero based vector index).

cspice_reclat, state[0:2,*], radius, latitude, longitude

–  The call returns three double precision variables of type Array
[1000] (vectorized scalars): radius, latitude, longitude.

Icy Vectorization (3)

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 14

Simple Use of Icy Functionality

•  As an example of Icy use with vectorization, calculate and plot
the trajectory in the J2000 inertial frame of the Cassini
spacecraft from June 20, 2004 to December 1, 2005.

;; Define the number of divisions of the time interval and the time interval.

STEP = 10000

utc = ['Jun 20, 2004', 'Dec 1, 2005']

;; Load the needed kernels

cspice_furnsh, 'standard.tm'

cspice_furnsh, '/kernels/cassini/spk/T18-5TDJ5.bsp'

cspice_str2et, utc, et

times = dindgen(STEP)*(et[1]-et[0])/STEP + et[0]

cspice_spkpos, 'Cassini', times, 'J2000', 'NONE', 'SATURN BARYCENTER', pos, ltime

;; Plot the resulting trajectory.

x = pos[0,*]

y = pos[1,*]

z = pos[2,*]

iplot, x, y, z

cspice_kclear

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 15

Graphic Output using IDL iTool

Trajectory of the Cassini vehicle in the J2000 frame, for June 20, 2004 to Dec 1, 2005

x

y
z

Navigation and Ancillary Information Facility

N IF

Matlab Interface to CSPICE
“Mice”

How to Access the CSPICE library Using
Matlab©

March 2010

© The MathWorks Inc.

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 2

Topics

•  Mice Benefits
•  How does it work?
•  Distribution
•  Mice Operation
•  Vectorization
•  Simple Mice Example

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 3

•  Mice operates as an extension to the Matlab environment.
•  All Mice calls are functions regardless of the call format of

the underlying CSPICE routine, returning Matlab native data
types.

•  Mice has some capability not available in CSPICE such as
vectorization.

•  CSPICE error messages return to Matlab in the form usable
by the try...catch construct.

Mice Benefits

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 4

•  The Matlab environment includes an intrinsic capability to use
external routines.
–  Mice functions as a Matlab Executable, MEX, consisting of the

Mice MEX shared object library and a set of .m wrapper files.
»  The Mice library contains the Matlab callable C interface routines

that wrap a subset of CSPICE wrapper calls.
»  The wrapper files, named cspice_*.m and mice_*.m, provide the

Matlab calls to the interface functions.
»  A function prefixed with ‘cspice_’ retains essentially the same

argument list as the CSPICE counterpart.
»  An interface prefixed with ‘mice_’ returns a structure, with the

fields of the structure corresponding to the output arguments
of the CSPICE counterpart.

»  The wrappers include a header section describing the function call,
displayable by the Matlab help command.

How Does It Work? (1)

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 5

When a user invokes a call to a Mice function:

 1. Matlab calls…
 2. the function's wrapper, which calls…
 3. the Mice MEX shared object library, which

performs its function then returns the result…
 4. to the wrapper, which…

5. returns the result to the user

… transparent from the user’s perspective.

How Does It Work? (2)

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 6

Mice Distribution

•  NAIF distributes Mice as a complete, standalone package.
•  The package includes:

–  the CSPICE source files
–  the Mice interface source code
–  platform specific build scripts for Mice and CSPICE
–  Matlab versions of the SPICE cookbook programs, states, tictoc,

subpt, and simple
–  an HTML based help system for both Mice and CSPICE, with the

Mice help cross-linked to CSPICE
–  the Mice MEX shared library and the M wrapper files. The system

is ready for use after installation of the the library and wrapper
files.

•  Note: You do not need a C compiler to use Mice.

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 7

Mice Operation (1)

•  A possible irritant exists in loading kernels using the
cspice_furnsh function.

–  Kernels load into your Matlab session, not into your Matlab
scripts. This means:

»  loaded binary kernels remain accessible (“active”) throughout your
Matlab session

»  data from loaded text kernels remain in the kernel pool (in the memory
space used by CSPICE) throughout your Matlab session

–  Consequence: some kernel data may be available to one of your
scripts even though not intended to be so.

»  You could get incorrect results!
»  If you run only one script during your Matlab session, there’s no

problem.

continued on next page

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 8

Mice Operation (2)

•  Mitigation: two approaches
–  Load all needed SPICE kernels for your Matlab session at the

beginning of the session, paying careful attention to the files
loaded and the loading order (loading order affects precedence)

»  Convince yourself that this approach will provide ALL of the scripts
you will run during this Matlab session with the appropriate SPICE
data

–  At or near the end of every Matlab script:
»  include a call to cspice_unload for each kernel loaded using
cspice_furnsh

»  or include a call to cspice_kclear to remove ALL kernel data from
the kernel pool loaded using cspice_furnsh

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 9

•  Most Mice functions include use of vectorized arguments, a
capability not available in C or Fortran toolkits.

•  Example: use Mice to retrieve state vectors and light-time
values for 1000 ephemeris times.

–  Create the array of 1000 ephemeris times in steps of 10 hours,
keyed on July 1, 2005:

start = cspice_str2et('July 1 2005');

et = (0:999)*36000 + start;!

–  Retrieve the state vectors and corresponding light times from
Mars to earth at each et in the J2000 frame with LT+S aberration
correction:

[state, ltime] = cspice_spkezr('Earth', et, 'J2000', 'LT+S', 'MARS');

 or
starg = mice_spkezr('Earth', et, 'J2000', 'LT+S', 'MARS');

Mice Vectorization (1)

continued on next page

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 10

–  Access the ith state 6-vector (6x1 array) corresponding to the ith
ephemeris time with the expression

 state_i = state(:,i)

 or
 state_i = starg(i).state

•  Convert the ephemeris time vector et from the previous
example to UTC calendar strings with three decimal places of
precision in the seconds field.

 format = 'C';

 prec = 3;

 utcstr = cspice_et2utc(et, format, prec);

–  The call returns utcstr, an array of 1000 strings (dimensioned
1000x24), where each ith string is the calendar date corresponding
to et(i).

Mice Vectorization (2)

continued on next page

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 11

–  Access the ith string of utcstr corresponding to the ith ephemeris
time with the expression

 utcstr_i = utcstr(i,:)

•  Convert the position components (the first three components
in a state vector) of the N state vectors returned in state by
the cspice_spkezr function to latitudinal coordinates.

 [radius, latitude, longitude] = cspice_reclat(state(1:3,:));

–  The call returns three double precision 1x1000 arrays (vectorized
scalars): radius, latitude, longitude.

Mice Vectorization (3)

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 12

Simple Mice Example (1)

•  As an example of Mice use, calculate and plot the trajectory in
the J2000 inertial frame of the Cassini spacecraft from June
20, 2004 to December 1, 2005. This example uses the
cspice_spkpos function to retrieve position data.

% Define the number of divisions of the time interval and the time interval.
STEP = 1000;

% Load the needed kernels. Use a meta kernel "standard.ker" to load the kernels
% "naif0009.tls," "de405_2000-2050.bsp," "pck00008.tpc."

cspice_furnsh({ 'standard.tm', '/kernels/cassini/spk/T18-5TDJ5.bsp'})

et = cspice_str2et({'Jun 20, 2004', 'Dec 1, 2005'});
times = (0:STEP-1) * (et(2) - et(1))/STEP + et(1);

[pos,ltime]= cspice_spkpos('Cassini', times, 'J2000', 'NONE', 'SATURN BARYCENTER');

% Plot the resulting trajectory.
x = pos(1,:);
y = pos(2,:);
z = pos(3,:);

plot3(x,y,z)

cspice_kclear

continued on next page

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 13

Simple Mice Example (2)

•  The example script using the mice_spkezr function.
% Define the number of divisions of the time interval and the time interval.
STEP = 1000;

% Load the needed kernels. Use a meta kernel "standard.ker" to load the kernels
% "naif0000.tls," "de405_2000-2050.bsp," "pck00008.tpc."

cspice_furnsh({ 'standard.tm', '/kernels/cassini/spk/T18-5TDJ5.bsp'})

et = cspice_str2et({'Jun 20, 2004', 'Dec 1, 2005'});
times = (0:STEP-1) * (et(2) - et(1))/STEP + et(1);

ptarg = mice_spkpos('Cassini', times, 'J2000', 'NONE', 'SATURN BARYCENTER');
pos = [ptarg.pos];

% Plot the resulting trajectory.
x = pos(1,:);
y = pos(2,:);
z = pos(3,:);

plot3(x,y,z)

cspice_kclear

continued on next page

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 14

Mice Example Graphic Output

Trajectory of the Cassini vehicle in the J2000 frame, for June 20, 2004 to Dec 1, 2005

Navigation and Ancillary Information Facility

N IF

Writing an Mice (MATLAB)
Based Program

March 2010

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 2

Undefined variables are displayed in
red; results are displayed in blue.

Viewing This Tutorial

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 3

First, let's go over the important steps in the process of writing a Mice-based
program and putting it to work:

•  Understand the geometry problem.
•  Identify the set of SPICE kernels that contain the data needed to perform the

computation.
•  Formulate an algorithm to compute the quantities of interest using SPICE.
•  Write and compile the program.
•  Get actual kernel files and verify that they contain the data needed to support

the computation for the time(s) of interest.
•  Run the program.

To illustrate these steps, let's write a program that computes the apparent
intersection of the boresight ray of a given CASSINI science instrument with the
surface of a given Saturnian satellite. The program will compute:

•  Planetocentric and planetodetic (geodetic) latitudes and longitudes of the
intercept point.

•  Range from spacecraft to intercept point.
•  Illumination angles (phase, solar incidence, and emission) at the intercept point.

Introduction

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 4

on-board clock ephemeris time UTC time

inertial frame

spacecraft
 frame

instrument
 frame

instrument
 boresight

body-fixed
 frame

 surface
intersection

spacecraft
 position

planetocentric
 latitude planetocentric

 longitude

Using what model?

We want the boresight
intercept on the surface, range
from s/c to intercept, and
illumination angles at
the intercept point.

When?

On what object?

For which instrument?

For what spacecraft?

TIME (UTC, TDB or TT)

satnm

 instnm

scnm

setupf

Observation geometry

Phase angle

solar incidence angle

surface normal

emission angle

In what frame? fixref

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 5

Needed Data

on-board clock ephemeris time UTC time

inertial frame

spacecraft
 frame

instrument
 frame

instrument
 boresight

body-fixed
 frame

 surface
intersection

spacecraft
 position

planetocentric
 latitude planetocentric

 longitude

Time transformation kernels

Orientation models

Instrument descriptions

Shapes of satellites, planets

Ephemerides for spacecraft,
Saturn barycenter and satellites.

surface normal

solar incidence angle

emission angle

Phase angle

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 6

Data required to compute vectors, rotations and other parameters shown in
the picture are stored in the SPICE kernels listed below.

 Note: these kernels have been selected to support this presentation; they should not be assumed to be
appropriate for user applications.

 Parameter Kernel Type File name
 ----------------------- -------------- ------------
 time conversions generic LSK naif0009.tls
 CASSINI SCLK cas00084.tsc
 satellite orientation CASSINI PCK cpck05Mar2004.tpc
 satellite shape CASSINI PCK cpck05Mar2004.tpc
 satellite position planet/sat
 ephemeris SPK 020514_SE_SAT105.bsp
 planet barycenter position planet SPK 981005_PLTEPH-DE405S.bsp
 spacecraft position spacecraft SPK 030201AP_SK_SM546_T45.bsp
 spacecraft orientation spacecraft CK 04135_04171pc_psiv2.bc
 instrument alignment CASSINI FK cas_v37.tf
 instrument boresight Instrument IK cas_iss_v09.ti

 Which Kernels are Needed?

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 7

The easiest and most flexible way to make these kernels available to the program is
via cspice_furnsh. For this example we make a setup file (also called a “metakernel”
or “furnsh kernel”) containing a list of kernels to be loaded:

\begindata

 KERNELS_TO_LOAD = ('naif0009.tls', 'cas00084.tsc', 'cpck05Mar2004.tpc',!
 '020514_SE_SAT105.bsp', '981005_PLTEPH-DE405S.bsp', !
 '030201AP_SK_SM546_T45.bsp', '04135_04171pc_psiv2.bc',!

 'cas_v37.tf', 'cas_iss_v09.ti')!
\begintext

 and we make the program prompt for the name of this setup file:

 setupf = input('Enter setup file name > ', 's');
 cspice_furnsh(setupf)

Load kernels

Note: these kernels have been selected to support this presentation; they
should not be assumed to be appropriate for user applications.

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 8

Programming Solution

•  Prompt for setup file (“metakernel”) name; load kernels specified via setup
file. (Done on previous chart.)

•  Prompt for user inputs required to completely specify problem. Obtain
further inputs required by geometry routines via Mice calls.

•  Compute the intersection of the boresight direction ray with the surface of
the satellite, presented as a triaxial ellipsoid.

•  If there is an intersection:
•  Convert Cartesian coordinates of the intersection point to
planetocentric latitudinal and planetodetic coordinates
•  Compute spacecraft-to-intercept point range
•  Find the illumination angles (phase, solar incidence, and emission) at
the intercept point

•  Display the results.

We discuss the geometric portion of the problem first.

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 9

Compute the intercept point (point) of the boresight vector (insite) specified in
the instrument frame (iframe) of the instrument mounted on the spacecraft (scnm)
with the surface of the satellite (satnm) at the TDB time of interest (et) in the
satellite’s body-fixed frame (fixref). This call also returns the light-time
corrected epoch at the intercept point (trgepc), the spacecraft-to-intercept point
vector (srfvec), and a flag indicating whether the intercept was found (found).
We use "converged Newtonian" light time plus stellar aberration corrections to
produce the most accurate surface intercept solution possible. We model the
surface of the satellite as an ellipsoid.

 [point, trgepc, srfvec, found] = cspice_sincpt(...
 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, iframe, insite);

Compute surface intercept

The range we want is obtained from the outputs of cspice_sincpt. These
outputs are defined only if a surface intercept is found. If found is true, the
spacecraft-to-surface intercept range is the norm of the output argument srfvec.
Units are km. We use the MATLAB function norm to obtain the norm:

norm(srfvec)

We'll write out the range data along with the other program results.

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 10

Compute Lat/Lon and Illumination Angles

Compute the planetocentric latitude (pclat) and longitude (pclon), as well as
the planetodetic latitude (pdlat) and longitude (pdlon) of the intersection
point.

if (found)
 [r, pclon, pclat] = cspice_reclat(point);

% Let re, rp, and f be the satellite's longer equatorial
% radius, polar radius, and flattening factor.
re = radii(1);
rp = radii(3);
f = (re - rp) / re;

[pdlat, pdlat, alt] = cspice_recgeo(point, re, f);

The illumination angles we want are the outputs of cspice_ilumin. Units are
radians.

 [trgepc, srfvec, phase, solar, emissn] = cspice_ilumin(...
 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, point);

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 11

Geometry Calculations: Summary

 % Compute the boresight ray intersection with the surface of the
 % target body.
 [point, trgepc, srfvec, found] = cspice_sincpt(...
 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, iframe, insite);
 % If an intercept is found, compute planetocentric and planetodetic
 % latitude and longitude of the point.
 if (found)
 [r, pclon, pclat] = cspice_reclat(point);
 % Let re, rp, and f be the satellite's longer equatorial
 % radius, polar radius, and flattening factor.
 re = radii(1);
 rp = radii(3);
 f = (re - rp) / re;
 [pdlon, pdlat, alt] = cspice_recgeo(point, re, f);
 % Compute illumination angles at the surface point.
 [trgepc, srfvec, phase, solar, emissn] = cspice_ilumin(...
 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, point);
 ...
 else
 ...

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 12

The code above used quite a few inputs that we don't have yet:

•  TDB epoch of interest (et);
•  satellite and s/c names (satnm, scnm);
•  satellite body-fixed frame name (fixref);
•  satellite ellipsoid radii (radii);
•  instrument fixed frame name (iframe);
•  instrument boresight vector in the instrument frame (insite);

Some of these values are user inputs; others can be obtained via CSPICE calls
once the required kernels have been loaded.

Let's prompt for the satellite name (satnm), satellite frame name (fixref),
spacecraft name (scnm), instrument name (instnm) and time of interest (time):

 satnm = input('Enter satellite name > ', 's');
 fixref = input('Enter satellite frame > ', 's');
 scnm = input('Enter spacecraft name > ', 's');
 instnm = input('Enter instrument name > ', 's');
 time = input('Enter time > ', 's');

Get inputs - 1

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 13

Get Inputs - 2

Then we can get the rest of the inputs from Mice calls:

To get the TDB epoch (et) from the user-supplied time string (which may
refer to the UTC, TDB or TT time systems):

 et = cspice_str2et(time);

To get the satellite’s ellipsoid radii (radii):

 radii = cspice_bodvrd(satnm, 'RADII', 3);	

To get the instrument boresight direction (insite) and the name of the
 instrument frame (iframe) in which it is defined:

 [instid, found] = cspice_bodn2c(instnm);
 if (~found)
 txt = sprintf('Unable to determine ID for instrument: %d', ...
 instnm);
 error(txt)
 end

 [shape, iframe, insite, bundry] = cspice_getfov(instid, ROOM);	

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 14

Getting inputs: summary

 % Prompt for the user-supplied inputs for our program.
 setupf = input('Enter setup file name > ', 's');
 cspice_furnsh(setupf)
 satnm = input('Enter satellite name > ', 's');
 fixref = input('Enter satellite frame > ', 's');
 scnm = input('Enter spacecraft name > ', 's');
 instnm = input('Enter instrument name > ', 's');
 time = input('Enter time > ', 's');

 % Get the epoch corresponding to the input time:
 et = cspice_str2et(time);

 % Get the radii of the satellite.
 radii = cspice_bodvrd(satnm, 'RADII', 3);

 % Get the instrument boresight and frame name.
 [instid, found] = cspice_bodn2c(instnm);
 if (~found)
 txt = sprintf('Unable to determine ID for instrument: %d', ...
 instnm);
 error(txt)
 end
 [shape, iframe, insite, bundry] = cspice_getfov(instid, ROOM);

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 15

Display results

 ...
 % Display results. Convert angles from radians to degrees
 % for output.	
 fprintf('Intercept planetocentric longitude (deg): %11.6f\n', ...
 R2D*pclon)
 fprintf('Intercept planetocentric latitude (deg): %11.6f\n', ...
 R2D*pclat)
 fprintf('Intercept planetodetic longitude (deg): %11.6f\n', ...

 R2D*pdlon)
 fprintf('Intercept planetodetic latitude (deg): %11.6f\n', ...

 R2D*pdlat)
 fprintf('Range from spacecraft to intercept point (km): %11.6f\n', ...
 norm(srfvec))
 fprintf('Intercept phase angle (deg): %11.6f\n', ...

 R2D*phase)
 fprintf('Intercept solar incidence angle (deg): %11.6f\n', ...

 R2D*solar)
 fprintf('Intercept emission angle (deg): %11.6f\n', ...
 R2D*emissn)

 else
 disp(['No intercept point found at ' time])
 end	

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 16

To finish up the program we need to declare the variables we've used.

•  We'll highlight techniques used by NAIF programmers
•  Add remaining MATLAB code required to make a syntactically valid

program

Complete the program

 ABCORR = 'CN+S';
 ROOM = 10;
 R2D = cspice_dpr;

 % Prompt for the user-supplied inputs for our program.
 setupf = input('Enter setup file name > ', 's');
 cspice_furnsh(setupf)

 satnm = input('Enter satellite name > ', 's');
 fixref = input('Enter satellite frame > ', 's');
 scnm = input('Enter spacecraft name > ', 's');
 instnm = input('Enter instrument name > ', 's');
 time = input('Enter time > ', 's');

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 17

Complete source code - 1

 % Get the epoch corresponding to the input time:
 et = cspice_str2et(time);

 % Get the radii of the satellite.
 radii = cspice_bodvrd(satnm, 'RADII', 3);

 % Get the instrument boresight and frame name.
 [instid, found] = cspice_bodn2c(instnm);

 if (~found)
 txt = sprintf('Unable to determine ID for instrument: %d', ...
 instnm);
 error(txt)
 end

 [shape, iframe, insite, bundry] = cspice_getfov(instid, ROOM);

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 18

Complete source code - 2

 % Compute the boresight ray intersection with the surface of the
 % target body.
 [point, trgepc, srfvec, found] = cspice_sincpt(...
 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, iframe, insite);

 % If an intercept is found, compute planetocentric and planetodetic
 % latitude and longitude of the point.
 if (found)
 [r, pclon, pclat] = cspice_reclat(point);

 % Let re, rp, and f be the satellite's longer equatorial
 % radius, polar radius, and flattening factor.
 re = radii(1);
 rp = radii(3);
 f = (re - rp) / re;

 [pdlon, pdlat, alt] = cspice_recgeo(point, re, f);

 % Compute illumination angles at the surface point.
 [trgepc, srfvec, phase, solar, emissn] = cspice_ilumin(...
 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, point);

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 19

Complete source code - 3

 % Display results. Convert angles from radians to degrees
 % for output.
 fprintf('Intercept planetocentric longitude (deg): %11.6f\n',...
 R2D*pclon)
 fprintf('Intercept planetocentric latitude (deg): %11.6f\n',...
 R2D*pclat)
 fprintf('Intercept planetodetic longitude (deg): %11.6f\n',...

 R2D*pdlon)
 fprintf('Intercept planetodetic latitude (deg): %11.6f\n',...

 R2D*pdlat)
 fprintf('Range from spacecraft to intercept point (km): %11.6f\n',...

 norm(srfvec))
 fprintf('Intercept phase angle (deg): %11.6f\n',...

 R2D*phase)
 fprintf('Intercept solar incidence angle (deg): %11.6f\n',...

 R2D*solar)
 fprintf('Intercept emission angle (deg): %11.6f\n’,...
 R2D*emissn)
 else
 disp(['No intercept point found at ' time]
 end

 % Unload the kernels and clear the kernel pool
 cspice_kclear

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 20

It looks like we have everything taken care of:

•  We have all necessary kernels

•  We made a setup file (metakernel) pointing to them

•  We wrote the program

Let's run it.

Running the program

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 21

Running the program

Terminal Window

>>
Enter setup file name > setup.ker
Enter satellite name > PHOEBE
Enter satellite frame > IAU_PHOEBE
Enter spacecraft name > CASSINI
Enter instrument name > CASSINI_ISS_NAC
Enter time > 2004 jun 11 19:32:00

Intercept planetocentric longitude (deg): 39.843719
Intercept planetocentric latitude (deg): 4.195878
Intercept planetodetic longitude (deg): 39.843719
Intercept planetodetic latitude (deg): 5.048011
Range from spacecraft to intercept point (km): 2089.169724
Intercept phase angle (deg): 28.139479
Intercept solar incidence angle (deg): 18.247220
Intercept emission angle (deg): 17.858309

prog_geometry

Navigation and Ancillary Information Facility

N IF

Writing a Mice-based program 22

•  Latitude definitions:
–  Planetocentric latitude of a point P: angle between segment from

origin to point and x-y plane (red arc in diagram).
–  Planetodetic latitude of a point P: angle between x-y plane and

extension of ellipsoid normal vector N that connects x-y plane and
P (blue arc in diagram).

Backup

P

O

Reference ellipsoid

x-y plane

z-axis
N

Planetocentric
latitude Planetodetic

latitude

Navigation and Ancillary Information Facility

N IF

Writing an Icy (IDL)
Based Program

March 2010

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 2

Undefined variables are displayed in
red; results are displayed in blue.

Viewing This Tutorial

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 3

First, let's go over the important steps in the process of writing a Icy-based
program and putting it to work:

•  Understand the geometry problem.
•  Identify the set of SPICE kernels that contain the data needed to perform the

computation.
•  Formulate an algorithm to compute the quantities of interest using SPICE.
•  Write and compile the program.
•  Get actual kernel files and verify that they contain the data needed to support

the computation for the time(s) of interest.
•  Run the program.

To illustrate these steps, let's write a program that computes the apparent
intersection of the boresight ray of a given CASSINI science instrument with the
surface of a given Saturnian satellite. The program will compute:

•  Planetocentric and planetodetic (geodetic) latitudes and longitudes of the
intercept point.

•  Range from spacecraft to intercept point.
•  Illumination angles (phase, solar incidence, and emission) at the intercept point.

Introduction

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 4

on-board clock ephemeris time UTC time

inertial frame

spacecraft
 frame

instrument
 frame

instrument
 boresight

body-fixed
 frame

 surface
intersection

spacecraft
 position

planetocentric
 latitude planetocentric

 longitude

Using what model?

We want the boresight
intercept on the surface, range
from s/c to intercept, and
illumination angles at
the intercept point.

When?

On what object?

For which instrument?

For what spacecraft?

TIME (UTC, TDB or TT)

satnm

 instnm

scnm

setupf

Observation geometry

Phase angle

solar incidence angle

surface normal

emission angle

In what frame? fixref

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 5

Needed Data

on-board clock ephemeris time UTC time

inertial frame

spacecraft
 frame

instrument
 frame

instrument
 boresight

body-fixed
 frame

 surface
intersection

spacecraft
 position

planetocentric
 latitude planetocentric

 longitude

Time transformation kernels

Orientation models

Instrument descriptions

Shapes of satellites, planets

Ephemerides for spacecraft,
Saturn barycenter and satellites.

surface normal

solar incidence angle

emission angle

phase angle

sun

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 6

Data required to compute vectors, rotations and other parameters shown in
the picture are stored in the SPICE kernels listed below.

 Note: these kernels have been selected to support this presentation; they should not be assumed to be
appropriate for user applications.

 Parameter Kernel Type File name
 ----------------------- -------------- ------------
 time conversions generic LSK naif0009.tls
 CASSINI SCLK cas00084.tsc
 satellite orientation CASSINI PCK cpck05Mar2004.tpc
 satellite shape CASSINI PCK cpck05Mar2004.tpc
 satellite position planet/sat
 ephemeris SPK 020514_SE_SAT105.bsp
 planet barycenter position planet SPK 981005_PLTEPH-DE405S.bsp
 spacecraft position spacecraft SPK 030201AP_SK_SM546_T45.bsp
 spacecraft orientation spacecraft CK 04135_04171pc_psiv2.bc
 instrument alignment CASSINI FK cas_v37.tf
 instrument boresight Instrument IK cas_iss_v09.ti

 Which Kernels are Needed?

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 7

The easiest and most flexible way to make these kernels available to the program is
via cspice_furnsh. For this example we make a setup file (also called a “metakernel”
or “furnsh kernel”) containing a list of kernels to be loaded:

\begindata

 KERNELS_TO_LOAD = ('naif0009.tls', 'cas00084.tsc', 'cpck05Mar2004.tpc',!
 '020514_SE_SAT105.bsp', '981005_PLTEPH-DE405S.bsp',!
 '030201AP_SK_SM546_T45.bsp', '04135_04171pc_psiv2.bc',!
 'cas_v37.tf', 'cas_iss_v09.ti')
\begintext

 and we make the program prompt for the name of this setup file:

 read, setupf, PROMPT='Enter setup file name > '
 cspice_furnsh, setupf

Load kernels

Note: these kernels have been selected to support this presentation; they
should not be assumed to be appropriate for user applications.

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 8

Programming Solution

•  Prompt for setup file (“metakernel”) name; load kernels specified via setup
file. (Done on previous chart.)

•  Prompt for user inputs required to completely specify problem. Obtain
further inputs required by geometry routines via Icy calls.

•  Compute the intersection of the boresight direction ray with the surface of
the satellite, presented as a triaxial ellipsoid.

 If there is an intersection,

• Convert Cartesian coordinates of the intersection point to planetocentric
latitudinal and planetodetic coordinates
• Compute spacecraft-to-intercept point range
• Find the illumination angles (phase, solar incidence, and emission) at
the intercept point

•  Display the results.

We discuss the geometric portion of the problem first.

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 9

Compute the intercept point (point) of the boresight vector (insite) specified in
the instrument frame (iframe) of the instrument mounted on the spacecraft (scnm)
with the surface of the satellite (satnm) at the TDB time of interest (et) in the
satellite’s body-fixed frame (fixref). This call also returns the light-time
corrected epoch at the intercept point (trgepc), the spacecraft-to-intercept point
vector (srfvec), and a flag indicating whether the intercept was found (found).
We use "converged Newtonian" light time plus stellar aberration corrections to
produce the most accurate surface intercept solution possible. We model the
surface of the satellite as an ellipsoid.

 cspice_sincpt, 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, iframe, $
 insite, point, trgepc, srfvec, found

Compute surface intercept

The range we want is obtained from the outputs of cspice_sincpt. These
outputs are defined only if a surface intercept is found. If found is true, the
spacecraft-to-surface intercept range is the norm of the output argument srfvec.
Units are km. We use the Icy function cspice_vnorm to obtain the norm:

cspice_vnorm(srfvec)

We'll write out the range data along with the other program results.

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 10

Compute Lat/Lon and Illumination Angles

Compute the planetocentric latitude (pclat) and longitude (pclon), as well as
the planetodetic latitude (pdlat) and longitude (pdlon) of the intersection
point.

if (found) then begin
 cspice_reclat, point, r, pclon, pclat

;; Let re, rp, and f be the satellite's longer equatorial
;; radius, polar radius, and flattening factor.

re = radii[0]
rp = radii[2]
f = (re – rp) / re;

cspice_recgeo, point, re, f, pdlon, pdlat, alt

The illumination angles we want are the outputs of cspice_illum. Units are
radians.

 cspice_ilumin, 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, $
 point, trgepc, srfvec, phase, solar, emissn

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 11

 cspice_ilumin, 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, $
 point, trgepc, srfvec, phase, solar, emissn
 ...
 endif else begin
 ...

 ;; Compute the boresight ray intersection with the surface of the
 ;; target body.

 cspice_sincpt, 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, $
 iframe, insite, point, trgepc, srfvec, found

 ;; If an intercept is found, compute planetocentric and planetodetic
 ;; latitude and longitude of the point.

 if (found) then begin
 cspice_reclat, point, r, pclon, pclat
 ;; Let re, rp, and f be the satellite's longer equatorial
 ;; radius, polar radius, and flattening factor.
 re = radii[0]
 rp = radii[2]
 f = (re – rp) / re;
 cspice_recgeo, point, re, f, pdlon, pdlat, alt

 ;; Compute illumination angles at the surface point.

Geometry Calculations: Summary

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 12

The code above used quite a few inputs that we don't have yet:

•  TDB epoch of interest (et);
•  satellite and s/c names (satnm, scnm);
•  satellite body-fixed frame name (fixref);
•  satellite ellipsoid radii (radii);
•  instrument fixed frame name (iframe);
•  instrument boresight vector in the instrument frame (insite);

Some of these values are user inputs; others can be obtained via CSPICE calls
once the required kernels have been loaded.

Let's prompt for the satellite name (satnm), satellite frame name (fixref),
spacecraft name (scnm), instrument name (instnm) and time of interest (time):

 read, satnm , PROMPT='Enter satellite name > ’
 read, fixref, PROMPT='Enter satellite frame > ’
 read, scnm , PROMPT='Enter spacecraft name > '
 read, instnm, PROMPT='Enter instrument name > '
 read, time , PROMPT='Enter time > '

Get inputs - 1

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 13

Get Inputs - 2

Then we can get the rest of the inputs from Icy calls:

To get the TDB epoch (et) from the user-supplied time string (which may
refer to the UTC, TDB or TT time systems):
 cspice_str2et, time, et
To get the satellite’s ellipsoid radii (radii):
 cspice_bodvrd, satnm, "RADII", 3, radii

To get the instrument boresight direction (insite) and the name of the
 instrument frame (iframe) in which it is defined:

 cspice_bodn2c, instnm, instid, found
 if (NOT found) then begin
 print, "Unable to determine ID for instrument: ", instnm
 return
 endif
 cspice_getfov, instid, ROOM, shape, iframe, insite, bundry

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 14

Getting inputs: summary

 cspice_bodn2c, instnm, instid, found
 cspice_getfov, instid, ROOM, shape, iframe, insite, bundry

 ;; Prompt for the user-supplied inputs for our program
 read, setupf, PROMPT='Enter setup file name > ’
 cspice_furnsh, setupf

 read, satnm , PROMPT='Enter satellite name > ’
 read, fixref, PROMPT='Enter satellite frame > ’
 read, scnm , PROMPT='Enter spacecraft name > '
 read, instnm, PROMPT='Enter instrument name > '
 read, time , PROMPT='Enter time > '

 ;; Get the epoch corresponding to the input time:
 cspice_str2et, time, et

 ;; Get the radii of the satellite.

 cspice_bodvrd, satnm, "RADII", 3, radii

 ;; Get the instrument boresight and frame name.

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 15

Display results

;; Display results. Convert angles from radians to degrees for output.
print
print, 'Intercept planetocentric longitude (deg): ', $
 cspice_dpr()*pclon
print, 'Intercept planetocentric latitude (deg): ', $
 cspice_dpr()*pclat
print, 'Intercept planetodetic longitude (deg): ', $
 cspice_dpr()*pdlon
print, 'Intercept planetodetic latitude (deg): ', $
 cspice_dpr()*pdlat
print, 'Range from spacecraft to intercept point (km): ', $
 cspice_vnorm(srfvec)
print, 'Intercept phase angle (deg): ', $
 cspice_dpr()*phase
print, 'Intercept solar incidence angle (deg): ', $
 cspice_dpr()*solar
print, 'Intercept emission angle (deg): ', $
 cspice_dpr()*emissn

 endif else begin
 print, 'No intercept point found at ' + time
 endelse
END

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 16

To finish up the program we need to declare the variables we've used.

•  We'll highlight techniques used by NAIF programmers
•  Add remaining IDL code required to make a syntactically valid program

Complete the program

 ABCORR = ’CN+S'
 ROOM = 10L
 setupf = ''
 satnm = ''
 fixref = ''
 scnm = ''
 instnm = ''
 time = ''
 R2D = cspice_dpr()

PRO PROG_GEOMETRY

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 17

Complete source code -1

 cspice_bodn2c, instnm, instid, found
 if (NOT found) then begin
 print, "Unable to determine ID for instrument: ", instnm
 return
 endif
 cspice_getfov, instid, ROOM, shape, iframe, insite, bundry

 ;; Prompt for the user-supplied inputs for our program.
 read, setupf, PROMPT='Enter setup file name > '
 cspice_furnsh, setupf
 read, satnm , PROMPT='Enter satellite name > '
 read, fixref, PROMPT='Enter satellite frame > '
 read, scnm , PROMPT='Enter spacecraft name > '
 read, instnm, PROMPT='Enter instrument name > '
 read, time , PROMPT='Enter time > '

 ;; Get the epoch corresponding to the input time:
 cspice_str2et, time, et

 ;; Get the radii of the satellite.
 cspice_bodvrd, satnm, 'RADII', 3, radii

 ;; Get the instrument boresight and frame name.

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 18

 cspice_ilumin, 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, $
 point, trgepc, srfvec, phase, solar, emissn

 ;; Compute the boresight ray intersection with the surface of the
 ;; target body.
 cspice_sincpt, 'Ellipsoid', satnm, et, fixref, 'CN+S', scnm, $
 iframe, insite, point, trgepc, srfvec, found

 ;; If an intercept is found, compute planetocentric and planetodetic
 ;; latitude and longitude of the point.
 if (found) then begin
 cspice_reclat, point, r, pclon, pclat
 ;;Let re, rp, and f be the satellite's longer equatorial
 ;; radius, polar radius, and flattening factor.
 re = radii[0]
 rp = radii[2]
 f = (re - rp) / re
 cspice_recgeo, point, re, f, pdlon, pdlat, alt

 ;; Compute illumination angles at the surface point.

Complete source code -2

print
print, 'Intercept planetocentric longitude (deg): ', $
 R2D*pclon

;; Display results. Convert angles from radians to degrees
;; for output.

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 19

Complete source code -4

 print, 'Intercept planetocentric latitude (deg): ', $
 R2D*pclat
 print, 'Intercept planetodetic longitude (deg): ', $
 R2D*pdlon
 print, 'Intercept planetodetic latitude (deg): ', $
 R2D*pdlat
 print, 'Range from spacecraft to intercept point (km): ', $
 cspice_vnorm(srfvec)
 print, 'Intercept phase angle (deg): ', $
 R2D*phase
 print, 'Intercept solar incidence angle (deg): ', $
 R2D*solar
 print, 'Intercept emission angle (deg): ', $
 R2D*emissn

 endif else begin
 print, 'No intercept point found at ' + time
 endelse

 ;; Unload the kernels and clear the kernel pool
 cspice_kclear
END

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 20

Though IDL functions in a manner similar to interpreted languages, it does
compile source files to a binary form.

Ensure that both the Icy Toolkit, and an IDL installation are properly installed.
IDL must load the Icy DLM, icy.dlm/icy.so(dll) to compile those scripts
containing Icy calls. IDL loads DLMs from default locations and from the
current directory when the user ran IDL. The user may also explicitly load a
DLM with the dlm_register command.

Now compile the code.

Compile the program

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 21

Terminal Window

IDL>

% Compiled module: PROG_GEOMETRY.

.compile prog_geometry.pro

Compile and link the program - 2

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 22

It looks like we have everything taken care of:

•  We have all necessary kernels

•  We made a setup file (metakernel) pointing to them

•  We wrote the program

•  We compiled the program

Let's run it.

Running the program

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 23

Running the program

Terminal Window

IDL>
Enter setup file name > setup.ker
Enter satellite name > PHOEBE
Enter satellite frame > IAU_PHOEBE
Enter spacecraft name > CASSINI
Enter instrument name > CASSINI_ISS_NAC
Enter time > 2004 jun 11 19:32:00

Intercept planetocentric longitude (deg): 39.843719
Intercept planetocentric latitude (deg): 4.1958778
Intercept planetodetic longitude (deg): 39.843719
Intercept planetodetic latitude (deg): 5.0480106
Range from spacecraft to intercept point (km): 2089.1697
Intercept phase angle (deg): 28.139479
Intercept solar incidence angle (deg): 18.247220
Intercept emission angle (deg): 17.858309

prog_geometry

Navigation and Ancillary Information Facility

N IF

Writing an Icy-based program 24

•  Latitude definitions:
–  Planetocentric latitude of a point P: angle between segment from

origin to point and x-y plane (red arc in diagram).
–  Planetodetic latitude of a point P: angle between x-y plane and

extension of ellipsoid normal vector N that connects x-y plane and
P (blue arc in diagram).

Backup

P

O

Reference ellipsoid

x-y plane

z-axis
N

Planetocentric
latitude Planetodetic

latitude

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE (C)
Based Program

March 2010

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 2

Undefined variables are displayed in
red; results are displayed in blue.

Viewing This Tutorial

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 3

First, let's go over the important steps in the process of writing a CSPICE-based
program and putting it to work:

•  Understand the geometry problem.
•  Identify the set of SPICE kernels that contain the data needed to perform the

computation.
•  Formulate an algorithm to compute the quantities of interest using SPICE.
•  Write and compile the program.
•  Get actual kernel files and verify that they contain the data needed to support

the computation for the time(s) of interest.
•  Run the program.

To illustrate these steps, let's write a program that computes the apparent
intersection of the boresight ray of a given CASSINI science instrument with the
surface of a given Saturnian satellite. The program will compute

•  Planetocentric and planetodetic (geodetic) latitudes and longitudes of the
intercept point.

•  Range from spacecraft to intercept point and from spacecraft to target center.
•  Illumination angles (phase, solar incidence, and emission) at the intercept point.

Introduction

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 4

on-board clock ephemeris time UTC time

inertial frame

spacecraft
 frame

instrument
 frame

instrument
 boresight

body-fixed
 frame

 surface
intersection

spacecraft
 position

planetocentric
 latitude planetocentric

 longitude

Using what model?

We want the boresight
intercept on the surface, range
from s/c to intercept, and
illumination angles at
the intercept point.

When?

On what object?

For which instrument?

For what spacecraft?

TIME (UTC, TDB or TT)

satnm

 instnm

scnm

setupf

Observation geometry

Phase angle

solar incidence angle

surface normal

emission angle

In what frame? fixref

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 5

Needed Data

on-board clock ephemeris time UTC time

inertial frame

spacecraft
 frame

instrument
 frame

instrument
 boresight

body-fixed
 frame

 surface
intersection

spacecraft
 position

planetocentric
 latitude planetocentric

 longitude

Time transformation kernels

Orientation models

Instrument descriptions

Shapes of satellites, planets

Ephemerides for spacecraft,
Saturn barycenter and satellites.

surface normal

solar incidence angle

emission angle

phase angle

sun

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 6

Data required to compute vectors, rotations and other parameters shown in
the picture are stored in the SPICE kernels listed below.

 Note: these kernels have been selected to support this presentation; they should not be assumed to be
appropriate for user applications.

 Parameter Kernel Type File name
 ----------------------- -------------- ------------
 time conversions generic LSK naif0009.tls
 CASSINI SCLK cas00084.tsc
 satellite orientation CASSINI PCK cpck05Mar2004.tpc
 satellite shape CASSINI PCK cpck05Mar2004.tpc
 satellite position planet/sat
 ephemeris SPK 020514_SE_SAT105.bsp
 planet barycenter position planet SPK 981005_PLTEPH-DE405S.bsp
 spacecraft position spacecraft SPK 030201AP_SK_SM546_T45.bsp
 spacecraft orientation spacecraft CK 04135_04171pc_psiv2.bc
 instrument alignment CASSINI FK cas_v37.tf
 instrument boresight Instrument IK cas_iss_v09.ti

 Which Kernels are Needed?

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 7

The easiest and most flexible way to make required kernels available to the
program is via furnsh_c. For this example we make a setup file (also called a
“metakernel” or “furnsh kernel”) containing a list of kernels to be loaded:

\begindata

 KERNELS_TO_LOAD = ('naif0009.tls', 'cas00084.tsc', 'cpck05Mar2004.tpc',!
 '020514_SE_SAT105.bsp', '981005_PLTEPH-DE405S.bsp',!
 '030201AP_SK_SM546_T45.bsp', '04135_04171pc_psiv2.bc',!
 'cas_v37.tf', 'cas_iss_v09.ti')
\begintext

 and we make the program prompt for the name of this setup file:

 prompt_c ("Enter setup file name > ", FILESZ, setupf);
 furnsh_c (setupf);

Load Kernels

Note: these kernels have been selected to support this presentation; they
should not be assumed to be appropriate for user applications.

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 8

Programming Solution

•  Prompt for setup file (“metakernel”) name; load kernels specified via setup
file. (Done on previous chart.)

•  Prompt for user inputs required to completely specify problem. Obtain
further inputs required by geometry routines via CSPICE calls.

•  Compute the intersection of the boresight direction ray with the surface of
the satellite, presented as a triaxial ellipsoid.

 If there is an intersection,

• Convert Cartesian coordinates of the intercept point to planetocentric
latitudinal and planetodetic coordinates
• Compute spacecraft-to-intercept point range
• Find the illumination angles (phase, solar incidence, and emission) at
the intercept point

•  Display the results.

We discuss the geometric portion of the problem next.

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 9

Compute Surface Intercept and Ranges

The range we want is obtained from the outputs of sincpt_c. These outputs
are defined only if a surface intercept is found. If found is true, the
spacecraft-to-surface intercept range is the norm of the output argument srfvec.
Units are km. We use the CSPICE function vnorm_c to obtain the norm:

 vnorm_c (srfvec)

We'll write out the range data along with the other program results.

Compute the intercept point (point) of the boresight vector (insite) specified
in the instrument frame (iframe) of the instrument mounted on the spacecraft (scnm)
with the surface of the satellite (satnm) at the TDB time of interest (et) in the
satellite’s body-fixed frame (fixref). This call also returns the light-time corrected
epoch at the intercept point (trgepc), the spacecraft-to-intercept point vector
(srfvec), and a boolean flag indicating whether the intercept was found (found).
We use "converged Newtonian" light time plus stellar aberration corrections to
produce the most accurate surface intercept solution possible. We model the
surface of the satellite as an ellipsoid.

 sincpt_c ("Ellipsoid", satnm, et, fixref, "CN+S", scnm, iframe, insite,
 point, &trgepc, srfvec, &found);

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 10

Compute the planetocentric latitude (pclat) and longitude (pclon), as well as
the planetodetic latitude (pdlat) and longitude (pdlon) of the intersection
point.

 if (found)
 {
 reclat_c (point, &r, &pclon, &pclat);

Compute Lat/Lon and Illumination Angles

The illumination angles we want are the outputs of ilumin_c. Units are radians.

 ilumin_c ("Ellipsoid", satnm, et, fixref, "CN+S", scnm, point,
 &trgepc, srfvec, &phase, &solar, &emissn);

/* Let re, rp, and f be the satellite's longer equatorial
 radius, polar radius, and flattening factor. */
re = radii[0];
rp = radii[2];
f = (re – rp) / re;

recgeo_c (point, re, f, &pdlon, &pdlat, &alt);

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 11

 ilumin_c ("Ellipsoid", satnm, et, fixref, "CN+S", scnm, point,
 &trgepc, srfvec, &phase, &solar, &emissn);
 ...
 }
 else
 { ... }

 /* Compute the boresight ray intersection with the surface of the
 satellite. */

 sincpt_c ("Ellipsoid", satnm, et, fixref, "CN+S", scnm,
 iframe, insite, point, &trgepc, srfvec, &found);

 /* If an intercept is found, compute planetocentric and planetodetic
 latitude and longitude of the point. */

 if (found)
 {
 reclat_c (point, &r, &pclon, &pclat);
 /* Let re, rp, and f be the satellite's longer equatorial
 radius, polar radius, and flattening factor. */
 re = radii[0];
 rp = radii[2];
 f = (re – rp) / re;
 recgeo_c (point, re, f, &pdlon, &pdlat, &alt);

 /* Compute illumination angles at the surface point. */

Geometry Calculations: Summary

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 12

The code above used quite a few inputs that we don't have yet:

•  TDB epoch of interest (et);
•  satellite and s/c names (satnm, scnm);
•  satellite body-fixed frame name (fixref);
•  satellite ellipsoid radii (radii);
•  instrument fixed frame name (iframe);
•  instrument boresight vector in the instrument frame (insite);

Some of these values are user inputs; others can be obtained via CSPICE calls
once the required kernels have been loaded.

Let's prompt for the satellite name (satnm), satellite frame name (fixref),
spacecraft name (scnm), instrument name (instnm) and time of interest (time):

 prompt_c ("Enter satellite name > ", WORDSZ, satnm);
 prompt_c ("Enter satellite frame > ", WORDSZ, fixref);
 prompt_c ("Enter spacecraft name > ", WORDSZ, scnm);
 prompt_c ("Enter instrument name > ", WORDSZ, instnm);
 prompt_c ("Enter time > ", WORDSZ, time);

Get Inputs - 1

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 13

Get Inputs - 2

Then we can get the rest of the inputs from CSPICE calls:

To get the TDB epoch (et) from the user-supplied time string (which may
refer to the UTC, TDB or TT time systems):
 str2et_c (time, &et);
To get the satellite’s ellipsoid radii (radii):
 bodvrd_c (satnm, "RADII", 3, &i, radii);

To get the instrument boresight direction (insite) and the name of the
 instrument frame (iframe) in which it is defined:

 bodn2c_c (instnm, &instid, &found);

 if (!found)
 {
 setmsg_c ("Instrument name # could not be "
 "translated to an ID code.");
 errch_c ("#", instnm);
 sigerr_c ("NAMENOTFOUND");
 }
 getfov_c (instid, ROOM, WORDSZ, WORDSZ,
 shape, iframe, insite, &n, bundry);

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 14

Getting Inputs: Summary

 bodn2c_c (instnm, &instid, &found);
 if (!found)
 {
 setmsg_c ("Instrument name # could not be "
 "translated to an ID code.");
 errch_c ("#", instnm);
 sigerr_c ("NAMENOTFOUND");
 }
 getfov_c (instid, ROOM, WORDSZ, WORDSZ,
 shape, iframe, insite, &n, bundry);

/* Prompt for the user-supplied inputs for our program */
 prompt_c ("Enter setup file name > ", FILESZ, setupf);
 furnsh_c (setupf);
 prompt_c ("Enter satellite name > ", WORDSZ, satnm);
 prompt_c ("Enter satellite frame > ", WORDSZ, fixref);
 prompt_c ("Enter spacecraft name > ", WORDSZ, scnm);
 prompt_c ("Enter instrument name > ", WORDSZ, instnm);
 prompt_c ("Enter time > ", WORDSZ, time);
/* Get the epoch corresponding to the input time: */
 str2et_c (time, &et);
/* Get the radii of the satellite. */

bodvrd_c (satnm, "RADII", 3, &i, radii);

/* Get the instrument boresight and frame name. */

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 15

Display Results
/* Display results. Convert angles from radians to degrees for output. */
printf ("\n"
 "Intercept planetocentric longitude (deg): %11.6f\n"
 "Intercept planetocentric latitude (deg): %11.6f\n"
 "Intercept planetodetic longitude (deg): %11.6f\n"
 "Intercept planetodetic latitude (deg): %11.6f\n"
 "Range from spacecraft to intercept point (km): %11.6f\n"
 "Intercept phase angle (deg): %11.6f\n"
 "Intercept solar incidence angle (deg): %11.6f\n"
 "Intercept emission angle (deg): %11.6f\n",
 dpr_c() * pclon,
 dpr_c() * pclat,
 dpr_c() * pdlon,
 dpr_c() * pdlat,
 vnorm_c(srfvec),
 dpr_c() * phase,
 dpr_c() * solar,
 dpr_c() * emissn);

}
else
{
 printf ("No intercept point found at %s\n", time);
}

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 16

To finish up the program we need to declare the variables we've used.

•  We'll highlight techniques used by NAIF programmers
•  Add remaining C code required to make a syntactically valid program

Complete the Program

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 17

#include <stdio.h>
#include "SpiceUsr.h"

Complete Source Code - 1
 SpiceDouble alt;
 SpiceDouble bundry[ROOM][3];
 SpiceDouble emissn;
 SpiceDouble et;
 SpiceDouble f;
 SpiceDouble insite[3];
 SpiceDouble srfvec[3];
 SpiceDouble pclat;
 SpiceDouble pclon;
 SpiceDouble pdlat;
 SpiceDouble pdlon;
 SpiceDouble phase;
 SpiceDouble point [3];
 SpiceDouble r;
 SpiceDouble radii [3];
 SpiceDouble re;
 SpiceDouble rp;
 SpiceDouble solar;
 SpiceDouble trgepc;

 SpiceChar iframe[WORDSZ];
 SpiceChar instnm[WORDSZ];
 SpiceChar satnm [WORDSZ];
 SpiceChar fixref[WORDSZ];
 SpiceChar scnm [WORDSZ];
 SpiceChar setupf[FILESZ];
 SpiceChar shape [WORDSZ];
 SpiceChar time [WORDSZ];

 SpiceBoolean found;

 #define FILESZ 256
 #define WORDSZ 41
 #define ROOM 10

int main ()
{

 SpiceInt i;
 SpiceInt instid;
 SpiceInt n;

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 18

Complete Source Code - 2

 bodn2c_c (instnm, &instid, &found);
 if (!found)
 {
 setmsg_c ("Instrument name # could not be "
 "translated to an ID code.");
 errch_c ("#", instnm);
 sigerr_c ("NAMENOTFOUND");
 }
 getfov_c (instid, ROOM, WORDSZ, WORDSZ,
 shape, iframe, insite, &n, bundry);

/* Prompt for the user-supplied inputs for our program */
 prompt_c ("Enter setup file name > ", FILESZ, setupf);
 furnsh_c (setupf);
 prompt_c ("Enter satellite name > ", WORDSZ, satnm);
 prompt_c ("Enter satellite frame > ", WORDSZ, fixref);
 prompt_c ("Enter spacecraft name > ", WORDSZ, scnm);
 prompt_c ("Enter instrument name > ", WORDSZ, instnm);
 prompt_c ("Enter time > ", WORDSZ, time);
/* Get the epoch corresponding to the input time: */
 str2et_c (time, &et);

/* Get the radii of the satellite. */
bodvrd_c (satnm, "RADII", 3, &i, radii);

/* Get the instrument boresight and frame name. */

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 19

 ilumin_c ("Ellipsoid", satnm, et, fixref, "CN+S", scnm, point,
 &trgepc, srfvec, &phase, &solar, &emissn);

 /* Compute the boresight ray intersection with the surface of the
 satellite. */

 sincpt_c ("Ellipsoid", satnm, et, fixref, "CN+S", scnm,
 iframe, insite, point, &trgepc, srfvec, &found);
 /* If an intercept is found, compute planetocentric and planetodetic
 latitude and longitude of the point. */
 if (found)
 {
 reclat_c (point, &r, &pclon, &pclat);
 /* Let re, rp, and f be the satellite's longer equatorial
 radius, polar radius, and flattening factor. */
 re = radii[0];
 rp = radii[2];
 f = (re – rp) / re;
 recgeo_c (point, re, f, &pdlon, &pdlat, &alt);

 /* Compute illumination angles at the surface point. */

Complete Source Code - 3

printf ("\n"
 "Intercept planetocentric longitude (deg): %11.6f\n"
 "Intercept planetocentric latitude (deg): %11.6f\n"

/* Display results. Convert angles to degrees for output. */

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 20

Complete Source Code - 4

 "Intercept planetodetic longitude (deg): %11.6f\n"
 "Intercept planetodetic latitude (deg): %11.6f\n"
 "Range from spacecraft to intercept point (km): %11.6f\n"
 "Intercept phase angle (deg): %11.6f\n"
 "Intercept solar incidence angle (deg): %11.6f\n"
 "Intercept emission angle (deg): %11.6f\n",
 dpr_c() * pclon,
 dpr_c() * pclat,
 dpr_c() * pdlon,
 dpr_c() * pdlat,
 vnorm_c(srfvec),
 dpr_c() * phase,
 dpr_c() * solar,
 dpr_c() * emissn
);

 }
 else {
 printf ("No intercept point found at %s\n", time);
 }
 return(0);
 }

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 21

•  First be sure that both the CSPICE Toolkit and a C compiler
are properly installed.

–  A "hello world" C program must be able to compile, link, and run
successfully in your environment.

–  Any of the mkprodct.* scripts in the cspice/src/* paths of the CSPICE
installation should execute properly.

•  Ways to compile and link the program:
–  If you're familiar with the "make" utility, create a makefile. Use compiler

and linker options from the mkprodct.* script found in the cspice/src/
cook_c path of your CSPICE installation.

–  Or, modify the cookbook mkprodct.* build script.
»  Your program name must be *.pgm, for example demo.pgm, to be

recognized by the script.
»  Change the library references in the script to use absolute

pathnames.
»  Change the path for the executable to the current working directory.
»  If you compiler supports it, add a –I option to reference the cspice/

include path to make CSPICE *.h files available. Otherwise, copy
those files from the include path to your current working directory.

»  On some platforms, you must modify the script to refer to your
program by name.

Compile and Link the Program - 1

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 22

–  Or, compile the program on the command line. The program
must be linked against the CSPICE object library cspice.a
(cspice.lib under MS Visual C++/C) and the C math library. On a
PC running Linux and gcc, if

»  The gcc compiler is in your path
•  As indicated by the response to the command "which gcc"

»  the Toolkit is installed in the path (for the purpose of this
example) /myhome/cspice

»  You've named the program demo.c
 then you can compile and link your program using the command

»  gcc –I/myhome/cspice/include \
 -o demo \
 demo.c /myhome/cspice/lib/cspice.a –lm

•  Note: the preprocessor flag
-DNON_UNIX_STDIO

 used in the mkprodct.csh script is needed for code generated by f2c, but
is usually unnecessary for compiling user code.

Compile and Link the Program - 2

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 23

Terminal Window

Prompt>

 Setting default compiler:
gcc

 Setting default compile options:
 -c -ansi -O2 -DNON_UNIX_STDIO

 Setting default link options:
 -lm

 Compiling and linking: demo.pgm
Compiling and linking: demo.pgm

Prompt>

 mkprodct.csh

Compile and Link the Program - 3

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 24

It looks like we have everything taken care of:

•  We have all necessary kernels

•  We made a setup file (metakernel) pointing to them

•  We wrote the program

•  We compiled and linked it

Let's run it.

Running the Program - 1

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 25

Running the Program - 2

Terminal Window

Prompt>
Enter setup file name > setup.ker
Enter satellite name > PHOEBE
Enter satellite frame > IAU_PHOEBE
Enter spacecraft name > CASSINI
Enter instrument name > CASSINI_ISS_NAC
Enter time > 2004 jun 11 19:32:00

Intercept planetocentric longitude (deg): 39.843719
Intercept planetocentric latitude (deg): 4.195878
Intercept planetodetic longitude (deg): 39.843719
Intercept planetodetic latitude (deg): 5.048011
Range from spacecraft to intercept point (km): 2089.169724
Intercept phase angle (deg): 28.139479
Intercept solar incidence angle (deg): 18.247220
Intercept emission angle (deg): 17.858309
Prompt>

 demo

Navigation and Ancillary Information Facility

N IF

Writing a CSPICE-based program 26

•  Latitude definitions:
–  Planetocentric latitude of a point P: angle between segment from

origin to point and x-y plane (red arc in diagram).
–  Planetodetic latitude of a point P: angle between x-y plane and

extension of ellipsoid normal vector N that connects x-y plane and
P (blue arc in diagram).

Backup

P

O

Reference ellipsoid

x-y plane

z-axis
N

Planetocentric
latitude Planetodetic

latitude

Navigation and Ancillary Information Facility

N IF

Writing a SPICE (FORTRAN)
Based Program

March 2010

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 2

Undefined variables are displayed in
red; results are displayed in blue.

Viewing This Tutorial

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 3

First, let's go over the important steps in the process of writing a SPICE-based
Fortran program and putting it to work:

•  Understand the geometry problem.
•  Identify the set of SPICE kernels that contain the data needed to perform the

computation.
•  Formulate an algorithm to compute the quantities of interest using SPICE.
•  Write and compile the program.
•  Get actual kernel files and verify that they contain the data needed to support

the computation for the time(s) of interest.
•  Run the program.

To illustrate these steps, let's write a program that computes the apparent
intersection of the boresight ray of a given CASSINI science instrument with the
surface of a given Saturnian satellite. The program will compute

•  Planetocentric and planetodetic (geodetic) latitudes and longitudes of the
intercept point.

•  Range from spacecraft to intercept point and from spacecraft to target center.
•  Illumination angles (phase, solar incidence, and emission) at the intercept point.

Introduction

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 4

on-board clock ephemeris time UTC time

inertial frame

spacecraft
 frame

instrument
 frame

instrument
 boresight

body-fixed
 frame

 surface
intersection

spacecraft
 position

planetocentric
 latitude planetocentric

 longitude

Using what model?

We want the boresight
intercept on the surface, range
from s/c to intercept, and
illumination angles at
the intercept point.

When?

On what object?

For which instrument?

For what spacecraft?

TIME (UTC, TDB or TT)

SATNM

 INSTNM

SCNM

SETUPF

Observation geometry

Phase angle

solar incidence angle

surface normal

emission angle

In what frame? FIXREF

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 5

Needed Data

on-board clock ephemeris time UTC time

inertial frame

spacecraft
 frame

instrument
 frame

instrument
 boresight

body-fixed
 frame

 surface
intersection

spacecraft
 position

planetocentric
 latitude planetocentric

 longitude

Time transformation kernels

Orientation models

Instrument descriptions

Shapes of satellites, planets

Ephemerides for spacecraft,
Saturn barycenter and satellites.

surface normal

solar incidence angle

emission angle

Phase angle

sun

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 6

Data required to compute vectors, rotations and other parameters shown in
the picture are stored in the SPICE kernels listed below.

 Note: these kernels have been selected to support this presentation; they should not be assumed to be
appropriate for user applications.

 Parameter Kernel Type File name
 ----------------------- -------------- ------------
 time conversions generic LSK naif0009.tls
 CASSINI SCLK cas00084.tsc
 satellite orientation CASSINI PCK cpck05Mar2004.tpc
 satellite shape CASSINI PCK cpck05Mar2004.tpc
 satellite position planet/sat
 ephemeris SPK 020514_SE_SAT105.bsp
 planet barycenter position planet SPK 981005_PLTEPH-DE405S.bsp
 spacecraft position spacecraft SPK 030201AP_SK_SM546_T45.bsp
 spacecraft orientation spacecraft CK 04135_04171pc_psiv2.bc
 instrument alignment CASSINI FK cas_v37.tf
 instrument boresight Instrument IK cas_iss_v09.ti

 Which Kernels are Needed?

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 7

The easiest and most flexible way to make required kernels available to the
program is via FURNSH. For this example we make a setup file (also called a
“metakernel” or “furnsh kernel”) containing a list of kernels to be loaded:

\begindata

 KERNELS_TO_LOAD = ('naif0009.tls', 'cas00084.tsc', 'cpck05Mar2004.tpc',!
 '020514_SE_SAT105.bsp', '981005_PLTEPH-DE405S.bsp',!
 '030201AP_SK_SM546_T45.bsp', '04135_04171pc_psiv2.bc',!
 'cas_v37.tf', 'cas_iss_v09.ti')
\begintext

 and we make the program prompt for the name of this setup file:

 CALL PROMPT ('Enter setup file name > ', SETUPF)
 CALL FURNSH (SETUPF)

Load Kernels

Note: these kernels have been selected to support this presentation they
should not be assumed to be appropriate for user applications.

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 8

Programming Solution

•  Prompt for setup file (“metakernel”) name load kernels specified via setup
file. (Done on previous chart.)

•  Prompt for user inputs required to completely specify problem. Obtain
further inputs required by geometry routines via SPICELIB calls.

•  Compute the intersection of the boresight direction ray with the surface of
the satellite, presented as a triaxial ellipsoid.

 If there is an intersection,

• Convert Cartesian coordinates of the intercept point to planetocentric
latitudinal and planetodetic coordinates
• Compute spacecraft-to-intercept point range
• Find the illumination angles (phase, solar incidence, and emission) at
the intercept point

•  Display the results.

We discuss the geometric portion of the problem next.

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 9

Compute Surface Intercept and Ranges

The range we want is obtained from the outputs of SINCPT. These
outputs are defined only if a surface intercept is found. If FOUND is true, the
spacecraft-to-surface intercept range is the norm of the output argument SRFVEC.
Units are km. We use the SPICELIB function VNORM to obtain the norm:

 VNORM (SRFVEC)

We'll write out the range data along with the other program results.

Compute the intercept point (POINT) of the boresight vector (INSITE) specified in
the instrument frame (IFRAME) of the instrument mounted on the spacecraft (SCNM)
with the surface of the satellite (SATNM) at the TDB time of interest (ET) in the
satellite’s body-fixed frame (FIXREF). This call also returns the light-time
corrected epoch at the intercept point (TRGEPC), the spacecraft-to-intercept point
vector (SRFVEC), and a flag indicating whether the intercept was found (FOUND).
We use "converged Newtonian" light time plus stellar aberration corrections to
produce the most accurate surface intercept solution possible. We model the
surface of the satellite as an ellipsoid.

 CALL SINCPT ('Ellipsoid', SATNM, ET, FIXREF, 'CN+S', SCNM, IFRAME,
 . INSITE, POINT, TRGEPC, SRFVEC, FOUND)

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 10

Compute the planetocentric latitude (PCLAT) and longitude (PCLON), as well as
the planetodetic latitude (PDLAT) and longitude (PDLON) of the intersection
point.

 IF (FOUND) THEN
 CALL RECLAT (POINT, R, PCLON, PCLAT)

Compute Lat/Lon and Illumination Angles

The illumination angles we want are the outputs of ILLUM. Units are radians.

 CALL ILUMIN ('Ellipsoid', SATNM, ET, FIXREF,
 . 'CN+S', SCNM, POINT, TRGEPC, SRFVEC,
 . PHASE, SOLAR, EMISSN)

 C Let RE, RP, and F be the satellite's longer equatorial
 C radius, polar radius, and flattening factor.
 RE = RADII(1)
 RP = RADII(3)
 F = (RE - RP) / RE

 CALL RECGEO (POINT, RE, F, PDLON, PDLAT, ALT)

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 11

 CALL ILUMIN ('Ellipsoid', SATNM, ET, FIXREF, 'CN+S', SCNM,
 . POINT, TRGEPC, SRFVEC, PHASE, SOLAR, EMISSN)
 ...
 ELSE
 ...

 C Compute the boresight ray intersection with the surface of the
 C satellite.

 CALL SINCPT ('Ellipsoid', SATNM, ET, FIXREF, 'CN+S', SCNM, IFRAME,
 . INSITE, POINT, TRGEPC, SRFVEC, FOUND)

 C If an intercept is found, compute planetocentric and planetodetic
 C latitude and longitude of the point.

 IF(FOUND) THEN

 CALL RECLAT (POINT, R, PCLON, PCLAT)
C Let RE, RP, and F be the satellite's longer equatorial
C radius, polar radius, and flattening factor.
 RE = RADII(1)
 RP = RADII(3)
 F = (RE - RP) / RE
 CALL RECGEO (POINT, RE, F, PDLON, PDLAT, ALT)

C Compute illumination angles at the surface point.

Geometry Calculations: Summary

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 12

The code above used quite a few inputs that we don't have yet:

•  TDB epoch of interest (ET)
•  satellite and s/c names (SATNM, SCNM)
•  satellite body-fixed frame name (FIXREF)
•  satellite ellipsoid radii (RADII)
•  instrument fixed frame name (IFRAME)
•  instrument boresight vector in the instrument frame (INSITE)

Some of these values are user inputs others can be obtained via SPICELIB calls
once the required kernels have been loaded.

Let's prompt for the satellite name (SATNM), satellite frame name (FIXREF),
spacecraft name (SCNM), instrument name (INSTNM) and time of interest (TIME):

 CALL PROMPT ('Enter satellite name > ', SATNM)
 CALL PROMPT ('Enter satellite frame > ', FIXREF)
 CALL PROMPT ('Enter spacecraft name > ', SCNM)
 CALL PROMPT ('Enter instrument name > ', INSTNM)
 CALL PROMPT ('Enter time > ', TIME)

Get Inputs - 1

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 13

Get Inputs - 2

Then we can get the rest of the inputs from SPICELIB calls:

To get the TDB epoch (ET) from the user-supplied time string (which may
refer to the UTC, TDB or TT time systems):
 CALL STR2ET (TIME, ET)
To get the satellite’s ellipsoid radii (RADII):
 CALL BODVRD (SATNM, 'RADII', 3, I, RADII)

To get the instrument boresight direction (INSITE) and the name of the
 instrument frame (IFRAME) in which it is defined:

 CALL BODN2C (INSTNM, INSTID, FOUND)

 IF (.NOT. FOUND) THEN
 CALL SETMSG ('Instrument name # could not be ' //
 . 'translated to an ID code.')
 CALL ERRCH ('#', INSTNM)
 CALL SIGERR ('NAMENOTFOUND')
 END IF

 CALL GETFOV (INSTID, ROOM, SHAPE, IFRAME,
 . INSITE, N, BUNDRY)

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 14

Getting Inputs: Summary
C Prompt for the user-supplied inputs for our program.
 CALL PROMPT ('Enter setup file name > ', SETUPF)
 CALL FURNSH (SETUPF)
 CALL PROMPT('Enter satellite name > ', SATNM)
 CALL PROMPT('Enter satellite frame > ', FIXREF)
 CALL PROMPT('Enter spacecraft name > ', SCNM)
 CALL PROMPT('Enter instrument name > ', INSTNM)
 CALL PROMPT('Enter time > ', TIME)

C Get the epoch corresponding to the input time:
 CALL STR2ET (TIME, ET)

C Get the radii of the satellite.
 CALL BODVRD (SATNM, 'RADII', 3, I, RADII)

C Get the instrument boresight and frame name.
 CALL BODN2C (INSTNM, INSTID, FOUND)
 IF (.NOT. FOUND) THEN
 CALL SETMSG ('Instrument name # could not be ' //
 . 'translated to an ID code.')
 CALL ERRCH ('#', INSTNM)
 CALL SIGERR ('NAMENOTFOUND')
 END IF
 CALL GETFOV (INSTID, ROOM, SHAPE, IFRAME,
 . INSITE, N, BUNDRY)

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 15

Display Results

C Display results. Convert angles from radians to degrees
C for output.
 WRITE (*, '(1X,A,F12.6)')
 . 'Intercept planetocentric longitude (deg): ', DPR()*PCLON
 WRITE (*, '(1X,A,F12.6)')
 . 'Intercept planetocentric latitude (deg): ', DPR()*PCLAT
 WRITE (*, '(1X,A,F12.6)')
 . 'Intercept planetodetic longitude (deg): ', DPR()*PDLON
 WRITE (*, '(1X,A,F12.6)')
 . 'Intercept planetodetic latitude (deg): ', DPR()*PDLAT
 WRITE (*, '(1X,A,F12.6)')
 . 'Range from spacecraft to intercept point (km): ',
 . VNORM(SRFVEC)
 WRITE (*, '(1X,A,F12.6)')
 . 'Intercept phase angle (deg): ', DPR()*PHASE
 WRITE (*, '(1X,A,F12.6)')
 . 'Intercept solar incidence angle (deg): ', DPR()*SOLAR
 WRITE (*, '(1X,A,F12.6)')
 . 'Intercept emission angle (deg): ',
 . DPR()*EMISSN

ELSE
 WRITE (*,*) 'No intercept point found at '// TIME
END IF

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 16

To finish up the program we need to declare the variables we've used.

•  We'll highlight techniques used by NAIF programmers
•  Add remaining Fortran code required to make a syntactically valid program

Complete the Program

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 17

Complete Source Code - 1

 DOUBLE PRECISION EMISSN
 DOUBLE PRECISION ET
 DOUBLE PRECISION F
 DOUBLE PRECISION INSITE(3)
 DOUBLE PRECISION SRFVEC(3)
 DOUBLE PRECISION PCLAT
 DOUBLE PRECISION PCLON
 DOUBLE PRECISION PDLAT
 DOUBLE PRECISION PDLON
 DOUBLE PRECISION PHASE
 DOUBLE PRECISION POINT (3)
 DOUBLE PRECISION R
 DOUBLE PRECISION RADII (3)
 DOUBLE PRECISION RE
 DOUBLE PRECISION RP
 DOUBLE PRECISION SOLAR
 DOUBLE PRECISION TRGEPC

 LOGICAL FOUND

 INTEGER FILESZ
 PARAMETER (FILESZ = 255)
 INTEGER WORDSZ
 PARAMETER (WORDSZ = 40)
 INTEGER ROOM
 PARAMETER (ROOM = 10)

 PROGRAM PROG26
 IMPLICIT NONE

 INTEGER I
 INTEGER INSTID
 INTEGER N

 CHARACTER*(WORDSZ) IFRAME
 CHARACTER*(WORDSZ) INSTNM
 CHARACTER*(WORDSZ) SATNM
 CHARACTER*(WORDSZ) FIXREF
 CHARACTER*(WORDSZ) SCNM
 CHARACTER*(FILESZ) SETUPF
 CHARACTER*(WORDSZ) SHAPE
 CHARACTER*(WORDSZ) TIME

 DOUBLE PRECISION ALT
 DOUBLE PRECISION BUNDRY(3, ROOM)

 DOUBLE PRECISION DPR
 DOUBLE PRECISION VNORM

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 18

Complete Source Code - 2
C Prompt for the user-supplied inputs for our program.
 CALL PROMPT ('Enter setup file name > ', SETUPF)
 CALL FURNSH (SETUPF)
 CALL PROMPT ('Enter satellite name > ', SATNM)
 CALL PROMPT ('Enter satellite frame > ', FIXREF)
 CALL PROMPT ('Enter spacecraft name > ', SCNM)
 CALL PROMPT ('Enter instrument name > ', INSTNM)
 CALL PROMPT ('Enter time > ', TIME)

C Get the epoch corresponding to the input time:
 CALL STR2ET (TIME, ET)

C Get the radii of the satellite.
 CALL BODVRD (SATNM, 'RADII', 3, I, RADII)

C Get the instrument boresight and frame name.
 CALL BODN2C (INSTNM, INSTID, FOUND)
 IF (.NOT. FOUND) THEN
 CALL SETMSG ('Instrument name # could not be ' //
 . 'translated to an ID code.')
 CALL ERRCH ('#', INSTNM)
 CALL SIGERR ('NAMENOTFOUND')
 END IF
 CALL GETFOV (INSTID, ROOM, SHAPE, IFRAME,
 . INSITE, N, BUNDRY)

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 19

Complete Source Code - 3

 C Compute the boresight ray intersection with the surface of the
 C satellite.
 CALL SINCPT ('Ellipsoid', SATNM, ET, FIXREF, 'CN+S', SCNM, IFRAME,
 . INSITE, POINT, TRGEPC, SRFVEC, FOUND)

 C If an intercept is found, compute planetocentric and planetodetic
 C latitude and longitude of the point.

 IF(FOUND) THEN
 CALL RECLAT (POINT, R, PCLON, PCLAT)
C Let RE, RP, and F be the satellite's longer equatorial
C radius, polar radius, and flattening factor.
 RE = RADII(1)
 RP = RADII(3)
 F = (RE - RP) / RE
 CALL RECGEO (POINT, RE, F, PDLON, PDLAT, ALT)

C Compute illumination angles at the surface point.

 CALL ILUMIN ('Ellipsoid', SATNM, ET, FIXREF, 'CN+S', SCNM,
 . POINT, TRGEPC, SRFVEC, PHASE, SOLAR, EMISSN)
C Display results. Convert angles from radians to degrees
C for output.
 WRITE (*, *)
 WRITE (*, '(1X,A,F12.6)')
 . 'Intercept planetocentric longitude (deg): ', DPR()*PCLON

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 20

Complete Source Code - 4

 WRITE (*, '(1X,A,F12.6)')
 . 'Intercept planetocentric latitude (deg): ', DPR()*PCLAT
 WRITE (*, '(1X,A,F12.6)')
 . 'Intercept planetodetic longitude (deg): ', DPR()*PDLON
 WRITE (*, '(1X,A,F12.6)')
 . 'Intercept planetodetic latitude (deg): ', DPR()*PDLAT
 WRITE (*, '(1X,A,F12.6)')
 . 'Range from spacecraft to intercept point (km): ',
 . VNORM(SRFVEC)
 WRITE (*, '(1X,A,F12.6)')
 . 'Intercept phase angle (deg): ', DPR()*PHASE
 WRITE (*, '(1X,A,F12.6)')
 . 'Intercept solar incidence angle (deg): ', DPR()*SOLAR
 WRITE (*, '(1X,A,F12.6)')
 . 'Intercept emission angle (deg): ',
 . DPR()*EMISSN

ELSE
 WRITE (*,*) 'No intercept point found at '// TIME
END IF
END

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 21

•  First be sure that both the SPICE Toolkit and a
Fortran compiler are properly installed.
–  A "hello world" Fortran program must be able to compile, link,

and run successfully in your environment.
–  Any of the mkprodct.* scripts in the toolkit/src/* paths of the

SPICE Toolkit installation should execute properly.
•  Ways to compile and link the program:

–  If you're familiar with the "make" utility, create a makefile. Use
compiler and linker options from the mkprodct.* script found in
the toolkit/src/cookbook path of your SPICE Toolkit installation.

–  Or, modify the cookbook mkprodct.* build script.
»  Your program name must be *.pgm, for example demo.pgm,

to be recognized by the script.
»  Change the library references in the script to use absolute

pathnames.
»  Change the path for the executable to the current working

directory.
»  On some platforms, you must modify the script to refer to

your program by name.

Compile and Link the Program - 1

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 22

–  Or, compile the program on the command line. The program
must be linked against the SPICELIB object library spicelib.a
(spicelib.lib under MS Windows systems). On a PC running
Linux and g77, if

»  The g77 compiler is in your path
•  As indicated by the response to the command "which g77"

»  the Toolkit is installed in the path (for the purpose of this
example) /myhome/toolkit

»  You've named the program demo.f
 then you can compile and link your program using the command

»  g77 -o demo demo.f \
 /myhome/toolkit/lib/spicelib.a

Compile and Link the Program - 2

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 23

Terminal Window

Prompt>

 Using the g77 compiler.

 Setting default Fortran compile options:
 -c -C

 Setting default C compile options:
 -c

 Setting default link options:

 Compiling and linking: demo.pgm
Compiling and linking: demo.pgm

Prompt>

 mkprodct.csh

Compile and Link the Program - 3

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 24

It looks like we have everything taken care of:

•  We have all necessary kernels

•  We made a setup file (metakernel) pointing to them

•  We wrote the program

•  We compiled and linked it

Let's run it.

Running the Program - 1

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 25

Running the Program - 2

Terminal Window

Prompt>
Enter setup file name > setup.ker
Enter satellite name > PHOEBE
Enter satellite frame > IAU_PHOEBE
Enter spacecraft name > CASSINI
Enter instrument name > CASSINI_ISS_NAC
Enter time > 2004 jun 11 19:32:00

 Intercept planetocentric longitude (deg): 39.843719
 Intercept planetocentric latitude (deg): 4.195878
 Intercept planetodetic longitude (deg): 39.843719
 Intercept planetodetic latitude (deg): 5.048011
 Range from spacecraft to intercept point (km): 2089.169724
 Intercept phase angle (deg): 28.139479
 Intercept solar incidence angle (deg): 18.247220
 Intercept emission angle (deg): 17.858309
Prompt>

 demo

Navigation and Ancillary Information Facility

N IF

Writing a FORTRAN-based program 26

•  Latitude definitions:
–  Planetocentric latitude of a point P: angle between segment from

origin to point and x-y plane (red arc in diagram).
–  Planetodetic latitude of a point P: angle between x-y plane and

extension of ellipsoid normal vector N that connects x-y plane and
P (blue arc in diagram).

Backup

P

O

Reference ellipsoid

x-y plane

z-axis
N

Planetocentric
latitude Planetodetic

latitude

Navigation and Ancillary Information Facility

N IF

Introduction to the Events Kernel
EK

March 2010

Note: the EK is infrequently used by NASA flight projects.
Only a brief overview of the EK subsystem is provided.

Navigation and Ancillary Information Facility

N IF

Intro to EK Subsystem 2

•  This tutorial provides an overview of the entire
Events Kernel subsystem, comprised of three
components:

–  Science Plan ESP
–  Sequence ESQ
–  Notebook ENB

•  Depending on specific circumstances:
–  the three components may exist as three distinct and different

products
–  two components may be implemented with a single mechanism
–  one or more components may not be used at all

Scope

Navigation and Ancillary Information Facility

N IF

Intro to EK Subsystem 3

•  Assemble, archive and provide convenient and
useful access to plans, commands and notes
about the acquisition of space science
observations:

–  For use by on-going project science and engineering team
members

–  For use by post-mission researchers

•  Accomplish the above with minimal impact on
science and mission operations team members

E-Kernel Subsystem Objectives

Navigation and Ancillary Information Facility

N IF

Intro to EK Subsystem 4

Objectives
for

Science
Observations

Commands
and Activities

Mission
Operations

Logs
Scientist’s
Notebook

Science Plan
Component

Sequence
Component

Notebook
Component

Logical
View

Component
View

Nominal E-kernel Composition

Navigation and Ancillary Information Facility

N IF

Intro to EK Subsystem 5

Science Plan
Component

(ESP)

Sequence
Component

(ESQ)

Notebook
Component

(ENB)

DBK
Database Kernel

Web +
DBK

?
(some other
mechanism)

Component
View

Implementation

Nominal E-kernel Implementation

Navigation and Ancillary Information Facility

N IF

Intro to EK Subsystem 6

•  Each entry is a statement of science objectives
for a series of coordinated observations to be
made over a stated period of time
–  Might include some information about the planned mechanics

(observation design) for obtaining the data

•  This component could be implemented as a part
of the SEQUENCE component (ESQ), or as a part
of the NOTEBOOK component (ENB), or as a
separate product using some other mechanism

Science Plan - ESP

Navigation and Ancillary Information Facility

N IF

Intro to EK Subsystem 7

•  Principal entries are instrument and spacecraft
“commands” or “macro calls” that carry out the
objectives of the Science Plan. These contain the
lowest level of detail that could be helpful while also
being practical for inclusion in the E-kernel product

–  Could include ground system events, such as tracking station status
–  Could include “announcements” of the occurrence of geometric

conditions of wide interest, such as equator crossing, occultation
entry, etc.

–  Could include “state records” that summarize the status of an
instrument or subsystem or spacecraft at a given epoch. (If to be
included, state records might be derived rather than actually stored
as physical objects.)

Sequence - ESQ

Navigation and Ancillary Information Facility

N IF

Intro to EK Subsystem 8

•  Entries are notes provided by scientists and flight
team engineers about what happened as mission
operations are conducted, including unplanned,
unanticipated or unexplained occurrences

•  Entries could also be general notes thought to be of
interest to scientists

•  Entries submitted using e-mail can include MIME
attachments, such as GIF, JPEG, EXCEL, WORD, etc.,
in addition to plain ASCII text

•  Entries submitted using WWW are limited to plain
ASCII text

Notebook - ENB

Navigation and Ancillary Information Facility

N IF

Intro to EK Subsystem 9

•  The E-kernel is the least well developed and least
used component of the SPICE system

–  Due in part to not being of as much interest to flight project
instrument and engineering teams as the other components

»  Their perception is that EK information could be useful to
future users of a mission’s data, but not so much to an active
flight team, and since they are already very busy they have
not time to contribute input to an EK

•  Unfortunately NAIF and other kernel producers
seem unlikely to produce EK components in the
future

E-Kernel Status

SPICE Documentation Taxonomy

Arranged by Category

March 2010

General Reading, including installing the SPICE Toolkit
Document Name File Name Location Description/Comments

Installing the SPICE Toolkit Installing_toolkit TUTOR A collection of viewgraph-style packages providing tutorial
information on nearly all components of the SPICE system.

Instructions for getting the Toolkit
components from NAIF's FTP
server

README GETTK Description of the files to be FTP'd in order to get, install and
use the SPICE Toolkit.

Preparing your environment for
programming with SPICE

Preparing_for_programm
ing

TUTOR

Toolkit Contents dscriptn.txt T Describes the structure and contents of the Toolkit

New features and major changes whats.new T Describes significant new features added to the Toolkit since
the last version.

TUTOR = Tutorials on NAIF web pages (http://naif.jpl.nasa.gov/tutorials.html)
T = SPICE Toolkit, in the /doc subdirectory
GETTK = Go to the desired language and then platform under ftp://naif.jpl.nasa.gov/pub/naif/toolkit

General SPICE Programming

Document Name File Name Location Description/Comments

Must Useful SPICE Subroutines Mostused.html T Practical but terse specifications, including examples, for many
popular routines.

Permuted Index (SPICELIB or
CSPICE)

Spicelib_idx.html or
cspice_idx.html

T Permuted index built from the “Brief Abstract” found in every
routine. Helps focus your search for a routine that meets your
needs.

CSPICE Required Reading

ICY Required Reading

MICE Required Reading

cspice

icy

mice

T A discussion of how the product is produced and how to use it.

Summary of Key Points summary_of_key_points TUTOR Tips for getting started on programming with SPICE modules.

Module headers *.f or *_c.c T Each module (subroutine) in SPICELIB and CSPICE contains
an extensive "header" providing the detailed specifications for
the routine needed by a programmer. Examples are included.

ICY and MICE “wrappers” around
corresponding CSPICE modules

/doc/html/Index.html T IDL and MATLAB interface “wrappers” for the

NAIF IDs reference naif_ids T A summary of numeric ID codes used throughout the SPICE
system

Error Required Reading error T Reference for configuring and using the exception handling
system built-in to SPICELIB and CSPICE

Common Problems problems T A discussion of the most commonly encountered problems
using SPICE

TUTOR = Tutorials on NAIF web pages (http://naif.jpl.nasa.gov/tutorials.html)
T = SPICE Toolkit:

Plain text, in the /doc subdirectory
HTML under the /doc/html/… subdirectory

Ephemerides for spacecraft and solar system bodies (SPK Subsystem)
Document Name File Name Location Description/Comments

SPK Tutorial spk TUTOR Tutorial on using SPK files

Making an SPK Tutorial making_an_spk TUTOR Tutorial on making an SPK file

Using Frames Tutorial using_frames TUTOR Tutorial on using frames, including in SPK routines

SPK Required Reading spk T Reference for the SPK subsystem

Frames Required Reading frames T Reference for working with reference frames

NAIF IDs Required Reading naif_ids T Summarizes numeric ID codes used throughout the SPICE
system

SPC Required Reading spc T Reference for use of the "comment area" in binary kernels

BRIEF User's Guide brief T BRIEF produces a concise summary of the contents/coverage
of an SPK file.

SPACIT User's Guide spacit T SPACIT provides file conversion, detailed summarization and
read access to internal comments (metadata).

Convert User's Guide conver T Describes use of the command line utilities named TOBIN and
TOXFR used to convert binary kernels to transfer format and
vice-versa.

Comment User's Guide commnt T Comment is used to add, extract, read and delete comments
(metadata) in binary kernels.

SPK Merge User's Guide spkmerge T SPKMERGE is a utility program used to merge two or more
SPK files, or to subset a single SPK file.

SPKDIFF User’s Guide spkdiff T SPKDIFF computes differences between geometric states
obtained from two SPK files and either displays these or shows
statistics about them.

SPY User’s Guide spy.txt UTIL SPY is a utility for validating, inspecting and analyzing SPK
files.

MKSPK User’s Guide mkspk T MKSPK is a utility for making an SPK file from a set of state
vectors or conic elements or two-line elements.

TUTOR = Tutorials on NAIF web pages (http://naif.jpl.nasa.gov/tutorials.html)
T = SPICE Toolkit:

Plain text, in the /doc subdirectory
HTML under the /doc/html/… subdirectory

UTIL = Utilities link on the NAIF website

Target body size, shape and orientation (PCK Subsystem)

Document Name File Name Location Description/Comments

PCK Tutorial pck TUTOR Tutorial viewgraphs on using PC-kernels

High Accuracy Orientation and
Body-fixed Frames for the Moon
and Earth

lunar-earth_pck-fk TUTOR Tutorial viewgraphs on special orientation files (binary PCKs)
and body-fixed frames for the moon and the earth

PCK Required Reading pck T Reference for the PCK subsystem

Frames Required Reading frames T Reference for working with reference frames

NAIF IDs Required Reading naif_ids T Summarizes numeric ID codes used throughout the SPICE
system

Kernel Required Reading kernel T Reference for general specifications of text kernels

TUTOR = Tutorials on NAIF web pages (http://naif.jpl.nasa.gov/tutorials.html)
T = SPICE Toolkit:

Plain text, in the /doc subdirectory
 HTML under the /doc/html/… subdirectory

Instrument Information Pertinent to SPICE (IK Subsystem)

Document Name File Name Location Description/Comments

IK Tutorial ik TUTOR Tutorial viewgraphs on using I-kernels

IK Required Reading ik -- (Not yet written!)

n/a *.ti D Look at an existing I-kernel; these are text files that contain
substantial internal documentation

Frames Required Reading frames T Reference for working with reference frames

NAIF IDs Required Reading naif_ids T Summarizes numeric ID codes used throughout the SPICE
system

Kernel Required Reading kernel T Reference for general specifications of text kernels

D = Project Data on NAIF web pages (http://naif.jpl.nasa.gov/naif/data.html)
TUTOR = Tutorials on NAIF web pages (http://naif.jpl.nasa.gov/tutorials.html)
T = SPICE Toolkit:

Plain text, in the /doc subdirectory
 HTML under the /doc/html/… subdirectory

Orientation of a Spacecraft or Structure (CK Subsystem)

Document Name File Name Location Description/Comments

CK Tutorial ck TUTOR Tutorial viewgraphs on using C-kernels

Using Frames Tutorial using_frames TUTOR Tutorial on using frames, including in transformation modules

CK Required Reading ck T Reference for the CK subsystem

Frames Required Reading frames T Reference for working with reference frames

NAIF IDs Required Reading naif_ids T Summarizes numeric ID codes used throughout SPICE

SPC Required Reading spc T Reference for use of the "comment area" in binary kernels

Rotations Required Reading rotation T Reference for construction and use of rotation matrices within
the SPICE context

CKBRIEF User's Guide ckbrief T CKBRIEF produces a concise summary of the
contents/coverage of an SPK file.

SPACIT User's Guide spacit T SPACIT provides file conversion, detailed summarization and
read access to internal comments (metadata).

Convert User's Guide convert T Describes use of the command line utilities TOBIN and TOXFR
used to convert binary kernels to transfer format and vice-versa.

Comment User's Guide commnt T COMMENT is used to add, extract, read and delete comments
(metadata) in binary kernels.

DAFCAT User's Guide dafcat T DAFCAT provides a very simple and simplistic file merge
capability for CK files.

CKslicer User’s Guide ckslicer.txt UTIL CKSLICER subsets a CK into another CK file.

CKsmrg chsmrg.txt UTIL CKSMRG merges segments in Type 3 CK files.

MSOPCK User’s Guide msopck T MSOPCK is a utility for making a CK file from orientation data in
the form of quaternions, Euler angles or rotation matrices.

FRMDIFF User’s Guide frmdiff T Provides a statistical comparison of the orientations of two
frames, one or both of which might be specified using CK(s).

TUTOR = Tutorials on NAIF web pages (http://naif.jpl.nasa.gov/tutorials.html)
T = SPICE Toolkit:

Plain text, in the /doc subdirectory
 HTML under the /doc/html/… subdirectory
UTIL = Utilities link on the NAIF website

Connectivity of Reference Frames (FK Subsystem)

Document Name File Name Location Description/Comments

Frames Tutorial fk TUTOR Tutorial viewgraphs on contents of a Frames kernel

Using Frames using_frames TUTOR Tutorial viewgraphs on using Frames kernels

Dynamic Frames dynamic_frames TUTOR Tutorial on defining/implementing custom so-called dynamic
frames

n/a *.tf N Look at an existing Frames kernel; these are text files and
contain substantial internal documentation

Frames Required Reading frames T Reference for the Frames subsystem

NAIF IDs Required Reading naif_ids T Summarizes numeric ID codes used throughout the SPICE
system

Rotations Required Reading rotation T Reference for construction and use of rotation matrices within
the SPICE context

Kernel Required Reading kernel T Reference for general specifications of text kernels

FRMDIFF User’s Guide frmdiff T Provides a statistical comparison of the orientations of two
frames, one or both of which might be specified using CK(s).

TUTOR = Tutorials on NAIF web pages (http://naif.jpl.nasa.gov/tutorials.html)
T = SPICE Toolkit:

Plain text, in the /doc subdirectory
 HTML under the /doc/html/… subdirectory

"EVENTS", broken down into three sub-products (EK Subsystem)

Document Name File Name Location Description/Comments

Introduction to EK subsystem ek_intro TUTOR Tutorial Introduction to the Events subsystem

EK Required Reading ek T Reference for the Events-kernel subsystem

TUTOR = Tutorials on NAIF web pages (http://naif.jpl.nasa.gov/tutorials.html)
T = SPICE Toolkit:

Plain text, in the /doc subdirectory
 HTML under the /doc/html/… subdirectory

Time Conversion

Document Name File Name Location Description/Comments

Time Tutorial time TUTOR Tutorial viewgraphs on time conversions

Time Required Reading time T Reference on time systems (excluding SCLK)

SCLK Required Reading SCLK T Reference on spacecraft clock time

CHRONOS User's Guide chronos T CHRONOS is a full-featured, flexible time conversion utility
program

Kernel Required Reading kernel T Reference for general specifications of text kernels

TUTOR = Tutorials on NAIF web pages (http://naif.jpl.nasa.gov/tutorials.html)
T = SPICE Toolkit:

Plain text, in the /doc subdirectory
 HTML under the /doc/html/… subdirectory

Geometry Finder (GF Subsystem)

Document Name File Name Location Description/Comments

Geometry Finder Tutorial geometry_finder TUTOR Tutorial viewgraphs on geometry finder subsystem

Geomeetry Finder Required
Reading

gf T Reference on geometry finder

TUTOR = Tutorials on NAIF web pages (http://naif.jpl.nasa.gov/tutorials.html)
T = SPICE Toolkit:

Plain text, in the /doc subdirectory
 HTML under the /doc/html/… subdirectory

Navigation and Ancillary Information Facility

N IF

“High Accuracy” Orientation
and

Body-fixed Frames
for the

Moon and Earth

March 2010

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 2

Topics

•  Introduction
•  Earth binary PCKs
•  Lunar binary PCKs
•  Lunar Frames Kernel

–  Frame specifications
–  Frame alias names

•  Binary PCK file format
•  Using Binary PCKs
•  Backup

–  Earth and Moon frame association kernels

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 3

Introduction-1

•  Having read about “standard” PCKs and FKs in
other tutorials you may want to learn about
several “special” PCKs and FKs dealing with the
Earth and the Moon.

•  While it is ultimately up to you, in most cases you
should use the PCK and FK kernels described
here when working with the Moon or the Earth.

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 4

Introduction-2

•  NAIF provides “High accuracy” orientation data for the Earth and
Moon in binary PCKs.

–  For the Earth, three versions are made:
»  High accuracy, frequently updated file

•  Contains high accuracy historical data and fairly accurate, short-term predict data

»  High accuracy, infrequently updated historical file
»  Lower accuracy long term predict file

–  For the Moon, a single, long-term file is made each time an official new JPL
“Developmental Ephemeris” (DE) is released.

»  Contains accurate historical and predict lunar orientation data
•  To use these kernels:

–  Select binary PCKs having time coverage that meet your needs
»  Unlike text PCKs, the time span covered by binary PCKs is limited

–  Load the PCK(s) via FURNSH
–  For the Moon, also load the Lunar FK
–  Reference the Earth body-fixed frame using the name ‘ITRF93’
–  Reference the high-accuracy Lunar body-fixed frames using one of these names:

»  MOON_ME (Moon Mean Earth/Rotation axis frame)
»  MOON_PA (Moon Principal Axes frame)

–  CAUTION: IAU_MOON cannot be used to reference high-accuracy lunar orientation data

Navigation and Ancillary Information Facility

N IF

Earth Binary PCKs

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 6

“High Accuracy” Earth Rotation Model

•  The ITRF93 high accuracy Earth rotation model takes into
account:

–  Precession: 1976 IAU model due to Lieske.
–  Nutation: 1980 IAU model, with IERS corrections due to Herring et al.
–  True sidereal time using accurate values of TAI-UT1
–  Polar motion

•  It is more accurate than the IAU rotation models found in
text PCKs.

–  See the plot on the next slide comparing orientation of the ITRF93 frame to that
of the IAU_EARTH frame.

»  IAU_EARTH frame orientation error is ~1 milliradian, or ~6km on a great
circle!

•  The highest accuracy is obtainable only for past epochs.
–  Unpredictable variations of UT1-TAI and polar motion limits the accuracy of

predicted Earth orientation. See plot on page 8.

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 7

IAU_EARTH vs ITRF93 Comparison Plot

Difference between the IAU_Earth frame and the ITRF93 frame

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 8

Earth Predicted vs Reconstructed ITRF93 Plot

Difference between predicted and reconstructed orientation of ITRF93 frame

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 9

Data Source for Earth “High Accuracy” Model

•  Data for the Earth come from a JPL Earth
Orientation Parameters file (EOP).

–  Binary Earth PCKs represent the orientation of an Earth ITRFxx
body-fixed reference frame relative to the ICRF*.

»  ITRF* frames are defined by the International Earth
Rotation Service (IERS).

»  Currently only the ITRF93 frame is supported within SPICE.

ICRF = International Celestial Reference Frame, often referred to in SPICE as the “J2000”
frame, and also often referred to as the EME 2000 frame. This is an inertial frame.

ITRF = International Terrestrial Reference Frame

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 10

Earth PCK Production Scheme

•  Three versions of the “high accuracy” binary Earth PCK are
produced

–  “The latest,” using each new release of a reconstructed EOP file by JPL
»  Covers well into the past and approximately two months into the future

beyond the production date
»  Accuracy of the future data degrades rapidly past the production date
»  Produced several times per week using an automatic script

–  Long term predict, for future uses not requiring high accuracy
»  Produced infrequently
»  Covers several years into the past and approximately 30 years into the

future
»  Accuracy at epochs in the future is low compared to that for past epochs,

but any of it is far better than what is obtained from the IAU rotation model
for the Earth provided in any text PCK

–  History file, containing only high accuracy historical data
•  All are in the pck directory under generic_kernels on the NAIF

server: ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/
–  Read the “aareadme” file to see the file naming schema and more details

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 11

Accurate Earth Surface Locations

•  High accuracy determination of surface locations
relative to an inertial frame involves motions in
addition to Earth rotation, including:

–  tectonic plate motion
–  tidal effects
–  ocean and atmospheric loading
–  relativistic effects

•  Tectonic plate motion is accounted for in NAIF's
DSN and some non-DSN station SPK files.

•  The other non-rotational effects affecting surface
locations are NOT accounted for by a PCK or any
other SPICE component.

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 12

Kernel Usage Summary: Earth

•  To use high accuracy Earth orientation data
–  Load one or more binary Earth PCKs

»  If a long-term predict is used, load this kernel *before*
loading any kernel containing reconstructed data so that
the reconstructed data have precedence during the overlap
period.

–  If your application uses any of the old, pre-N0062 APIs that
make use of the default Earth body-fixed frame (see Backup
slides), load an Earth frame association kernel making ITRFxx
the default earth body-fixed frame.

»  But best to switch to use the “new”APIs that require you to
specify which frame to use.

•  New APIs: ILUMIN, SINCPT, SUBPNT, SUBSLR

•  If you’re using SPICE to access Earth size and
shape information, you’ll also need to load a text
PCK file containing these data.

–  Typically use the latest generic text PCK: pck000xx.tpc

Navigation and Ancillary Information Facility

N IF

Lunar Binary PCKs

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 14

“High Accuracy” Lunar Rotation Model

•  The high accuracy lunar rotation models available
in binary PCKs are more accurate than the IAU
rotation model found in a text PCK.

–  Rotation error between IAU_MOON and the corresponding “high
accuracy” MOON_ME (mean Earth/rotation axis) frame for the
DE-421 and 2000 IAU data sets and for the time period of
2000-2020 is approximately:

»  Worst case: ~0.0051 degrees, or ~155m on a great circle
»  Average: ~0.0025 degrees, or ~76m on a great circle

–  Error is due to truncation of the libration series in the IAU model
–  See the plot in the following chart comparing the IAU lunar

rotation model to the integrated DE-421 model.
»  Note that the IAU_MOON model was developed in 2000,

published in 2002 (see documentation in pck00008.tpc).

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 15

IAU_Moon vs MOON_ME Comparison Plot

Difference between the IAU_Moon frame and the Moon_ME frame (equivalent
to the Moon_ME_DE421 frame)

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 16

Lunar Rotation Model Effects

•  The high accuracy lunar orientation model obtained from the
DE421 lunar ephemeris represents the result of a simultaneous
numerical integration of lunar rotation and orbit, and of orbits of
the planets.

–  The DE421 integration model includes*:
»  A “solid Moon”
»  Torques on Moon from the static gravity field of degree 2-4. Torque is due to

Earth, Sun, Venus, and Jupiter.
»  Torques on Moon and moments of inertia due to (degree 2) tides raised by

Earth
»  Dissipation effects on torques and moments due to tides on the Moon.
»  Torques due to Earth J2 interacting with Moon degree 2 (J2 and C22).

–  Lunar quantities fit for DE421 include
»  Initial conditions for lunar orbit and rotation of body
»  Moment of inertia difference (C-A)/B and (B-A)/C
»  Third-degree gravity field coefficients
»  Tidal Love numbers and dissipation
»  Locations of four laser retroreflector arrays

•  It is anticipated that further improvements in the orientation of the
moon will become available in new DExxx-based kernels in the
future.

*Description provided by James G. Williams (JPL)

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 17

Data Sources for “High Accuracy” Models

•  Data for lunar orientation come from JPL’s DE/
LExxx planet/lunar ephemeris files.

–  Binary lunar PCKs represent the orientation of the Moon’s
“principal axis” reference frame, referred to as
MOON_PA_DExxx, relative to the ICRF*.

ICRF = International Celestial Reference Frame, often referred to in SPICE as the “J2000”
frame, and also often referred to as the EME 2000 frame. This is an inertial frame.

JPL-produced planet/lunar ephemeris files are sometimes referred to as “DE/LExxx” but
more often are referred to as simply “DExxx.”

Navigation and Ancillary Information Facility

N IF

Lunar Frames Kernel

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 19

Lunar Frames Kernel

•  A lunar frames kernel is maintained and available from NAIF. It
has four functions.
1.  Make two lunar frames–Principal Axes (PA) and Mean Earth/Polar Axis (ME)–

known to the SPICE system.
»  Within SPICE their names are MOON_PA_DExxx and MOON_ME_DExxx
»  These frames are unique to a particular JPL-produced planetary and lunar

ephemeris.
2.  Connect the MOON_PA_DExxx frame name to the high accuracy lunar

orientation PCK data that implement the PA orientation (relative to the ICRF).
3.  Provide specifications, in the SPICE context, for implementing the rotation

between the PA frame and the ME frame.
»  Makes the MOON_ME_DExxx frame available to SPICE.

4.  Provide generic frame names, aliased to the MOON_PA_DExxx and
MOON_ME_DExxx frame names.

»  The generic frame names are simply MOON_PA and MOON_ME.
»  The generic names need not be changed in your programs when the

MOON_PA_Dexxx and MOON_ME_DExxx names change due to use of new
defining data.

»  The DE-specific frames to which these aliases “point” will be updated by NAIF whenever a new
binary lunar orientation PCK is produced. NAIF will release a new lunar FK at that time.

•  To access the PA or ME frame you must load the lunar FK into
your program in addition to the lunar binary PCK that implements
the lunar PA frame orientation.

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 20

Kernel Usage Summary: Moon

•  To use high accuracy Moon orientation data
–  Load the current binary lunar PCK
–  Load the current lunar FK
–  If your application uses any of the old, pre-N0062 APIs that

make use of the default lunar body-fixed frame (see Backup),
load a moon frame association kernel making either MOON_ME
or MOON_PA the default lunar body-fixed frame.

»  But best to switch to use the “new” APIs that require you to
specify which frame to use.

•  The new APIs are ILUMIN, SINCPT, SUBPNT, SUBSLR

•  If you’re using SPICE to access Moon size and
shape information, you’ll also need to load a text
PCK file containing these data.

–  Typically use the latest generic text PCK, such as pck00009.tpc

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 21

Lunar PCK/FK Summary

Lunar
binary
PCK

Lunar
FK

Generic
text
PCK

Orientation of
DEnnn_PA

frame

MOON_PA

Orientation of
DEnnn_ME

frame

MOON_ME

Orientation of
IAU_MOON

frame

IAU_MOON

Which kernels are needed to access each of the three lunar
body-fixed reference frames providing lunar orientation?

Frame name to be
used in SPICE
software

Usually a bad
choice for the

moon!

Example of
file name moon_080317.tf pck00009.tf

moon_pa_de421_1900-2
050.bpc

Your
objective

Kernel(s)
needed

Navigation and Ancillary Information Facility

N IF

Binary PCK File Format

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 23

Binary PCK File Format

•  SPICE binary PCK files are used to accommodate “high
accuracy” rotation models.

–  Just as for SPKs and CKs, the data are held in SPICE Double Precision
Array files (DAF)

–  Multiple types are supported
»  Type 2: Chebyshev polynomials are used to represent Euler

angles giving orientation as a function of time. Rates are obtained
by differentiating polynomials. Coverage intervals have fixed
length.

•  Used for the Earth and the Moon
»  Type 3: Separate sets of Chebyshev polynomials are used to

represent Euler angles and their rates. Coverage intervals have
variable length.

•  Not currently used for Earth or Moon
–  Binary PCKs include a “comment area” for storing descriptive

metadata
»  Access the comment area using the Toolkit’s commnt utility

program
–  Binary PCKs support high-speed direct access

»  Cheby polynomials are fit to source Euler angles; these evaluate
very quickly

Navigation and Ancillary Information Facility

N IF

Using Binary PCKs

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 25

Precedence Rules
for Text and Binary PCKs

•  If two (or more) binary PCKs with functionally equivalent
data are loaded, a later loaded file takes precedence.

•  Loading one text PCK that supersedes another can lead to
errors if data from the “old” PCK remain in the kernel pool.

–  It’s essential to unload the old text PCK before loading the new one.
»  Use UNLOAD or KCLEAR to unload the old text PCK.

–  This problem doesn’t apply to binary PCKs.

•  If both a binary and a text PCK provide orientation for the
same frame, data available from the binary PCK always take
precedence over data available from the text PCK.

–  This is independent of file loading order
–  The binary PCKs discussed in this tutorial define earth-fixed and

moon-fixed frames different from those defined by a NAIF text PCK
(e.g. pck00009.tpc), so there is no conflict.

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 26

Tools for use with Binary PCKs

•  Use the commnt utility to access a binary PCK comment
area

–  Read, extract or insert metadata

•  Use the brief or spacit utility to summarize a binary PCK
–  brief is easier to use; spacit provides more information

•  Non-native binary PCKs can be read without first being
converted to the native binary form

–  If you need to write to a non-native binary PCK you must first convert it
to native binary form using bingo or the pair of toxfr and tobin

»  toxfr and tobin are avaiable in each Toolkit; bingo is available only
from the NAIF website

–  Converting a non-native binary PCK to native form will also speed up
data access somewhat

Navigation and Ancillary Information Facility

N IF

Backup

Association Frames Kernels
for the Earth and the Moon

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 28

Association FKs: Introduction

•  In most SPICE modules that deal with one or more reference frames
the name(s) of that/those frame(s) must be provided as input
argument(s), for example:
–  CALL SPKEZR (target,time, frame, observer, correction,

 state, lighttime)
•  NAIF’s SPICE developers assumed there would be only one body-

fixed reference frame associated with each natural body during a
program run.

–  Thus a specific body-fixed frame name would rarely be needed as an input to
modules dealing with body-fixed frames

–  Instead, SPICE could use the body-fixed frame associated with a given body simply
by knowing the body name or ID

»  For most bodies SPICE associates the body with a body-fixed frame named
IAU_<body name> (example: IAU_MOON)

»  This is known as the default body-fixed frame
•  This was a bad assumption… at least for the Earth and the Moon!

–  Multiple body-fixed frames exist for the Moon and Earth
–  The default body-fixed frames for the Moon and the Earth, for which the defining

data are provided in a generic text PCK (taken from an IAU report) are very
inaccurate representations of the actual orientations of these bodies

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 29

Better Choice for the Default

•  For the Earth and the Moon there are other
choices for body-fixed frame that are almost
certainly better than the default body-fixed frame
conjured up by SPICE

Body SPICE Default Body-fixed Frame Better choice

Earth IAU_Earth ITRF93
 ITRFxx (in the future)

Moon IAU_Moon Moon_PA or
 Moon_ME

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 30

The Problem

Old: still available, but better to use those noted below

New: safer to use, and offer improved
accuracy in some cases

•  The SPICE modules that make use of the default body-fixed
reference frame are these

–  LSPCN, ET2LST, ILLUM, SRFXPT, SUBPT, SUBSOL (and their C, Icy and Mice
equivalents)

–  Your code might overtly call one of these, or it could call one indirectly through use
of a parameterized dynamic frame

•  NAIF rules regarding stability of our software offerings prevent us
from changing the designs of those modules

–  So we must provide you means to change the default body-fixed frame associated
with any solar system body of interest to you. See the next several pages.

•  However, starting with the version N62 Toolkits, a new set of
modules is available for those calculations where precision body
orientation is important.

–  These modules require the user to name the desired body-fixed frame, rather than
using a default body-fixed frame

–  The new N62 modules are these
»  ILUMIN, SINCPT, SUBPNT, SUBSLR

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 31

Changing the Default Body-Fixed
Frame Name

•  All bodies for which a body-fixed frame is defined by the IAU, and
where the defining data are found in a SPICE text PCK file, have an
associated default body-fixed frame name within SPICE:

–  The name pattern is: IAU_<body name>
–  Examples: IAU_MARS, IAU_MOON, IAU_EARTH

•  A different default body-fixed frame name can be assigned within a
program by placing the following assignment in any text kernel
that is loaded into the program:

 OBJECT_<body name>_FRAME = ‘<new default frame name>’

–  Example: OBJECT_MOON_FRAME = ‘MOON_ME’

•  NAIF offers three “association FKs” to accomplish this.
–  See next page.

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 32

Using Association FKs to Change
the Default

•  For the Earth and the Moon, changing the default body-fixed frame
name as described on the previous page can be accomplished by
loading the appropriate “association” frame kernel provided by
NAIF. The association kernels available are shown below

–  For the Earth:
»  earth_assoc_itrf93.tf

–  For the Moon: (pick one or the other–not both)
»  moon_assoc_me.tf
»  moon_assoc_pa.tf

•  These kernels are available on the NAIF server
–  For the Earth:

»  ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/fk/planets/
–  For the Moon:

»  ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/fk/satellites/

Navigation and Ancillary Information Facility

N IF

Special PCK and FK for Earth and Moon 33

Lunar FK/PCK/Association FK Usage

PA
Association

FK**

MOON_PA MOON_ME IAU_MOON

Which additional kernel is needed to use the indicated frame in
those (older) SPICE APIs* that use a default (assumed) frame?
Pick one or the other.

Usually a bad
choice for the

moon! moon_assoc_me.tf moon_assoc_pa.tf File name

ME
Association

FK**

no
additional

kernels

* ET2LST, ILLUM, SRFXPT, SUBPT, SUBSOL
(and their C, Icy and Mice equivalents)
**Any version of one or the other of these kernels is good indefinitely;
you do not need to use the latest instance offered on the NAIF server.

But best to use the
N62 replacements for
these four, which
don’t use a default
body-fixed frame:
• ILUMIN
• SINCPT
• SUBPNT
• SUBSLR

Navigation and Ancillary Information Facility

N IF

Dynamic Reference Frames

March 2010

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 2

•  Introduction to Dynamic Reference Frames
•  Terminology
•  Parameterized Dynamic Reference Frames
•  Defining Dynamic Reference Frames

–  Two-Vector Frame Concepts
–  Two-Vector Frame Examples
–  "Of-Date" Frames
–  Euler Frames
–  Frozen Dynamic Frames
–  Inertial Dynamic Frames

•  Generic Dynamic Reference Frame Kernel
•  Backup

Topics

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 3

•  The Dynamic Reference Frames subsystem is an
extension to the original SPICE Frames system.

•  What are "dynamic reference frames"?
– Dynamic reference frames ("dynamic frames" for short)

have time-dependent orientation.
– Dynamic frames are specified via a frame kernel (FK).
– CK and PCK frames are not considered to be dynamic

frames (although they are time-varying).
•  The Dynamic Frames capability enables the SPICE

system to conveniently use a wide variety of frames
that are not "built in" to SPICE. Examples include:

– Nadir-oriented frame for planetary orbiter
– Geocentric Solar Ecliptic (GSE)
–  Solar Magnetic (SM)

Introduction to Dynamic Frames - 1

(continued on next page)

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 4

–  Spacecraft-centered roll-celestial frame
– Geocentric Solar Magnetospheric (GSM)
– Geomagnetic (MAG)

»  Using constant north centered geomagnetic dipole
»  Using dipole direction defined by time-dependent Euler

angles

– Geocentric Solar Equatorial (GSEQ)
–  Solar Equatorial frame for any ephemeris object
– Orbital frame for any ephemeris object
–  Earth mean equator and equinox of date
–  Earth true equator and equinox of date
–  Earth mean ecliptic and equinox of date
– RTN ("radial, tangential, normal") frames
– And many more…

Introduction to Dynamic Frames - 2

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 5

•  Using already defined dynamic frames in a SPICE-
based program is straightforward.

– At program initialization:
»  Load one or more dynamic frame kernels to make the

frame definitions known to SPICE.
»  Load any kernels on which the dynamic frames

depend.
•  Some dynamic frames are defined using data from SPK,

FK, PCK, CK or other SPICE kernels.
–  Then, refer to the dynamic frame or frames by name in calls

to SPICE routines
»  Just as you would do with built-in frames such as

"J2000."

Introduction to Dynamic Frames - 3

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 6

»  For example, find the 6x6 matrix to transform states from
the J2000 frame to the Geocentric Solar Ecliptic (GSE)
frame at the TDB epoch given by ET1.
CALL SXFORM('J2000', 'GSE', ET1, XFORM)

» Or look up the state of Jupiter relative to the earth in the
GSE frame:

 CALL SPKEZR('JUPITER', ET1, 'GSE',
 'NONE', 'EARTH', STATE, LT)

•  You can refer to dynamic frames in SPK or CK files,
for example:

– When you create an SPK file, you can have an SPK segment
reference its ephemeris data to the true earth equator and
equinox of date reference frame.

» However, some restrictions apply to use of dynamic
frames in SPICE kernels (see Backup slides).

Introduction to Dynamic Frames - 4

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 7

•  To define dynamic frames via a frame kernel, a fairly
detailed understanding of the SPICE dynamic frame
capability is required.

•  A good understanding of the basic SPICE system
(in particular, the SPK and Frame systems) is also a
prerequisite for defining dynamic frames.

•  See the Frames Required Reading for the most
detailed documentation available.

•  The rest of this tutorial is concerned with:
–  explaining the SPICE dynamic frames capability.
–  showing how to create dynamic frame kernels.

»  We present many frame definition examples.

Introduction to Dynamic Frames - 5

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 8

•  Terms involving reference frames and vectors:
–  "Frame" is an abbreviation for "reference frame."
– A frame can be thought of as a set of three mutually

orthogonal, unit-length vectors.
»  These vectors are called "basis vectors." The lines

containing the basis vectors are the "axes" of the
frame.

»  The basis vectors indicate the "positive" axis
directions; we label these vectors +X, +Y, and +Z. The
negatives of these vectors are labeled -X, -Y, and -Z.

» We number the axes as follows:
X = axis 1; Y = axis 2; Z = axis 3

– All of the frames we'll deal with are "right-handed": this
means +Z is the cross product +X x +Y.

– A reference frame's orientation is always defined relative to
another specified frame: the "base frame."

Terminology - 1

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 9

–  When we say that a frame is "time-dependent" or "time-varying,"
we mean:
»  The orientation of the frame is time-dependent.
»  Equivalently, the rotation between the frame and its base frame

is time-dependent.
–  By "evaluating" a frame or "evaluating the orientation of a frame,"

we mean computing the rotation between the frame and its base
frame.
»  An epoch is required in order to evaluate a dynamic frame.

–  In the SPICE system, frames are considered to have "centers."
»  The center of a frame is always an ephemeris object,

something whose location can be specified with an SPK file.
»  Frame centers come into play when light time corrections are

used: the apparent orientation of a time-dependent frame as
seen by an observer is affected by the one-way light time
between the frame's center and the observer.

Terminology - 2

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 10

– When we say that a vector is "aligned" with another vector,
we mean that the angular separation between the two
vectors is zero.

– We use the terms "defining a frame" and "specifying a
frame" interchangeably. Both refer to creating a frame
definition in a frame kernel.

•  Other definitions:
–  The term "API" stands for "Application Programming

Interface." This term refers to the set of SPICE routines
that are intended to be called directly by SPICE-based
programs.

–  The notation

 indicates a frame rotation of theta radians about axis n,
where n is one of {1, 2, 3}. This transformation rotates
vectors by –theta radians about axis n.

Terminology - 3

[theta]n

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 11

•  Parameterized dynamic frames
–  This is the only frame definition style currently supported by

the dynamic frames subsystem.
»  Future versions of SPICE might support additional styles.

–  Frames are defined via parameterized formulas
»  The code implementing the formulas is built into SPICE.
»  The parameters are specified in a frame kernel.

–  Parameterized dynamic frames are grouped into frame
"families". Each family corresponds to a distinct,
parameterized geometric formula providing a frame definition.
The families are:
»  Two-Vector Frames
» Mean Equator and Equinox of Date Frames
»  True Equator and Equinox of Date Frames
» Mean Ecliptic and Equinox of Date Frames
»  Euler Frames

Parameterized Dynamic Frames - 1

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 12

•  Defining Parameterized Dynamic Frames
–  Parameterized Dynamic frames are defined using

"keyword=value" assignments in a frame kernel.
–  The following items must be specified in the frame definition:

»  Frame name
»  Frame ID code

•  The range 1400000-2000000 is reserved for people outside of the
NAIF group

»  Class (=5 for dynamic frames)
»  Class ID code (=frame ID code for dynamic frames)
»  Frame center (=name or NAIF ID code for central body)
»  Frame definition style (='PARAMETERIZED')
»  Base frame

•  Frame definition specifies mapping from dynamic frame
to the base frame.

»  Frame family
»  Family-specific assignments

Parameterized Dynamic Frames - 2

continued on next page

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 13

» Rotation state
• Possible states are 'ROTATING' and 'INERTIAL'.

– A frame is treated as rotating or inertial for the purpose
of velocity transformations.

•  The default dynamic frame rotation state is 'ROTATING'.
•  For rotating two-vector and Euler frames, the rotation state

assignment can be omitted from the frame definition.
•  For "of-date" frames, the frame definition must either

specify the rotation state or designate the frame as
"frozen" at a specified epoch.

»  Freeze epoch
• Presence of this optional assignment in a frame kernel

indicates that the frame orientation, relative to the base
frame, is held constant ("frozen") at the specified epoch.

• Most dynamic frames are not frozen.

Parameterized Dynamic Frames - 3

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 14

•  Two-vector frames are defined using two time-
dependent vectors: the "primary" and "secondary"
vectors.

–  Each may be defined by a variety of geometric means:
»  Position vector
»  Target near point vector
»  Velocity vector
»  Constant vector

•  The user associates specified positive or negative
axes of the two-vector frame with the primary and
secondary vectors.

–  Two-vector frames are always right-handed and have orthogonal
axes, so two non-parallel vectors and associations of axes with these
vectors suffice to define the orientation of a frame.

Two-Vector Frame Concepts - 1

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 15

•  Primary Vector
–  A specified positive or negative axis of the two-vector frame is

aligned with this vector.
»  The frame kernel creator assigns to this vector one of the axis

designations { +X, -X, +Y, -Y, +Z, -Z }.
–  Two degrees of freedom of the frame orientation are removed by

association of an axis with the primary vector. The third degree
of freedom is the frame's rotation about the primary vector.

–  Example: a frame's -X axis is aligned with the primary vector:

Two-Vector Frame Concepts - 2

X

Y

Z

Primary Vector -X

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 16

•  Secondary Vector
–  A specified positive or negative axis of the two-vector frame is aligned

with the component of the secondary vector orthogonal to the primary
vector.

»  The frame kernel creator associates with this vector one of the
axis designations { +X, -X, +Y, -Y, +Z, -Z }, where the axis is
orthogonal to that associated with the primary vector.

–  Example, continued: the frame's +Y axis is associated with the
secondary vector. The component of the secondary vector
orthogonal to the primary vector is aligned with the frame's +Y axis.
The secondary vector thus lies in the frame's X-Y plane.

Two-Vector Frame Concepts - 3

X

Y

Z

Primary Vector
Secondary Vector

-X

Component of secondary
vector orthogonal to primary
vector

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 17

•  Secondary Vector, continued
–  Typically the secondary vector itself is not orthogonal to the

primary vector.
–  The secondary vector must be linearly independent of the

primary vector.
»  Near-degenerate geometry can lead to extreme loss of precision.

•  This problem can be difficult to diagnose.
»  SPICE enforces independence using a default angular separation

tolerance of 1 milliradian. The angular separation of the primary
and secondary vectors may not differ from 0 or Pi radians by less
than this tolerance.

»  A frame kernel creator can specify a different tolerance value.
The frame kernel assignment for this is:

 FRAME_<frame_ID>_ANGLE_SEP_TOL = <tolerance>

 where the tolerance is given in radians.
– Designers of two-vector frames should ensure that the primary

and secondary vectors can't become nearly parallel for any
realistic evaluation epoch.

Two-Vector Frame Concepts - 4

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 18

•  Position Vector
–  Is defined by the position of one ephemeris object relative

to another. The frame kernel creator specifies:
»  the target
»  the observer
»  the aberration correction

•  The vector may optionally be corrected for light time and
stellar aberration.

–  The epoch at which the position vector is computed is
supplied via a call to a SPICE API routine:

»  as an input to an SPK routine, e.g. SPKEZR, SPKPOS.
»  as an input to a frame system routine, e.g. SXFORM,

PXFORM.
–  The reference frame relative to which the vector is

expressed is not specified by the frame kernel creator.
»  SPICE automatically selects this frame.

Two-Vector Frame Concepts - 5

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 19

•  Target Near Point Vector
–  Is defined as the vector from an observer to the nearest point

on a specified extended target body to that observer. The frame
kernel creator specifies:

»  the target
»  the observer
»  the aberration correction

•  The vector may optionally be corrected for one-way light time
and stellar aberration.

•  When one-way light time correction is used, both the position
and orientation of the target body are corrected for light time.

–  The extended target body is modeled as a triaxial ellipsoid.
»  Size and shape data are given by a PCK.

–  The epoch is supplied via a SPICE API call, as for position
vectors.

–  The reference frame relative to which the vector is expressed is
not specified by the frame kernel creator.

»  SPICE automatically selects this frame.

Two-Vector Frame Concepts - 6

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 20

•  Velocity Vector
–  Is defined by the velocity of a target ephemeris object relative

to an observing ephemeris object. The frame kernel creator
specifies:

»  the target
»  the observer
»  the velocity reference frame

•  This frame may be distinct from the base frame.
•  Different velocity frame choices can lead to radically different

two-vector frame definitions.
»  the aberration correction

•  The velocity vector may optionally be corrected for one-way
light time and stellar aberration.

•  Use of light time correction also implies evaluation of the
velocity vector's frame at a light time corrected epoch: the
epoch is corrected for light time between the velocity frame's
center and the observer, if the velocity frame is non-inertial.

–  The epoch is supplied via a SPICE API call, as for position
vectors.

Two-Vector Frame Concepts - 7

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 21

•  Constant Vector
–  The vector is constant in a frame specified by the kernel

creator.
»  The constant vector's frame may be time-dependent.
»  This frame may be distinct from the base frame.

–  The vector may be specified in a variety of coordinate
systems.

» Cartesian
»  Latitudinal
» Right ascension/declination (RA/DEC)

– An observer may optionally be associated with a constant
vector for the purpose of defining aberration corrections.

»  The orientation of the constant vector's frame may
optionally be corrected for one-way light time between the
frame's center and the observer: if the frame is non-
inertial, it is evaluated at a light time corrected epoch.

Two-Vector Frame Concepts - 8

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 22

» A constant vector may optionally be corrected for
stellar aberration due to motion of observer relative to
solar system barycenter.

•  Stellar aberration can be specified without light time
correction; the string indicating stellar aberration
correction alone is 'S’

–  The epoch is supplied via a SPICE API call, as for position
vectors.

»  If the constant vector's frame is time-dependent, that
frame is evaluated at this epoch, optionally adjusted
for light time.

Two-Vector Frame Concepts - 9

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 23

Two-Vector Frame Examples - 1

Primary vector: spacecraft nadir direction
vector. Associated with nadir frame's -Z axis in
frame kernel.

Secondary vector: spacecraft velocity
relative to center of motion in J2000
frame. Associated with nadir frame's
+X axis in frame kernel.

Normalized component of secondary
vector orthogonal to primary vector.
This vector is aligned with the nadir
frame's +X axis.

X

Y = Z x X, completing the
right-handed frame.

Z

Y

Nadir-Oriented Spacecraft-Centered Frame

Nadir vector can be
defined to point to
either:
•  closest point to spacecraft
on ellipsoid
•  center of mass of orbited
body

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 24

Nadir-Oriented Spacecraft-Centered Frame: Frame kernel specification.

 The -Z axis points from the spacecraft toward the closest point on Mars.

 The component of inertially referenced spacecraft velocity
 vector orthogonal to Z is aligned with the +X axis.

 The +Y axis is the cross product of the +Z axis and the +X axis.

\begindata

 FRAME_<frame_name> = <frame_ID>
 FRAME_<frame_ID>_NAME = <frame_name>
 FRAME_<frame_ID>_CLASS = 5
 FRAME_<frame_ID>_CLASS_ID = <frame_ID>
 FRAME_<frame_ID>_CENTER = <orbiter_ID>
 FRAME_<frame_ID>_RELATIVE = 'J2000'
 FRAME_<frame_ID>_DEF_STYLE = 'PARAMETERIZED'
 FRAME_<frame_ID>_FAMILY = 'TWO-VECTOR'
 FRAME_<frame_ID>_PRI_AXIS = '-Z'
 FRAME_<frame_ID>_PRI_VECTOR_DEF = 'TARGET_NEAR_POINT'
 FRAME_<frame_ID>_PRI_OBSERVER = <orbiter_ID/name>
 FRAME_<frame_ID>_PRI_TARGET = 'MARS'
 FRAME_<frame_ID>_PRI_ABCORR = 'NONE'
 FRAME_<frame_ID>_SEC_AXIS = 'X'
 FRAME_<frame_ID>_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY'
 FRAME_<frame_ID>_SEC_OBSERVER = 'MARS'
 FRAME_<frame_ID>_SEC_TARGET = <orbiter_ID/name>
 FRAME_<frame_ID>_SEC_ABCORR = 'NONE'
 FRAME_<frame_ID>_SEC_FRAME = 'J2000'

Two-Vector Frame Examples - 2

<frame_ID> = integer frame ID
 code
<frame_name> = user-specified
 frame name
<orbiter_ID> = NAIF ID code of
 spacecraft
<orbiter_ID/name> = NAIF ID code or
 name of spacecraft

Definitions

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 25

Two-Vector Frame Examples - 3

Secondary vector:
spacecraft position relative to center of motion.
Associated with view frame's +Y axis in frame
kernel.

Primary vector: spacecraft
velocity relative to center of
motion in J2000 frame.
Associated with view frame's
+Z axis in frame kernel.
("Down track" direction)

Spacecraft "View Frame"

Normalized component of secondary
vector orthogonal to primary vector.
This vector is aligned with the view
frame's +Y axis. ("In plane" direction)

Z

X = Y x Z, completing the
right-handed frame.
("Out of plane" direction)

Y

X

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 26

Spacecraft "View Frame": Frame kernel specification.

 The +Z axis is aligned with the J2000-referenced velocity of the
 spacecraft relative to Mars.

 The component of the spacecraft position orthogonal to +Z is aligned
 with the +Y axis.

 The +X axis is the cross product of the +Y axis and the +X axis.

\begindata

 FRAME_<frame_name> = <frame_ID>
 FRAME_<frame_ID>_NAME = <frame_name>
 FRAME_<frame_ID>_CLASS = 5
 FRAME_<frame_ID>_CLASS_ID = <frame_ID>
 FRAME_<frame_ID>_CENTER = <orbiter_ID>
 FRAME_<frame_ID>_RELATIVE = 'J2000'
 FRAME_<frame_ID>_DEF_STYLE = 'PARAMETERIZED'
 FRAME_<frame_ID>_FAMILY = 'TWO-VECTOR'
 FRAME_<frame_ID>_PRI_AXIS = 'Z'
 FRAME_<frame_ID>_PRI_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY'
 FRAME_<frame_ID>_PRI_OBSERVER = 'MARS'
 FRAME_<frame_ID>_PRI_TARGET = <orbiter_ID/name>
 FRAME_<frame_ID>_PRI_ABCORR = 'NONE'
 FRAME_<frame_ID>_PRI_FRAME = 'J2000'
 FRAME_<frame_ID>_SEC_AXIS = 'Y'
 FRAME_<frame_ID>_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
 FRAME_<frame_ID>_SEC_OBSERVER = 'MARS'
 FRAME_<frame_ID>_SEC_TARGET = <orbiter_ID/name>
 FRAME_<frame_ID>_SEC_ABCORR = 'NONE'

Two-Vector Frame Examples - 4

<frame_ID> = integer frame ID
 code
<frame_name> = user-specified
 frame name
<orbiter_ID> = NAIF ID code of
 spacecraft
<orbiter_ID/name> = NAIF ID code or
 name of spacecraft

Definitions

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 27

Two-Vector Frame Examples - 5

Secondary vector: velocity of sun
relative to earth in J2000 frame.
Associated with GSE frame's +Y axis in
frame kernel.

Geocentric Solar Ecliptic Frame (GSE)

X

Z = X x Y,
completing the
right-handed frame

Y = normalized component
of secondary vector
orthogonal to primary
vector

Primary vector: position of sun relative to earth
Associated with GSE frame's +X axis in frame kernel.

Y

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 28

Two-Vector Frame Examples - 6

Geocentric Solar Ecliptic (GSE) frame:

 +X is parallel to the geometric earth-sun position vector.

 +Y axis is the normalized component of the geometric earth-sun velocity
 vector orthogonal to the GSE +X axis.

 +Z axis is parallel to the cross product of the GSE +X axis
 and the GSE +Y axis.

\begindata

 FRAME_GSE = <frame_ID>
 FRAME_<frame_ID>_NAME = 'GSE'
 FRAME_<frame_ID>_CLASS = 5
 FRAME_<frame_ID>_CLASS_ID = <frame_ID>
 FRAME_<frame_ID>_CENTER = 399
 FRAME_<frame_ID>_RELATIVE = 'J2000'
 FRAME_<frame_ID>_DEF_STYLE = 'PARAMETERIZED'
 FRAME_<frame_ID>_FAMILY = 'TWO-VECTOR'
 FRAME_<frame_ID>_PRI_AXIS = 'X'
 FRAME_<frame_ID>_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
 FRAME_<frame_ID>_PRI_OBSERVER = 'EARTH'
 FRAME_<frame_ID>_PRI_TARGET = 'SUN'
 FRAME_<frame_ID>_PRI_ABCORR = 'NONE'
 FRAME_<frame_ID>_SEC_AXIS = 'Y'
 FRAME_<frame_ID>_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY'
 FRAME_<frame_ID>_SEC_OBSERVER = 'EARTH'
 FRAME_<frame_ID>_SEC_TARGET = 'SUN'
 FRAME_<frame_ID>_SEC_ABCORR = 'NONE'
 FRAME_<frame_ID>_SEC_FRAME = 'J2000'

<frame_ID> = integer frame
 ID code

Definition

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 29

Two-Vector Frame Examples - 7

Secondary vector: North geomagnetic centered
dipole in IAU_EARTH frame. Associated with
GSM frame's +Z axis in frame kernel.

 Z = normalized
component of
secondary vector
orthogonal to
primary vector

Geocentric Solar Magnetospheric Frame (GSM)

Primary vector: position of sun relative to earth
Associated with GSM frame's +X axis in frame kernel.

Y = Z x X,
completing the
right-handed frame

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 30

Two-Vector Frame Examples - 8

Geocentric Solar Magnetospheric (GSM) frame:

 +X is parallel to the geometric earth-sun position vector.

 +Z axis is normalized component of north centered geomagnetic dipole
 vector orthogonal to GSM +X axis.

 +Y completes the right-handed frame.

\begindata

 FRAME_GSM = <frame_ID>
 FRAME_<frame_ID>_NAME = 'GSM'
 FRAME_<frame_ID>_CLASS = 5
 FRAME_<frame_ID>_CLASS_ID = <frame_ID>
 FRAME_<frame_ID>_CENTER = 399
 FRAME_<frame_ID>_RELATIVE = 'J2000'
 FRAME_<frame_ID>_DEF_STYLE = 'PARAMETERIZED'
 FRAME_<frame_ID>_FAMILY = 'TWO-VECTOR'
 FRAME_<frame_ID>_PRI_AXIS = 'X'
 FRAME_<frame_ID>_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
 FRAME_<frame_ID>_PRI_OBSERVER = 'EARTH'
 FRAME_<frame_ID>_PRI_TARGET = 'SUN'
 FRAME_<frame_ID>_PRI_ABCORR = 'NONE'
 FRAME_<frame_ID>_SEC_AXIS = 'Z'
 FRAME_<frame_ID>_SEC_VECTOR_DEF = 'CONSTANT'
 FRAME_<frame_ID>_SEC_FRAME = 'IAU_EARTH'
 FRAME_<frame_ID>_SEC_SPEC = 'LATITUDINAL'
 FRAME_<frame_ID>_SEC_UNITS = 'DEGREES'
 FRAME_<frame_ID>_SEC_LONGITUDE = 288.43
 FRAME_<frame_ID>_SEC_LATITUDE = 79.54

<frame_ID> = integer frame
 ID code

Definition

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 31

Two-Vector Frame Examples - 9

Secondary vector: Lock star direction in J2000 frame, corrected
for stellar aberration due to spacecraft motion. Associated with
Roll-Celestial frame's +X axis in frame kernel.

Spacecraft-Centered Roll-Celestial Frame

Primary vector: position of earth relative to spacecraft.
Associated with Roll-Celestial frame's +Z axis
in frame kernel.

 X = normalized
component of
secondary vector
orthogonal to
primary vector

Y = Z x X,
completing the
right-handed frame

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 32

Two-Vector Frame Examples - 10
 Spacecraft-centered roll-celestial frame:

 +Z is parallel to the geometric earth-sun position vector.

 +X axis is normalized component of star direction orthogonal to Z axis. The star
 direction is corrected for stellar aberration due to motion of the spacecraft.

 +Y completes the right-handed frame.

\begindata
 FRAME_<frame_name> = <frame_ID>
 FRAME_<frame_ID>_NAME = <frame_name>
 FRAME_<frame_ID>_CLASS = 5
 FRAME_<frame_ID>_CLASS_ID = <frame_ID>
 FRAME_<frame_ID>_CENTER = <spacecraft_ID>
 FRAME_<frame_ID>_RELATIVE = 'J2000'
 FRAME_<frame_ID>_DEF_STYLE = 'PARAMETERIZED'
 FRAME_<frame_ID>_FAMILY = 'TWO-VECTOR'
 FRAME_<frame_ID>_PRI_AXIS = 'Z'
 FRAME_<frame_ID>_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
 FRAME_<frame_ID>_PRI_OBSERVER = <spacecraft_ID/name>
 FRAME_<frame_ID>_PRI_TARGET = 'EARTH'
 FRAME_<frame_ID>_PRI_ABCORR = 'NONE'
 FRAME_<frame_ID>_SEC_AXIS = 'X'
 FRAME_<frame_ID>_SEC_VECTOR_DEF = 'CONSTANT'
 FRAME_<frame_ID>_SEC_FRAME = 'J2000'
 FRAME_<frame_ID>_SEC_SPEC = 'RA/DEC'
 FRAME_<frame_ID>_SEC_UNITS = 'DEGREES'
 FRAME_<frame_ID>_SEC_RA = <star right ascension in degrees>
 FRAME_<frame_ID>_SEC_DEC = <star declination in degrees>
 FRAME_<frame_ID>_SEC_OBSERVER = <spacecraft_ID/name>
 FRAME_<frame_ID>_SEC_ABCORR = 'S'

<frame_ID> = integer frame ID
 code
<frame_name> = user-specified
 frame name
<spacecraft_ID> = NAIF ID code of
 spacecraft
<spacecraft_ID/name> = NAIF ID code or
 name of spacecraft

Definitions

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 33

•  Of-date frames are associated with user-specified
bodies and are based on user-selected dynamical
models.

–  Implementations of these models are built into SPICE.
•  The currently supported "of-date" frame families

are
–  Mean Equator and Equinox of Date
–  True Equator and Equinox of Date
–  Mean Ecliptic and Equinox of Date

•  The earth is the only currently supported body.

"Of-Date" Frames - 1

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 34

•  The currently supported types of models are
–  Precession
–  Nutation
–  Mean obliquity

•  The of-date frame implementation is intended to be
flexible…

–  The set of supported bodies can grow over time.
–  The set of supported models can grow over time.

»  SPICE is not forever locked into using a single hard-
coded implementation, such as the 1976 IAU precession
model

–  The set of supported frame families can grow, if necessary.

"Of-Date" Frames - 2

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 35

•  Mean Equator and Equinox of Date Family
– For all reference frames in this family…

» The frame's relationship to the J2000 frame
is given by a precession model.

» The frame kernel creator selects a
precession model from those built into the
SPICE software.

• Currently supported only for the earth
•  1976 IAU precession model (Lieske model)

» The frame kernel creator must either specify
the frame's rotation state or must designate
the frame "frozen" at a specified "freeze
epoch."

"Of-Date" Frames - 3

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 36

"Of-Date" Frames - 4

 Earth mean equator and equinox of date frame:

 +Z axis is perpendicular to mean equator of date and points north.

 +X axis is parallel to the cross product of the +Z axis and
 the north-pointing vector normal to the mean ecliptic of date.

 +Y axis completes the right-handed frame.

\begindata

 FRAME_<frame_name> = <frame_ID>
 FRAME_<frame_ID>_NAME = <frame_name>
 FRAME_<frame_ID>_CLASS = 5
 FRAME_<frame_ID>_CLASS_ID = <frame_ID>
 FRAME_<frame_ID>_CENTER = 399
 FRAME_<frame_ID>_RELATIVE = 'J2000'
 FRAME_<frame_ID>_DEF_STYLE = 'PARAMETERIZED'
 FRAME_<frame_ID>_FAMILY = 'MEAN_EQUATOR_AND_EQUINOX_OF_DATE'
 FRAME_<frame_ID>_PREC_MODEL = 'EARTH_IAU_1976'
 FRAME_<frame_ID>_ROTATION_STATE = 'ROTATING'

<frame_ID> = integer frame ID
 code
<frame_name> = user-specified
 frame name

Definitions

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 37

•  True Equator and Equinox of Date Family
– For all reference frames in this family…

» The frame's relationship to the J2000 frame
is given by a precession model and a
nutation model.

» The frame kernel creator selects models
from those built into the SPICE software.

•  Currently supported only for the earth
•  1976 IAU precession model (aka Lieske model)
•  1980 IAU nutation model

» The frame kernel creator must either specify
the frame's rotation state or must designate
the frame "frozen" at a specified "freeze
epoch."

"Of-Date" Frames - 5

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 38

"Of-Date" Frames - 6

 Earth true equator and equinox of date frame:

 +Z axis is perpendicular to true equator of date and points north.

 +X axis is parallel to the cross product of the +Z axis and
 the north-pointing vector normal to mean ecliptic of date.

 +Y axis completes the right-handed frame.

\begindata

 FRAME_<frame_name> = <frame_ID>
 FRAME_<frame_ID>_NAME = <frame_name>
 FRAME_<frame_ID>_CLASS = 5
 FRAME_<frame_ID>_CLASS_ID = <frame_ID>
 FRAME_<frame_ID>_CENTER = 399
 FRAME_<frame_ID>_RELATIVE = 'J2000'
 FRAME_<frame_ID>_DEF_STYLE = 'PARAMETERIZED'
 FRAME_<frame_ID>_FAMILY = 'TRUE_EQUATOR_AND_EQUINOX_OF_DATE'
 FRAME_<frame_ID>_PREC_MODEL = 'EARTH_IAU_1976'
 FRAME_<frame_ID>_NUT_MODEL = 'EARTH_IAU_1980'
 FRAME_<frame_ID>_ROTATION_STATE = 'ROTATING'

<frame_ID> = integer frame ID
 code
<frame_name> = user-specified
 frame name

Definitions

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 39

•  Mean Ecliptic and Equinox of Date Family
– For all reference frames in this family:

» The frame's relationship to the J2000 frame
is given by a precession model and an
obliquity model.

» The frame kernel creator selects models
from those built into the SPICE software.

» Currently supported only for the earth
•  1976 IAU precession model (aka Lieske model)
•  1980 IAU mean obliquity model

» The frame kernel creator must either specify
the frame's rotation state or must designate
the frame "frozen" at a specified "freeze
epoch."

"Of-Date" Frames - 7

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 40

"Of-Date" Frames - 8

 Earth mean ecliptic and equinox of date frame:

 +Z axis is perpendicular to mean ecliptic of date and points toward
 ecliptic north.

 +X axis is parallel to the cross product of the north-pointing
 vector normal to mean equator of date and the +Z axis.

 +Y axis completes the right-handed frame.

\begindata

 FRAME_<frame_name> = <frame_ID>
 FRAME_<frame_ID>_NAME = <frame_name>
 FRAME_<frame_ID>_CLASS = 5
 FRAME_<frame_ID>_CLASS_ID = <frame_ID>
 FRAME_<frame_ID>_CENTER = 399
 FRAME_<frame_ID>_RELATIVE = 'J2000'
 FRAME_<frame_ID>_DEF_STYLE = 'PARAMETERIZED'
 FRAME_<frame_ID>_FAMILY = 'MEAN_ECLIPTIC_AND_EQUINOX_OF_DATE'
 FRAME_<frame_ID>_PREC_MODEL = 'EARTH_IAU_1976'
 FRAME_<frame_ID>_OBLIQ_MODEL = 'EARTH_IAU_1980'
 FRAME_<frame_ID>_ROTATION_STATE = 'ROTATING'

<frame_ID> = integer frame ID
 code
<frame_name> = user-specified
 frame name

Definitions

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 41

•  Euler frames are defined by a time-dependent
rotation relative to a base frame.

–  The rotation from an Euler frame to its base frame is given
by three Euler angles.

–  Each angle is given by a separate polynomial.
»  The polynomials may have different degrees.
»  The independent variable is a time offset, in TDB

seconds, from an epoch specified by the frame kernel
creator.

»  The units associated with the angles are specified by
the frame kernel creator. Angles are converted to
radians internally by SPICE.

»  The sequence of rotation axes is specified by the frame
kernel creator.

•  The central axis must differ from the other two.
•  The rotation from the Euler frame to the base frame is
[angle_1]axis_1 [angle_2]axis_2 [angle_3]axis_3 (units are radians)

Euler Frames - 1

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 42

•  Examples of applications:
– Dynamic version of earth magnetospheric frame (MAG)

»  Latitude and longitude of the north centered geomagnetic
dipole are given by polynomials.

–  Spinning spacecraft frame
»  The base frame could be a:

• Built-in inertial frame
• C-kernel frame
• Roll-celestial frame (using lock star)
• Nadir frame

–  Topocentric frames for tracking stations for which plate
motion is modeled

»  The frame rotation keeps the frame orientation consistent
with the changing station location.

Euler Frames - 2

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 43

– Mean or true body equator and earth equinox of date
frame, where the body is a planet or satellite other than
the earth

»  The base frame is an IAU_<body> frame.
»  The Euler frame "removes" the body's rotation about

the spin axis.
–  Variation on supported "of date" frame

» An existing supported "of date" frame is used as the
base frame.

»  Perturbations to the "of date" frame are expressed
using Euler angles.

Euler Frames - 3

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 44

Euler Frames - 4

 As an example, we construct an Euler frame called IAU_MARS_EULER. Frame
 IAU_MARS_EULER is mathematically identical to the PCK frame named IAU_MARS.
 The PCK data defining the underlying IAU_MARS frame are:

 BODY499_POLE_RA = (317.68143 -0.1061 0.)
 BODY499_POLE_DEC = (52.88650 -0.0609 0.)
 BODY499_PM = (176.630 350.89198226 0.)

 Relative to the angles used to define the IAU_MARS frame, the angles for our
 Euler frame definition are reversed and the signs negated. Angular units are
 degrees. Rate units are degrees/second, unlike the PCK units of degrees/day.

 angle_3 is 90 + RA angle_1 is -90 - RA
 PCK: angle_2 is 90 - Dec Euler Frame: angle_2 is -90 + Dec
 angle_1 is PM angle_3 is - PM

\begindata
 FRAME_IAU_MARS_EULER = <frame_ID>
 FRAME_<frame_ID>_NAME = 'IAU_MARS_EULER'
 FRAME_<frame_ID>_CLASS = 5
 FRAME_<frame_ID>_CLASS_ID = <frame_ID>
 FRAME_<frame_ID>_CENTER = 499
 FRAME_<frame_ID>_RELATIVE = 'J2000'
 FRAME_<frame_ID>_DEF_STYLE = 'PARAMETERIZED'
 FRAME_<frame_ID>_FAMILY = 'EULER'
 FRAME_<frame_ID>_EPOCH = @2000-JAN-1/12:00:00
 FRAME_<frame_ID>_AXES = (3 1 3)
 FRAME_<frame_ID>_UNITS = 'DEGREES'
 FRAME_<frame_ID>_ANGLE_1_COEFFS = (-47.68143 0.33621061170684714E-10)
 FRAME_<frame_ID>_ANGLE_2_COEFFS = (-37.1135 -0.19298045478743630E-10)
 FRAME_<frame_ID>_ANGLE_3_COEFFS = (-176.630 -0.40612497946759260E-02)

<frame_ID> = integer frame ID
 code

Definition

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 45

•  A frozen dynamic frame is a "Snapshot" of a
dynamic frame at a specified epoch.

–  The frame is frozen relative to the base frame specified by
the frame kernel creator in the frame kernel definition.

–  The rotation from the frozen frame to the base frame is
constant.

–  The rotation is not frozen with respect to inertial frames
unless the base frame is inertial.

–  A frame is designated frozen by the presence of a "freeze
epoch" specification in the frame definition, for example:

 FRAME_<FRAME_ID>_FREEZE_EPOCH = @1949-DEC-31/22:09:46.861901

–  The freeze epoch is given in SPICE text kernel format, as is
used in a leapseconds kernel.

Frozen Dynamic Frames - 1

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 46

Frozen Dynamic Frames - 2

 Frozen version of Earth mean equator and equinox of date frame:

 +Z axis is perpendicular to mean equator of date.

 +X axis is parallel to cross product of +Z axis and
 vector normal to mean ecliptic of date.

 +Y axis completes the right-handed frame.

\begindata

 FRAME_<frame_name> = <frame_ID>
 FRAME_<frame_ID>_NAME = <frame_name>
 FRAME_<frame_ID>_CLASS = 5
 FRAME_<frame_ID>_CLASS_ID = <frame_ID>
 FRAME_<frame_ID>_CENTER = 399
 FRAME_<frame_ID>_RELATIVE = 'J2000'
 FRAME_<frame_ID>_DEF_STYLE = 'PARAMETERIZED'
 FRAME_<frame_ID>_FAMILY = 'MEAN_EQUATOR_AND_EQUINOX_OF_DATE'
 FRAME_<frame_ID>_PREC_MODEL = 'EARTH_IAU_1976'
 FRAME_<frame_ID>_FREEZE_EPOCH = @1949-DEC-31/22:09:46.861901

<frame_ID> = integer frame ID
 code
<frame_name> = user-specified
 frame name

Definitions

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 47

•  Inertial dynamic frames are specified by setting
the rotation state to 'INERTIAL' in the rotation
state assignment:

 FRAME_<FRAME_ID>_ROTATION_STATE = 'INERTIAL'
–  The 'INERTIAL' state implies the frame is treated as inertial for

the purpose of velocity transformations.
–  The state transformation between any inertial frame and

"inertial dynamic frame" has zero derivative block: the state
transformation matrix has the form

 R(t) | 0
 -------|------
 0 | R(t)

 where R(t) is a time-dependent rotation.

Inertial Dynamic Frames - 1

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 48

–  In contrast, for any rotating frame R(t), the state
transformation between any inertial frame and R(t) has a
corresponding matrix of the form

 R(t) | 0
 -------|------
 dR(t)/dt| R(t)

–  The inertial rotation state
»  Simplifies velocity transformations: velocities are

transformed by a rotation.
» May be useful for maintaining consistency with other

dynamic frame implementations.
» Only makes sense if the "inertial" dynamic frame

actually rotates very slowly!

Inertial Dynamic Frames - 2

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 49

Inertial Dynamic Frames - 3

 Inertial version of Earth true equator and equinox of date frame:

 +Z axis is perpendicular to true equator of date.

 +X axis is parallel to cross product of +Z axis and
 vector normal to mean ecliptic of date.

 +Y axis completes the right-handed frame.

\begindata

 FRAME_<frame_name> = <frame_ID>
 FRAME_<frame_ID>_NAME = <frame_name>
 FRAME_<frame_ID>_CLASS = 5
 FRAME_<frame_ID>_CLASS_ID = <frame_ID>
 FRAME_<frame_ID>_CENTER = 399
 FRAME_<frame_ID>_RELATIVE = 'J2000'
 FRAME_<frame_ID>_DEF_STYLE = 'PARAMETERIZED'
 FRAME_<frame_ID>_FAMILY = 'TRUE_EQUATOR_AND_EQUINOX_OF_DATE'
 FRAME_<frame_ID>_PREC_MODEL = 'EARTH_IAU_1976'
 FRAME_<frame_ID>_NUT_MODEL = 'EARTH_IAU_1980'
 FRAME_<frame_ID>_ROTATION_STATE = 'INERTIAL'

<frame_ID> = integer frame ID
 code
<frame_name> = user-specified
 frame name

Definitions

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 50

•  NAIF may develop a "generic" dynamic
frames kernel.
– Would contain widely applicable dynamic

frame definitions.
– Analogous to generic PCK file.
–  Examples of included frames:

» GSE, GSM, MAG
»  Earth mean equator and equinox of date, 1976

version
»  Earth true equator and equinox of date, 1980 version

Generic Dynamic Frames Kernel

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 51

Backup

•  Rationale
•  Numerical Issues
•  Limitations

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 52

•  Why provide dynamic frames?
–  User could build a C-kernel for *any* frame.
–  SPICE could provide a limited number of "built-in" dynamic

frames which wouldn't require a frame kernel.
–  Users can (and do) create their own routines to implement

dynamic frames.

•  Benefits
–  Convenience: using a formula rather than a C-kernel avoids C-

kernel creation, dissemination, storage, and consistency issues
–  Flexibility: the dynamic frame mechanism enables creation of a

vast variety of reference frames
–  Integration: once defined, and once supporting kernels are

loaded, dynamic frames may be referenced in SPICE API calls.

Rationale

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 53

•  Two-vector frame derivatives may be inaccurate.
Let R(t) represent a time-dependent rotation:

–  If R(t) depends on CK data, dR(t)/dt may be inaccurate because
CK rates frequently have low accuracy.

–  If R(t) depends on velocity vectors, then dR(t)/dt depends on
acceleration determined via numerical differentiation. Typically
such derivatives suffer loss of accuracy.

»  However, if velocities are "well-behaved," numerically derived
acceleration can be quite good. Example: GSE frame.

–  If R(t) depends on position vectors, the velocities associated with
those vectors by the SPK system may not be mathematically
consistent with the positions. This can happen for SPK types
with separate polynomials for position and velocity, such as
types 3, 8, 9, and 14.

–  If R(t) depends on aberration-corrected vectors, the associated
velocities may be inaccurate due to accuracy limitations of the
aberration corrections applied to velocities by the SPK system.

Numerical Issues - 1

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 54

•  Recommendations
–  Avoid using aberration corrections in two-vector frame definitions

if accurate velocity transformations are required.
–  Be aware of the accuracy of the data on which two-vector frames

are based.

Numerical Issues - 2

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 55

•  Simulated recursion:
–  ANSI Fortran 77 doesn't support recursion, so the SPICE dynamic

frame system implements limited, simulated recursion.
»  Basically, two levels of recursion are supported for selected

SPK and Frame System routines.
–  Users must avoid requesting "deeper" recursion than the SPICE

dynamic frame system can support.
»  When defining dynamic frames:

•  Choose J2000 as the base frame for two-vector frames.
•  Except for Euler frames, avoid using dynamic frames as base

frames.
•  Try to avoid choosing a dynamic frame as the frame associated

with a velocity or constant vector.
»  In SPK, CK, or PCK kernels, don't use two-vector frames as

the base frame relative to which ephemeris or attitude data
are specified.

•  "Of-date" or Euler frames are OK for this purpose.

Limitations - 1

Navigation and Ancillary Information Facility

N IF

Dynamic Frames 56

•  Run-time efficiency:
–  Dynamic frame evaluation typically requires more computation

than is needed for CK or PCK frames.
»  For example, evaluation of a two-vector frame may involve

several SPK calls.
»  Euler frames are an exception: these are fairly efficient as

long as they don't have a base frame that requires a lot of
computation to evaluate.

–  To minimize the performance penalty:
»  Use J2000 as the base frame for two-vector frames.
»  Use the simplest frames possible for association with

velocity or constant vectors in two-vector frame definitions.
•  Prefer non-dynamic frames to dynamic frames and inertial

frames to non-inertial frames where there is a choice.

Limitations - 2

Navigation and Ancillary Information Facility

N IF

Making an SPK File

March 2010

Navigation and Ancillary Information Facility

N IF

Making an SPK File 2

Table of Contents

•  Purpose
•  Scope
•  Assumptions about user’s knowledge
•  SPK overview
•  Summary of SPK architecture
•  Discussion applicable to all production methods

–  Recommended SPK types
•  Selecting the polynomial degree (for polynomial SPK types)
•  SPK production methods

–  Using the “Make SPK” (MKSPK) program
–  Using SPICELIB, CSPICE or IDL writer modules (subroutines)

•  Finishing up, applicable to all methods
–  Adding comments
–  Validation
–  Merging

•  Special requirements for making SPKs to be used in DSN/SPS
software for view period generation, scheduling, metric predicts
generation, and related functions.

–  Applies only to those entities not making JPL NAV-style “p-files”
•  Issues affecting performance (reading efficiency) and usability

Navigation and Ancillary Information Facility

N IF

Making an SPK File 3

Purpose

•  This tutorial provides guidance for producing
(writing) an SPK file using software provided by
NAIF:
–  the MKSPK application program
or
–  SPK writer modules from the SPICELIB (FORTRAN) or

CSPICE (C-language) library, or from the Icy (IDL) system
»  Only partial implementation in Icy
»  No SPK writers implemented in Mice

Navigation and Ancillary Information Facility

N IF

Making an SPK File 4

Scope

•  This tutorial addresses production of SPK files
–  For general purposes
–  For use with NASA’s Deep Space Network (the “SPS”)

•  (Note: This tutorial does not address SPK
production by JPL navigation teams using the
NIOSPK application, which was specially built to
process JPL’s NAVIO-format ephemeris/trajectory
files.)
–  Those NAV teams may simply learn how to use the NIOSPK

program and any useful SPK-related utilities.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 5

Background Assumptions

•  It is assumed the reader has some familiarity with the SPICE
system, and with basic ideas of orbital mechanics.

–  The SPICE Overview tutorial is available at:
ftp://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/

•  It is assumed the reader has read the “SPK Tutorial” that
characterizes much of the SPK subsystem, but with emphasis
on reading SPK files.

–  The SPK “reading” tutorial is available at:
ftp://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/ (named 19_spk)

•  It is assumed the reader has available the SPK reference
document entitled “SPK Required Reading,” supplied with
each copy of the SPICE Toolkit (.../doc/spk.req)

–  SPK Required Reading is also available at:
http://naif.jpl.nasa.gov/naif/documentation.html

Navigation and Ancillary Information Facility

N IF

Making an SPK File 6

SPK References

•  References for SPK production
–  “Making an SPK” tutorial (this document)
–  “SPK (Ephemeris System)” tutorial (focused on reading an SPK)
–  “SPK Required Reading” (spk.req)
–  “MKSPK Users Guide” (mkspk.ug)
–  The source code “headers” provided as part of the SPK writer

modules (subroutines)
–  “SPKMERGE User’s Guide” (spkmerge.ug)
–  “SPY User’s Guide” (spy.ug)

Navigation and Ancillary Information Facility

N IF

Making an SPK File 7

Brief Overview - 1

•  Understand the physics of your data and how that
relates to SPK type. For instance:
–  Type 5 implies an orbit well approximated by a sequence of one

or more conic orbits.
–  Types 9 and 13 fit data regardless of the expected physics.

»  Caution: a good fit in the mathematical realm may not respect
the physics of the trajectory. For example, fitting polynomials
to an excessively sparse set of states for a planetary orbiter
could result in an interpolated path that intersects the planet.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 8

Brief Overview - 2

•  Ordinarily, use the NAIF MKSPK application to
create SPKs from Cartesian state data or conic
elements.
–  Depending on your source data, SPK types 5, 9, 10, and 13 will

satisfy the requirements for most users.
»  Type 5, yields compact SPK files when the trajectory is well

approximated by piecewise two-body motion. May be the
best choice for planetary or solar orbiters when available
state data are sparse.

»  Type 9, a good, general choice
»  Type 13, when you have very accurate velocity data
»  Type 10 applies ONLY to Two Line Element Sets (TLEs).

•  Alternatively, use the Toolkit’s SPK writing
subroutines in your own production program.

•  Caution: an SPK made for use by the NASA DSN
has special requirements, discussed later on.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 9

Summary of SPK Architecture

Navigation and Ancillary Information Facility

N IF

Making an SPK File 10

SPK File Structure: The User's View

Comment area

Segment 1 …

Segment n

Always present

Possibly present
 - sometimes by choice

 - sometimes required
…

Logical Organization of an SPK File

Navigation and Ancillary Information Facility

N IF

Making an SPK File 11

SPK File Structure - 1

File record: One record.

Comment area text Comment area: Present only if used. If
used, one or more records.
Descriptor record: Contains 1 to 25
segment descriptors. One record.

D1 U

U

Segment 1

N/P/C

I1

Records are fixed-length: 1024 bytes

U*

A minimal SPK file, containing only one segment

ID WORD IFNAME ND NI FWD BWD FREE BFF FTP 0 PAD 0 PAD

Segment ID record: Contains 1 to 25
segment IDs. One record.

Data segment: One or more records.

ID WORD: Indicates file architecture and type

ND, NI: Number of d.p. and integer descriptor components

IFNAME: Internal file name

FWD, BWD: Forward and backward linked list pointers

FREE: First free DAF address

BFF: Binary file format ID

FTP: FTP corruption test string

N/P/C: Next, previous record pointers and descriptor count

Dn: Descriptor for segment n

In: Segment ID for segment n

U: Unused space

U*: Possibly unused space

Navigation and Ancillary Information Facility

N IF

Making an SPK File 12

SPK File Structure - 2

File record: One record

Comment area text

D27

Comment area: Always present but could
be empty. One or more records.
Descriptor record: Contains 1 to 25
segment descriptors. One record.

D1 D2 …
I2 …

Segment 1
Segment 2

N/P/C

I1 U

Segment 26

Segment 27

N/P/C

U I27

D26

I26

Records are fixed-length: 1024 bytes

U* Segment 25

D25

I25

U*

…

An SPK file containing 27 segments

U*

…

ID WORD IFNAME ND NI FWD BWD FREE BFF FTP 0 PAD 0 PAD

Diagram not to scale

. .
 .

. .
 .

Segment ID record: Contains 1 to 25
segment IDs. One or more records.

Data segments: One or more records per
segment. (Up to 25 segments.)

Descriptor record: Contains 1 to 25
segment descriptors. One record.

Segment ID record: Contains 1 to 25
segment IDs. One or more records.

Data segments: One or more records per
segment. (Up to 25 segments.)

U

Navigation and Ancillary Information Facility

N IF

Making an SPK File 13

SPK File Structure - Description

•  File record
–  Contents

»  Internal file name (set by file creator)
»  Architecture and binary file format identifiers
»  File structure parameters
»  FTP transmission corruption detection string

–  Used by SPK reader and writer subroutines
•  Comment Area

–  A place where “metadata” (data about data) may be placed to help a user of the
SPK file understand the circumstances of its production and any
recommendations about for what uses it was intended

•  Descriptor record and Segment ID record
–  One of each of these is needed for every collection of 1-to-25 segments

•  Segment[s]
–  Collection[s] of ephemeris data

»  Minimum of one segment
»  Maximum:

•  The practical maximum is a few thousand segments
•  Serious performance degradation occurs above 30000 segments for a single body
•  Absolute limits are imposed by the range of the INTEGER data type for your computer

–  Numerous SPK types may be used within an SPK file, but only one SPK type may
appear within a given segment

–  Segments of different types may be intermixed within a given SPK file

Navigation and Ancillary Information Facility

N IF

Making an SPK File 14

What is an SPK Segment?

•  A segment is a collection of information:
»  providing ephemeris (position and velocity) of a single object
»  given relative to a single center of motion
»  specified in a single reference frame known to SPICE

•  Either built-in (“hard coded”) or defined in a loaded frames kernel (FK)

»  covering a specified, continuous period of time, and
»  using a single SPK data type.

–  Example: ephemeris for the Voyager 2 spacecraft, relative to the center of
the Neptunian system (Neptune’s barycenter), given in the J2000 inertial
reference frame, covering a specific period of time, and using the Hermite
interpolation with variable length intervals SPK type (type 13)

•  An SPK segment must contain enough data to yield an
object’s state at any epoch within the time bounds
associated with the segment

–  This has implications that depend on the SPK type being produced

Navigation and Ancillary Information Facility

N IF

Making an SPK File 15

Discussion applicable to all
SPK production methods

Navigation and Ancillary Information Facility

N IF

Making an SPK File 16

The SPK Family

Type Description Notes

1 Modified divided difference arrays Unique form produced at JPL; not likely to be useful to others.

2 Chebyshev polynomials for position; fixed length time
intervals.

Velocity is obtained by differentiation. Used at JPL for planets.
Evaluates quickly.

3 Chebyshev polynomials for position and velocity;
fixed length time intervals

Separate polynomial sets for position and velocity. Used at JPL
for natural satellites.

4 Special form used only by Hubble Space Telescope Not available for general use.

5 Discreet states using weighted two-body propagation Ok if motion very closely approximates two-body motion.

6 Special form of trigonometric expansion of elements
for Phobos and Deimos

Not available for general use.

7 Precessing elements Not available for general use.

8 Lagrange interpolation of position and velocity; fixed
length intervals between states

Use Type 9 unless state spacing is truly uniform when
measured in the TDB system.

9 Lagrange interpolation of position and velocity;
variable length intervals between states

Versatile type; easy to use with MKSPK.

10 Weighted two-line element sets (Space Command) Handles both “near-earth” and “deep space” versions.

11 Not used

12 Hermite interpolation; fixed length intervals between
states

Use Type 13 unless state spacing is truly uniform when
measured in the TDB system.

13 Hermite interpolation; variable length intervals
between states

Versatile type; easy to use with MKSPK. Use for DSN support.

14 Chebyshev polynomials for position and velocity,
variable length time intervals

The most flexible of the Chebyshev types.

15 Precessing conic elements propagator

16 Special form used by ESA’s Infrared Space
Observatory

Not available for general use.

17 Equinoctial elements Used for some satellites.

18 Emulation of ESOC’s “DDID” format Used for SMART-1, MEX, VEX, and Rosetta

Navigation and Ancillary Information Facility

N IF

Making an SPK File 17

Recommended SPK Data Types - 1

•  SPK type 2 (Chebyshev polynomials for position, velocity given by
differentiation) Used at JPL for planetary ephemerides.

•  SPK type 3 (Separate Chebyshev polynomials for position and velocity)
Used at JPL for satellite ephemerides.

•  SPK type 5 (Weighted two-body extrapolation) Often used for comets
and asteroids, as well as for sparse data sets where a two-body
approximation is acceptable.

•  SPK types 9 and 13 (Sliding-window Lagrange and Hermite interpolation
of unequally-spaced states) Often used by non-JPL ephemeris
producers and by users of NAIF’s “Make SPK” (MKSPK) application.

•  SPK type 10 (weighted Space Command two-line element extrapolation)
Often used for earth orbiters.

•  SPK type 14 (Separate Chebyshev polynomials for position and velocity,
with variable time steps) This is the most flexible Chebyshev data type.

•  SPK type 15 (Precessing conic elements) Provides a very compact
ephemeris representation; limited to orbits where this type of
approximation is valid.

•  SPK type 17 (Equinoctial elements) Most suited for representation of
ephemerides of natural satellites in equatorial or near-equatorial orbits.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 18

Recommended SPK Data Types - 2

•  Each type has certain properties that may
promote or limit its usefulness in a particular
application. These properties include, but are not
limited to the following.

»  Ability to model the actual ephemeris to be represented with
the accuracy required for your application.

»  Consistency between velocity and derivative of position.
»  Evaluation speed (performance).
»  Compactness (file size).
»  Availability of SPICE software needed to write files of that

type.

•  Users are encouraged to consult with NAIF about
the suitability of an SPK type for a particular
purpose.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 19

Creating Multiple SPK Segments

•  Each SPK segment must have a single object, center of motion,
reference frame and SPK data type.

•  Limiting segment size to 10,000 states or “packets of ephemeris data”
can improve performance when searching within a segment.

–  Absolute limits on segment size depend on the size of the INTEGER data type.
•  For good SPK reading performance, the total number of segments for

any given body in a file should be kept under the dimension of the
SPKBSR segment buffer, currently set to 30,000.

–  More details about reading efficiency are provided at the end of this tutorial.
–  When reading data from multiple SPK files, a more stringent limit applies: the total

number of loaded segments for any body, possibly contributed by multiple files, should
be less than the SPKBSR segment buffer size.

–  For best efficiency, the total number of segments loaded should be less than this buffer
size.

•  One may elect to initiate a new segment (or more) as the means for
modeling a propulsive maneuver.

–  This is because the SPK reader modules will NOT allow interpolation over a segment
boundary.

•  When starting a new segment you may use a new segment identifier, for
instance to indicate a new trajectory leg after a maneuver.

–  Can only be done if using SPK write modules–not if using the MKSPK application.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 20

Choosing Polynomial Degree

•  If you make a type 8 or 9 (Lagrange interpolation) or
a type 12 or 13 (Hermite interpolation) SPK file you
must specify the degree of the interpolating
polynomial that the SPK reader subroutine will use.
–  This choice needs some consideration about desired accuracy,

file size and evaluation speed (performance).
–  This choice is also affected by the “smoothness” of the orbit data

you wish to represent with an SPK file.
–  The allowed range of degree is 1-to-15. In addition, to ensure

position and velocity continuity over the time span covered by the
orbit data:
»  for types 8 and 9, the polynomial degree must be odd.
»  for types 12 and 13, the polynomial degree must be 3-mod-4,

meaning degree 3, 7, 11 or 15.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 21

Reference Frame

•  No matter the SPK Type, all ephemeris data must
be provided in a well identified reference frame.

•  Any reference frame known to the SPICE system,
whether built-in (hard coded) or defined at run
time through a Frames Kernel (FK), may be used
for ephemeris data placed in an SPK file.

•  Some examples of typical reference frames used:
–  Inertial (non-rotating):

»  Earth Mean Equator and Equinox of J2000 (EME2000, a.k.a.
J2000)

»  Ecliptic of J2000
–  Body fixed (non-inertial)

»  ITRF93 (for Earth)
»  MOON_ME (MOON_MeanEarth)

Navigation and Ancillary Information Facility

N IF

SPK Production Methods

Navigation and Ancillary Information Facility

N IF

Making an SPK File 23

Choices for Making an SPK File

•  There are two methods available for making an SPK
file.
1.  Take a data file produced by your own trajectory propagator program

and input this into the conversion utility (MKSPK) provided by NAIF
that outputs an SPK file.

2.  Incorporate the appropriate SPK writer modules (subroutines) into
your own code.
»  Add these routines to your trajectory estimator/ propagator.
 or...
»  Write your own “post-processor” conversion utility, similar to

MKSPK described above.

•  Both methods are described in the next few pages.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 24

Making Your Choice - 1

•  Using the MKSPK program provided in the Toolkit
could be easiest for “simple” situations.
–  Provides considerable flexibility for accepting a wide assortment of

input data formats.
–  Does allow one to make multi-segment SPK files when the target,

center of motion, reference frame, or SPK type changes, but not as
straight forward as it could/should be.
»  Best done through multiple program executions (although one

could be tricky and accomplish this in a single execution).
»  A future version of MKSPK may better accommodate this.
»  Note: production of multiple segments in type 5, 8, 9, 12 and 13

files when the amount of input data requires so, is automatically
handled.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 25

Making Your Choice - 2

•  Using the SPK “writer” modules found in
SPICELIB, CSPICE, and Icy offers the greatest
flexibility and user control.
–  Using these requires that you write your own program.
–  You’ll likely need to use some additional SPICE modules as

well.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 26

Using NAIF’s
MKSPK

Application Program

Navigation and Ancillary Information Facility

N IF

Making an SPK File 27

Using the MKSPK Utility - 1

NAIF’s
MKSPK
Program

SPK File

Possible SPK
data types
produced are:

 - Type 05
 - Type 08
 - Type 09
 - Type 10
 - Type 12
 - Type 13
 - Type 15
 - Type 17

Suitable kinds of input
ephemeris data are:

 - Table of Cartesian state vectors
 - Table of conic elements
 - One or more sets of equinoctial elements
 - One or more sets of Space Command two-
line elements

ASCII file of
ephemeris

data

Setup file

Optional
comment

file

Navigation and Ancillary Information Facility

N IF

Making an SPK File 28

Using the MKSPK Utility - 2

This table indicates which SPK types
can be made from the four kinds
of input data accepted by MKSPK

Y = Yes N = No

SPK Type Produced by MKSPK --> 5 8 9 10 12 13 15 17
Input Data Type
 Cartesian state vectors Y Y Y N Y Y Y Y
 Conic elements Y Y Y N Y Y Y Y
 Equinoctial elements N N N N N N N Y
 Space Command Two-line elements N N N Y N N N N

Navigation and Ancillary Information Facility

N IF

Making an SPK File 29

Using the MKSPK Utility - 3

•  MKSPK will produce a file consisting of one or more
segments as needed.
–  It will write up to 10,000 data points in one segment.
–  For multi-segment files based on types 5, 8, 9, 12 and 13 the

program will repeat sufficient data points at both sides of each
interior segment boundary to ensure the SPK file will provide a
continuous ephemeris through the segment boundary epoch.

•  You can use MKSPK to add a new segment to an
existing SPK file.

•  You can use SPKMERGE to merge two or more SPK
files made from separate executions of MKSPK.
–  It’s important to fully understand how SPKMERGE works if you do

this.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 30

Using the MKSPK Utility - 4

•  MKSPK does not provide direct/specific means for
including propulsive maneuvers within an SPK file.
–  Instead, use either of these two methods.

»  Append a new SPK segment to an existing SPK file, using
MKSPK.

»  Merge a collection of SPK files, using SPKMERGE.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 31

Using SPK “Writer” Modules

Navigation and Ancillary Information Facility

N IF

Making an SPK File 32

Using SPK Writer Routines

•  The next several charts outline how to use the“SPK writer”
modules available in the Toolkit libraries.

–  SPICELIB (FORTRAN)
–  CSPICE (C)

»  All types supported except Type 1
–  Icy (IDL)

»  All types supported except Type 1, 15, 17, 18
–  Mice (MATLAB)

»  Currently no SPK writer modules are supported

•  These routines could be embedded in your existing
trajectory propagator program, or they could be used to
build a separate conversion program analogous to MKSPK.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 33

What Routines To Use - 1

SPKOPN Open a new SPK file. (Use
 SPKOPA to append to existing file.)

SPKWxx Write a segment of SPK type xx

.

.
[SPKWxx] [Write more segments]
. [Repeat as needed]
.
SPKCLS Close the file

For all except SPK type 14

[…] indicates possible multiple occurrences

These routine names are for the FORTRAN (SPICELIB) Toolkit. For CSPICE
the names are the same but are in lower case and have an “_c” appended. For Icy,
module names are case-insensitive and have "cspice_" prepended.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 34

What Routines To Use - 2

SPKOPN, SPKOPA Open file to add data

SPK14B Begin a new segment
SPK14A Add data to segment
[SPK14A] Add more data
SPK14E End the segment
SPK14B Begin a new segment
SPK14A Add data to segment
[SPK14A] Add more data
SPK14E End the segment
 etc.
SPKCLS Close the file

For SPK type 14

[…] indicates possible multiple occurrences

Repeat
as needed

Navigation and Ancillary Information Facility

N IF

Making an SPK File 35

Close the SPK File

•  Once you have completed the addition of all
data to your SPK file, be sure to call the
SPKCLS routine to close the file.
–  Failure to properly close an SPK file will result in a problem

file having been produced.

•  This point is emphasized here because it has
been a frequent problem.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 36

Finishing Up

Navigation and Ancillary Information Facility

N IF

Making an SPK File 37

Not Quite Done Yet

•  You’ve now used either MKSPK or the appropriate
SPK writer routines to produce an SPK file. To
complete the job you should consider the following.
–  Add comments (metadata) to the comment area of the SPK file.

»  This could have been done during execution of MKSPK.
»  It can be done after the SPK has been created by using the

Toolkit’s “commnt” utility program.
–  Validate the file before sending it off to your customer.
–  Consider if there is a need to merge this newly made SPK file with

others.

•  See the next several charts for more information on
these subjects.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 38

Add Comments (metadata)

•  It is recommended (but not a technical requirement) that the
producer of an SPK file add to the file, in the “comment area,”
appropriate descriptive information.

–  When, how and by whom the file was created.
–  Intended use for the file.
–  Cautions or restrictions on how the file is to be used.

•  The comments might also include some of these topics.
–  Time coverage.
–  Ephemeris objects included.
–  Type(s) of data used (in the sense of reconstructed versus predicted).
–  Any available estimates of accuracy.
–  Sources of the data used to produce this SPK file.
–  Name(s) of previously generated SPK file(s) being replaced by this file.
–  Any knowledge of plans for future updates to (replacements for) this file.
–  Name and version number of your SPK production program.
–  Type of platform (hardware/OS/compiler) on which the SPK file was

generated.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 39

How to Add Comments to an SPK

•  Several means are available for adding
comments (metadata) to an SPK file.
– An option in the MKSPK program allows comments

supplied in a separate text file to be added to the
comment area during MKSPK execution.

– Use the “COMMNT” utility program from the SPICE
Toolkit.
»  This may be run as an interactive program or in

command line mode within a script.
–  If using FORTRAN, C or IDL you can use APIs.

» Not currently supported in MATLAB.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 40

Validate the SPK File

•  Validation of SPK files is recommended
–  Caution is needed more for one-of-a-kind files than for those

generated in a previously tested, unchanging process.
–  Some SPICE utility programs might help with this validation.

»  SPY: can do a variety of structure and semantic checks.
•  SPY is available from the Utilities link of the NAIF website.

»  SPKDIFF: used to statistically compare two supposedly similar
SPK files.

•  SPKDIFF is available in each Toolkit package and also from the Utilities link of
the NAIF website.

–  Consider writing your own validation program.
–  Caution: successfully running an SPK summary program (e.g.

BRIEF or SPACIT) or successfully running the format conversion
program (TOXFR or SPACIT) is a positive sign, but is not a
sufficient test.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 41

Validate the Overall Process

•  When you first start producing SPK files, or when
changing the SPK “type” used or the kind of
mission (trajectory) to be represented, validation
(or revalidation) of the overall process is advised.
–  Validation of not only SPKs, but of end products derived from

SPKs, is advised.

•  Consider writing a program that compares states
from your source data with states extracted from
your new SPK file.
–  Do this using interpolated states from your source data–not

only the states placed in the SPK file.
–  Verify a uniformly good fit on the whole time interval covered

by the file.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 42

Make a Merged SPK File ?

•  Sometimes it is helpful to customers if portions of two
or more SPK files are merged into just one.
–  (Sometimes the opposite is true, so be careful!)

•  If making a merged product is appropriate, use the
SPICE utility SPKMERGE.
–  Read the SPKMERGE User’s Guide.

»  Be especially aware of how SPKMERGE directives affect the
precedence order of the data being merged. (This is different from
the precedence order that applies when one reads an SPK file or
files.)

–  Carefully examine your results (probably using either BRIEF or
SPACIT) to help verify you got what you expected.

•  If you’ve made a merged SPK file, check to see that the
included comments are appropriate.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 43

Get Help

•  If your project provides funding to NAIF for help
with development:
–  Ask JPL’s NAIF team for assistance with:

»  picking the SPK type to be used
»  picking the method for producing SPK files
»  designing tests to validate the process

–  Ask NAIF for samples of SPK files from other missions that
could help you check your process.

Navigation and Ancillary Information Facility

N IF

Allowed SPK Types and Their
Restrictions for Interfaces

with the Service Preparation
System (SPS) of NASA's

Deep Space Network

Navigation and Ancillary Information Facility

N IF

Making an SPK File 45

DSN Interface Overview

•  SPKs prepared for use in the DSN/SPS may be used in one
or more of five software sets:

–  Metric Predicts Generator (MPG)
»  Used for view period generation, DSN scheduling and DSN metric

predicts (antenna pointing and tuning of the transmitters and
receivers)

–  Telecomm Preditcs (UTP/TFP)
»  Subsystem for prediction and analysis of telecommunications

signal levels
–  Radiometric Modeling and Calibration Subsystem (RMC)

»  Used to calibrate atmospheric effects on radio waves
–  Delta Differenced One-way Range (Delta-DOR) subsystem

»  A special tracking data type providing additional precision to
spacecraft navigation

•  All SPKs delivered to the SPS must pass through a front-
end validation program that has some restrictions.

•  SPK files intended for use in any of these software sets may
face some restrictions. See the next pages.

–  (Note: The restrictions that apply as of October 2008 are far less than
before this date, due to full retirement of the SPS predecessor–the
NSS.)

Navigation and Ancillary Information Facility

N IF

Making an SPK File 46

SPS Validation Gate

•  The SPS’ front-end validation tool requires:
–  An SPK contain data for only one spacecraft

»  The presence of non-spacecraft ephemeris data is ok
–  An SPK have no data gaps for the spacecraft
–  The spacecraft SPK must be of Type 1 or Type 13

Navigation and Ancillary Information Facility

N IF

Making an SPK File 47

What SPK Type to Use for
Interfaces with the DSN?

•  The Metric Predicts Generator does not inherently place any
restrictions on the SPK files used.

–  However, current rules of the SPS nevertheless restrict the SPK choice to
only Type 1 or Type 13. (Other types not yet fully, formally tested.)

–  This restriction may be lifted in the near future: contact a DSN representative
for the latest news.

–  Note: Only JPL NAV teams are able to produce Type 1 SPKs.

•  The telecommunications prediction software does not inherently
place any restrictions on the SPK files used.

•  The radiometric modeling and calibration software requires only
Type 1 or Type 13 SPKs

–  This restriction will be lifted approximately January 2009: contact a DSN
representative for the latest news.

•  The delta-DOR software requires only Type 1 or Type 13 SPKs
–  This restriction is likely to be lifted by approximately November 2009, maybe

even sooner.

Navigation and Ancillary Information Facility

N IF

Issues Affecting
SPK Reading Efficiency

The way you write an SPK file could substantially affect
how quickly your customer’s software will be able to read the file.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 49

SPK Reading: Efficiency Issues - 1

•  SPK file creators should design files to support
efficient read access.
–  This requires knowledge of how SPK file attributes impact efficiency.

•  When you store "large" amounts (>10^7 states or data
packets) of ephemeris data in one or more SPK files,
SPK reading efficiency may be affected by:
–  SPK segment size
–  Number of segments for a body in one SPK file
–  Number of segments for a body contributed by multiple SPK files
–  The number of loaded segments for all bodies
–  The number of loaded files

Navigation and Ancillary Information Facility

N IF

Making an SPK File 50

SPK Reading: Efficiency Issues - 2

•  Segment size
–  When a segment contains more than 10,000 states or data packets,

the SPK readers will generally take longer to search the segment for
requested data.
»  When the segment is larger than this size, more records are read

to look up segment directory information. If these records are not
buffered, more physical records are read from the SPK file.

–  There is a trade-off between segment size and numbers of segments
and files.
»  It can be preferable to have large segments rather than have "too

many" segments or files. (Read on)

Navigation and Ancillary Information Facility

N IF

Making an SPK File 51

SPK Reading: Efficiency Issues - 3

•  Number of segments for a body in one SPK file
– An SPK file MUST not contain more segments for one body

than can be "buffered" at one time.
»  The SPK reading system buffers coverage descriptions ("segment

descriptors") for segments it has examined to satisfy previous
requests for state data.

•  Don't confuse descriptor buffering with data buffering.
– The SPK reading system also buffers segment DATA, as opposed to

segment descriptors, but this is not relevant to this discussion.
»  One fixed-size buffer is used for all SPK segments.

•  The size of this buffer is given by the parameter "STSIZE," declared in
the SPKBSR suite of routines.

•  STSIZE is currently set by NAIF to 30,000.
– NAIF recommends that users NOT change this parameter, since

maintenance problems may result.
»  Unsurprisingly, the system works best when all needed segment

descriptors are buffered simultaneously.

continues

Navigation and Ancillary Information Facility

N IF

Making an SPK File 52

SPK Reading: Efficiency Issues - 4

•  Number of segments for a body in one SPK file,
continued:

»  The buffering scheme is "lazy": no descriptors are buffered for
segments that haven't been examined.

•  But when an SPK file is searched for data for a specified body, descriptor data for
ALL segments in the file for that body are buffered.

»  The buffering algorithm can "make room" in the buffer by
discarding unneeded, buffered descriptor data.

•  A "least cost" algorithm decides which buffered data to discard.

»  When more buffer room is needed than can be found:
•  The SPK reading system reads data directly from SPK files without

buffering descriptor information.
•  This is NOT an error case: the SPK system will continue to provide

correct answers.
•  BUT: the system will run VERY SLOWLY.

– This situation is analogous to "thrashing" in a virtual-memory
operating system.

–  If buffer overflow occurs frequently, the SPK reading system may be
too slow to be of practical use.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 53

SPK Reading: Efficiency Issues - 5

•  Number of segments for a body contributed by
multiple SPK files:
–  Buffer overflow can occur if too many segments for one body are

contributed by multiple loaded SPK files.
»  Overflow can take longer to occur than in the single-SPK case,

due to lazy buffering: files that haven't been searched don't
consume buffer space.

•  Thus an impending overflow problem may not be detected early in a
program run.

–  User applications can avoid buffer overflow if data are appropriately
spread across multiple SPK files.
»  Applications can avoid buffer overflow by:

•  loading only those files of immediate interest
•  unloading files once they're no longer needed

Navigation and Ancillary Information Facility

N IF

Making an SPK File 54

SPK Reading: Efficiency Issues - 6

•  Number of segments for all bodies, contributed by all
loaded SPK files:
–  Buffer overflow does not result from loading SPK files contributing

more than STSIZE segments for different bodies.
–  However, if the total number of loaded segments for bodies of

interest exceeds STSIZE, thrashing can occur as descriptor data are
repeatedly discarded from the buffer and then re-read.
»  Loaded segments for bodies for which data are not requested do

not contribute to the problem.
–  For best efficiency, load only files contributing fewer than a total of

STSIZE segments for all bodies of interest.
»  When more than STSIZE segments are needed, applications

should process data in batches: unload files containing
unneeded data in order to make room for new files.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 55

SPK Reading: Efficiency Issues - 7

•  Number of loaded SPK files:
–  Up to 1000 SPK files may be loaded at one time by an application.

»  The "1000" limit applies to DAF-based files, so loaded C-kernels
and binary PCK kernels count against this limit.

–  But loading large numbers of SPK files hurts efficiency:
»  Since operating systems usually allow a process to open much

fewer than 1000 files, the SPK system must open and close files
via the host system's file I/O API in order to provide a "virtual"
view of 1000 open files.

•  The more such file I/O, the slower an application runs.
»  Loading a large number of SPK files could result in a buffering

problem if too many segments are loaded for bodies of interest.

Navigation and Ancillary Information Facility

N IF

Making an SPK File 56

SPK Reading: Efficiency Issues - 8

•  Recommendations
–  Limit segment counts to avoid buffer overflow and thrashing

»  Never have more than STSIZE segments for one body in an SPK
file and never have more than STSIZE segments for one body
loaded simultaneously.

»  Don't require users to have more than STSIZE segments loaded at
one time.

»  If necessary, use larger segments to enable smaller segment
counts.

–  Consider distributing SPK data across multiple files:
»  so as to make selective SPK loading convenient

•  facilitate processing data in batches
»  so that loading very large numbers of SPK files at once is

unnecessary

Navigation and Ancillary Information Facility

N IF

Making an SPK File 57

SPK Reading: Further Usability Issues

•  We've discussed reading efficiency in terms of
application execution speed; other usability concerns
include:
–  ease with which files can be transferred between systems
–  simplicity of file management required of user applications
–  ease with which files of interest can be identified by users,

both for current use and in an archival setting

Navigation and Ancillary Information Facility

N IF

Making a CK file

March 2010

Navigation and Ancillary Information Facility

N IF

Making a CK File 2

•  SPICE provides means to create CK files either by packaging
orientation computed elsewhere or by first computing
orientation and then packaging it in a CK file

•  Packaging of already existing orientation data can be done in
two ways:

–  Use SPICE CK writer routines by calling them from within a SPICE-based
application

–  Convert a text file containing attitude data to a CK using the msopck
program

•  Computing as well as packaging orientation can be done in
two ways:

–  Use SPICE geometry routines and CK writer routines by calling them from
within a SPICE-based application

»  Constructing attitude using SPICE routines is not discussed here
–  Convert orientation rules and schedules to a CK using the prediCkt

program

Summary

Navigation and Ancillary Information Facility

N IF

Making a CK File 3

CK Writer Routines

•  The SPICE toolkit provides the following CK writer routines for
the FORTRAN, C, IDL and MATLAB toolkits, respectively:

–  For Type 1 CK
»  CKW01 / ckw01_c / cspice_ckw01

–  For Type 2 CK
»  CKW02 / ckw02_c / cspice_ckw02

–  For Type 3 CK
»  CKW03 / ckw03_c / cspice_ckw03

–  For Type 4 CK
»  CKW04B, CKW04A, CKW04E (no CSPICE, Icy, or Mice wrappers)

–  For Type 5 CK
»  CKW05 / ckw05_c (no Icy or Mice wrapper)

•  Only the Type 3 writer is discussed in this tutorial
–  Writers for Types 1 and 2 have very similar interfaces
–  Types 4 and 5 are are not commonly used

Navigation and Ancillary Information Facility

N IF

Making a CK File 4

Type 3 Writer Example - 1

•  The following C-language code fragment
illustrates the creation of a Type 3 C-kernel
having a single segment.

ckopn_c (filename, “my-ckernel”, 0, &handle);
/*
 Insert code that properly constructs the
 sclkdp, quats, avvs, and starts arrays.
*/
ckw03_c (handle, begtim, endtim, inst,
 “reference_frame”, avflag, “segment_id”,
 nrec, sclkdp, quats, avvs, nints, starts);

ckcls_c (handle);

Navigation and Ancillary Information Facility

N IF

Making a CK File 5

Type 3 Writer Example - 2

•  handle - file handle for the newly created C-kernel.
•  begtim, endtim - start and stop times in SCLK

ticks for the segment.
•  inst - ID code for the instrument for which the C-

kernel is being made.
•  ref - name of the base reference frame. Must be

one known to SPICE during your program execution.
•  avflag - a SpiceBoolean indicating whether or not

to include angular velocity in the segment.
•  segid - a string identifying the segment. It must be

no more than 40 characters in length.

Navigation and Ancillary Information Facility

N IF

Making a CK File 6

Type 3 Writer Example - 3

•  nrec - number of records in sclkdp, quats, and avvs.
•  sclkdp - monotonically increasing list of times, given

in SCLK ticks, that identify when quats and avvs were
sampled.

•  quats - a list of SPICE quaternions that rotate vectors
from the base frame specified by the ref argument to
the inst frame.
–  m2q_c (C_matrix, quaternion);

•  avvs - angular rate vectors given in the base frame
specified by the ref argument.

•  starts - a list of SCLK ticks indicating the start of
interpolation intervals. They must correspond to
entries in sclkdp.

•  nints - number of entries in starts.

Navigation and Ancillary Information Facility

N IF

Making a CK File 7

Type 3 writer - Making Up Rates

•  One of the easiest ways to accomplish this is to
assume a constant rotation rate between
subsequent quaternions:

 for(k=0; k<(nrec-1); k++) {
 q2m_c (quats[k][0], init_rot);
 q2m_c (quats[k+1][0], final_rot);
 mtxm_c (final_rot, init_rot, rotmat);
 raxisa_c (rotmat, axis, &angle);
 sct2e_c (scid, sclkdp[k], &init_et);
 sct2e_c (scid, sclkdp[k+1], &final_et);
 vscl_c (angle/(final_et-init_et), axis,

 &avvs[k][0]); }

•  Then copy the (nrec-1) value of avvs into the last
element of avvs.

continues on next page

Navigation and Ancillary Information Facility

N IF

Making a CK File 8

Type 3 Writer - Making Up Rates (2)

•  Constructing angular rates in this fashion
assumes that no more than a 180-degree rotation
has occurred between adjacent quaternions. In
short, raxisa_c chooses the smallest angle that
performs the rotation encapsulated in the input
matrix.

•  Other techniques exist, including differentiating
quaternions. Care must be exercised when taking
that particular approach, however.

Navigation and Ancillary Information Facility

N IF

Making a CK File 9

MSOPCK

•  msopck is a program for making CK files from orientation
provided as a time tagged, space-delimited table in a text file

•  msopck can process quaternions (SPICE and non-SPICE
flavors), Euler angles, or matrixes, tagged with UTC, SCLK, or
ET

•  msopck requires all setups to be provided in a setup file that
follows the SPICE text kernel syntax

•  msopck has a simple command line interface with the following
usage
msopck setup_file input_data_file output_ck_file

•  If the specified output CK already exists, new segment(s) are
appended to it

Navigation and Ancillary Information Facility

N IF

Making a CK File 10

MSOPCK
List of Setup File Keywords

 LSK_FILE_NAME = 'LSK file'
 SCLK_FILE_NAME = 'SCLK file’ (or MAKE_FAKE_SCLK=‘new SCLK file’)
 FRAMES_FILE_NAME = 'FRAMES file'
 COMMENTS_FILE_NAME = 'file containing comments'
 PRODUCER_ID = 'producer group/person name'
 INTERNAL_FILE_NAME = 'internal file name string'
 CK_SEGMENT_ID = 'segment ID string'
 CK_TYPE = 1, 2, or 3
 INSTRUMENT_ID = CK ID
 REFERENCE_FRAME_NAME = 'reference frame name'
 MAXIMUM_VALID_INTERVAL = interval length, seconds
 INPUT_TIME_TYPE = 'SCLK', 'UTC', 'TICKS', 'DPSCLK', or 'ET'
 TIME_CORRECTION = bias to be applied to input times, seconds
 INPUT_DATA_TYPE = 'MSOP QUATERNIONS', 'SPICE QUATERNIONS',
 'EULER ANGLES', or 'MATRICES'
 QUATERNION_NORM_ERROR = maximum normalization error
 EULER_ANGLE_UNITS = 'DEGREES' or 'RADIANS'
 EULER_ROTATIONS_ORDER = (’axis3’, ’axis2’, ’axis1')
 EULER_ROTATIONS_TYPE = 'BODY' or 'SPACE'
 ANGULAR_RATE_PRESENT = 'YES', 'NO', 'MAKE UP', 'MAKE UP/NO AVERAGING'
 ANGULAR_RATE_FRAME = 'REFERENCE' or 'INSTRUMENT'
 ANGULAR_RATE_THRESHOLD = (max X rate, max Y rate, max Z rate)
 OFFSET_ROTATION_ANGLES = (angle3, angle2, angle1)
 OFFSET_ROTATION_AXES = (’axis3’, ’axis2’, ’axis1')
 OFFSET_ROTATION_UNITS = 'DEGREES' or 'RADIANS’
 DOWN_SAMPLE_TOLERANCE = down sampling tolerance, radians
 INCLUDE_INTERVAL_TABLE = 'YES' or 'NO' (default 'YES')

Supporting

Kernels/Files

Output CK

Specifications

Input data

Specifications

Optional and
conditional
keywords are
shown in green

Navigation and Ancillary Information Facility

N IF

Making a CK File 11

MSOPCK - Input Details (1)

INPUT_DATA_TYPE = 'SPICE QUATERNIONS'

Input file: TIME1 [TIME2] QCOS QSIN1 QSIN2 QSIN3 [ARX ARY ARZ]

 TIME1 [TIME2] QCOS QSIN1 QSIN2 QSIN3 [ARX ARY ARZ]

INPUT_DATA_TYPE = 'MSOP QUATERNIONS'

Input file: TIME1 [TIME2] -QSIN1 -QSIN2 -QSIN3 QCOS [ARX ARY ARZ]

 TIME1 [TIME2] -QSIN1 -QSIN2 -QSIN3 QCOS [ARX ARY ARZ]

INPUT_DATA_TYPE = 'EULER ANGLES'

Input file: TIME1 [TIME2] ANG3 ANG2 ANG1 [ARX ARY ARZ]

 TIME1 [TIME2] ANG3 ANG2 ANG1 [ARX ARY ARZ]

INPUT_DATA_TYPE = 'MATRICES'

Input file: TIME1 [TIME2] M11 M12 M13 M21 ... M33 [ARX ARY ARZ]

 TIME1 [TIME2] M11 M12 M13 M21 ... M33 [ARX ARY ARZ]

Four Examples

Navigation and Ancillary Information Facility

N IF

Making a CK File 12

MSOPCK - Input Details (2)

•  Quaternions
–  INPUT_DATA_TYPE = ‘SPICE QUATERNIONS’ indicates the quaternions being

used follow the SPICE formation rules(*)
–  INPUT_DATA_TYPE = ‘MSOP QUATERNIONS’ indicates the quaternions being

used follow the traditional AACS formation rules(*)
»  Normally quaternions that come in telemetry are of this type

–  QUATERNION_NORM_ERROR keyword may be used to identify and filter out
input records with quaternions that are not unit vectors

»  It is set a tolerance for comparing the norm of the input quaternion with 1
•  Euler angles

–  All three angles must be provided
–  For the angles provided on the input as

TIME1 [TIME2] ANG3 ANG2 ANG1 [ARX ARY ARZ]

 and rotation axes specified in the setup as
 EULER_ROTATIONS_ORDER = (’axis3’, ’axis2’, ’axis1')

 the matrix rotating vectors from base to the structure frame is computed as
 Vinst = [ANG3]axis3 * [ANG2]axis2 * [ANG1]axis1 * Vref

–  Angles can be provided in degrees or radians

(*) NAIF prepared and provides on request a “white paper” explaining differences between various quaternion styles.

Navigation and Ancillary Information Facility

N IF

Making a CK File 13

MSOPCK - Input Details (3)

•  Angular rates are an optional input. Their presence or absence
must be indicated using the ANGULAR_RATE_PRESENT
keyword

–  If angular rates are provided (ANGULAR_RATE_PRESENT = ‘YES’), they
must be in the form of a 3d vector expressed either in the base frame (less
common) or instrument frame (more common)

»  The ANGULAR_RATE_FRAME keyword must be set to indicate which of
the two is used

–  If angular rates are not provided, the program can either make a CK without
rates (ANGULAR_RATE_PRESENT = ‘NO’), or try to compute rates from the
orientation data by using uniform rotation algorithm implemented in Type 3
CK, either with averaging (ANGULAR_RATE_PRESENT = ‘MAKE UP’) or
without averaging (ANGULAR_RATE_PRESENT = ‘MAKE UP/NO
AVERAGING’) of the rates computed for adjacent orientation data points

–  ANGULAR_RATE_THRESHOLD may be used to identify and filter out input
records with angular rate components that are too large to be real

•  Input data can be tagged with UTC, SCLK, SCLK ticks or ET, as
specified using the INPUT_TIME_TYPE keyword

–  Time tags must not have embedded spaces

Navigation and Ancillary Information Facility

N IF

Making a CK File 14

MSOPCK - Output Details (1)

•  msopck can generate Type 1, 2, or 3 CKs
–  Type 1 is rarely used - only in cases when the input contains very few data

points that are far apart so that interpolation between them makes no sense
–  Type 2 is also rarely used, primarily to package orientation for spinners

»  Normally the input for making Type 2 CKs should contain two times and
the angular rate in each record

–  Type 3 is the most commonly used type because it provides interpolation
between the orientation data points stored in the CK

•  Interpolation intervals are determined based on the threshold
value specified in the MAXIMUM_VALID_INTERVAL keyword

–  The threshold interval is given in seconds
–  A Type 3 CK will allow interpolation between all input points for which the

duration between points is less than or equal to the threshold
•  An additional transformation to be combined with the input

attitude may be specified using OFFSET_ROTATION_* keywords
–  The convention for specification of the offset rotation angles is the same as

for the input Euler angles
–  A vector defined in the base frame is first multiplied by the offset rotation

 Vinst = [ROTinput] * [ROToffset] * Vref

Navigation and Ancillary Information Facility

N IF

Making a CK File 15

MSOPCK - Output Details (2)

•  The time tags may be adjusted by a constant value specified
in seconds using the TIME_CORRECTION keyword

•  The output CK file contains one or more CK segments
–  Multiple segments are generated if the input data volume is large and

does not fit into the program’s internal buffer (100,000 pointing
records)

–  When the output file has many segments, each segment’s start time is
equal to the stop time of the previous segment, i.e. there are no gaps at
the segment boundaries

•  The Comment area of the output CK contains the following
information:

–  Contents of the comment file, if it was specified using the
COMMENT_FILE_NAME keyword

–  Contents of the setup file
–  Summary of coverage for each segment written to the file, including a

table listing interpolation intervals for segments of Type 2 or 3

Navigation and Ancillary Information Facility

N IF

Making a CK File 16

Terminal Window
$ more msopck_setup.example
MSOPCK setup for predict M'01 CK generation.

==

\begindata

 PRODUCER_ID = ’NAIF/JPL'

 LSK_FILE_NAME = 'naif0007.tls'

 SCLK_FILE_NAME = 'ORB1_SCLKSCET.00001.tsc'

 COMMENTS_FILE_NAME = 'msopck_comments.example'

 INTERNAL_FILE_NAME = 'sample M01 SC Orientation CK File'

 CK_SEGMENT_ID = 'SAMPLE M01 SC BUS ATTITUDE'

 INSTRUMENT_ID = -53000

 REFERENCE_FRAME_NAME = 'MARSIAU'

 CK_TYPE = 3

 MAXIMUM_VALID_INTERVAL = 60

 INPUT_TIME_TYPE = ’SCLK'

 INPUT_DATA_TYPE = 'MSOP QUATERNIONS'

 QUATERNION_NORM_ERROR = 1.0E-3

 ANGULAR_RATE_PRESENT = 'MAKE UP'

\begintext

$

MSOPCK - Example (1)

Navigation and Ancillary Information Facility

N IF

Making a CK File 17

Terminal Window
$ more msopck_comments.example

Sample Mars Surveyor '01 Orbiter Spacecraft Orientation CK File

===

Orientation Data in the File

--

 This file contains sample orientation for the Mars Surveyor ‘01

 Orbiter (M01) spacecraft frame, 'M01_SPACECRAFT', relative

 to the Mars Mean Equator and IAU vector of J2000, 'MARSIAU', inertial

 frame. The NAIF ID code for the 'M01_SPACECRAFT' frame is -53000.

Status

--

 This file is a special sample C-Kernel file created by NAIF to illustrate

 MSOPCK program. This file should not be used for any other purposes.

...

MSOPCK - Example (2)

Navigation and Ancillary Information Facility

N IF

Making a CK File 18

Terminal Window
$ more msopck_input.example
0767491368.064 -0.24376335 0.68291384 0.28475901 0.62699316

0767491372.114 -0.24249471 0.68338563 0.28591829 0.62644323

0767491373.242 -0.24204185 0.68355329 0.28633291 0.62624605

0767491374.064 -0.24194814 0.68358228 0.28641744 0.62621196

0767491380.064 -0.24012676 0.68424169 0.28807922 0.62543010

0767491386.064 -0.23830473 0.68489895 0.28973563 0.62464193

0767491392.064 -0.23648008 0.68555126 0.29139303 0.62384833

0767491398.064 -0.23465389 0.68620253 0.29304524 0.62304745

0767491404.064 -0.23282999 0.68684150 0.29470173 0.62224580

0767491404.114 -0.23277293 0.68686688 0.29475362 0.62221455

0767491405.242 -0.23231585 0.68702790 0.29516507 0.62201253

0767491410.064 -0.23100059 0.68748174 0.29634561 0.62143935

0767491416.064 -0.22917353 0.68811325 0.29799308 0.62062853

0767491422.064 -0.22734161 0.68874177 0.29963482 0.61981412

0767491428.064 -0.22551078 0.68936246 0.30128030 0.61899473

0767491434.064 -0.22367453 0.68998299 0.30291779 0.61816987

0767491436.114 -0.22300583 0.69021050 0.30351804 0.61786298

0767491438.011 -0.22251770 0.69037871 0.30395477 0.61763631

...

MSOPCK - Example (3)

Navigation and Ancillary Information Facility

N IF

Making a CK File 19

Terminal Window
$ msopck msopck_setup.example msopck_input.example msopck_example_ck.bc

MSOPCK Utility Program, Version 3.0.0, 2003-05-05; SPICE Toolkit Ver. N0057

...

<comment file contents>

...

<setup file contents>

...

**

RUN-TIME OBTAINED META INFORMATION:

**

PRODUCT_CREATION_TIME = 2004-04-29T12:17:55

START_TIME = 2004-04-27T00:00:05.516

STOP_TIME = 2004-04-27T23:59:56.275

**

INTERPOLATION INTERVALS IN THE FILE SEGMENTS:

**

SEG.SUMMARY: ID -53000, COVERG: 2004-04-27T00:00:05.516 2004-04-27T23:59:56.275

--

 2004-04-27T00:00:05.516 2004-04-27T20:05:26.282

 2004-04-27T20:11:20.278 2004-04-27T23:59:56.273

MSOPCK - Example (4)

Navigation and Ancillary Information Facility

N IF

Making a CK File 20

PREDICKT

•  prediCkt is a program for making CK files from a set of
orientation specification rules, and schedules defining when
these rules are to be followed

•  prediCkt has a simple command line interface
•  prediCkt requires orientation and schedule specification to

be provided in a setup file that follows the SPICE text kernel
syntax

•  prediCkt requires the names of all supporting kernels --
SPK, PCK, etc -- be provided in a meta-kernel (a “furnsh
kernel”)

•  prediCkt is available only from the Utilities link of the NAIF
webpages

Navigation and Ancillary Information Facility

N IF

Making a CK File 21

PREDICKT - Usage

•  prediCkt has the following command line arguments
 prediCkt -furnish support_data

 -spec ck_specs

 -ck outfile

 -tol fit_tolerance [units]

 -<sclk|newsclk> sclk_kernel

•  ‘-furnish’, ‘-spec’ and ‘-ck’ are used to specify the input meta-
kernel, input attitude specification file and output CK file

•  ‘-tol’ is used to specify the tolerance to which the orientation
stored in the CK should match the specified attitude profile

•  ‘-sclk’ or ‘-newsclk’ specify the name of an existing SCLK or
the new “fake” SCLK to be created for use with the output CK

Navigation and Ancillary Information Facility

N IF

Making a CK File 22

PREDICKT - Furnsh and Spec Files

•  A “FURNSH” kernel lists SPICE kernels that are
to be used by prediCkt to determine geometry
needed to compute orientations

•  A prediCkt attitude specification (spec) file
following the text kernel syntax is used to
provide three types of information:

–  Specification of dynamic directions
–  Specification of orientations based on these directions
–  Specification of the schedules defining when those

orientations should be followed

•  The contents of the FURNSH kernel and the spec
file are included in the comment area of the
output CK file

Navigation and Ancillary Information Facility

N IF

Making a CK File 23

PREDICKT - Directions

•  Dynamic directions can be of the following types:
–  Based on ephemeris (position vectors, velocity vectors)
–  Fixed with respect to a frame (expressed as Cartesian vector or

specified by RA and DEC)
–  Towards sub-observer point
–  Based on the surface normal and lines of constant latitude or longitude
–  Based on other, already defined directions (rotated from them,

computed as cross products using them, etc)

•  Example: these two sets of spec file keyword assignments
specify nadir and spacecraft velocity directions for the M01
spacecraft

DIRECTION_SPECS += ('ToMars = POSITION OF MARS -')
DIRECTION_SPECS += ('FROM M01 -')
DIRECTION_SPECS += ('CORRECTION NONE')
DIRECTION_SPECS += ('scVelocity = VELOCITY OF M01 -')
DIRECTION_SPECS += ('FROM MARS -')
DIRECTION_SPECS += ('CORRECTION NONE')

Navigation and Ancillary Information Facility

N IF

Making a CK File 24

PREDICKT - Orientations

•  An orientation is specified by:
–  defining that one of the frame’s axes (+X,+Y,+Z,-X,-Y,-Z) points

exactly along one of the defined directions
–  defining that another of the frame’s axes points as closely as

possible to another defined direction
»  The third axis is the cross product of the first two

–  specifying the base frame with respect to which the orientation of
this “constructed” frame is to be computed

•  Example: these spec file keyword assignments
specify the nominal nadir orientation for the
THEMIS instrument, flown on the M01 spacecraft

ORIENTATION_NAME += 'CameratoMars'
PRIMARY += '+Z = ToMars'
SECONDARY += '+Y = scVelocity'
BASE_FRAME += 'J2000'

Navigation and Ancillary Information Facility

N IF

Making a CK File 25

PREDICKT - Schedules (1)

•  A schedule is defined by specifying a series of
time intervals during which a given orientation is to
be followed

–  For each interval for a given CK ID the spec file defines the
orientation name, start time, and stop time (as Ephemeris Times)

•  Example: these spec file keyword assignments
specify a schedule with a single window during
which M01 (Mars Odyssey) will yield nadir-pointed
orientation for the THEMIS instrument

CK-SCLK = 53
CK-SPK = -53
CK-FRAMES += -53000
CK-53000ORIENTATION += 'SOLUTION TO M01_THEMIS_IR = CameratoMars'
CK-53000START += @2004-FEB-10-00:00
CK-53000STOP += @2004-FEB-15-00:00

Navigation and Ancillary Information Facility

N IF

Making a CK File 26

PREDICKT - Schedules (2)

•  In the example on the previous slide:

–  the CK-FRAMES keyword specifies the CK ID to be used in the output
CK

»  This ID is incorporated into the keywords defining the schedule
intervals

–  the CK-SCLK keyword specifies the ID of the SCLK to be used in
creating the CK

–  the CK-SPK keyword specifies the ID of the object, the position of which
is used in applying light time correction when orientation is computed

–  “SOLUTION TO” construct specifies that although the orientation is
sought for the M01 spacecraft frame (ID -53000), it is computed for the
camera frame (M01_THEMIS_IR) and then transformed to the spacecraft
frame

Navigation and Ancillary Information Facility

N IF

Making a CK File 27

Terminal Window
$ cat m01_map_nadir.prediCkt
\begindata

 DIRECTION_SPECS += ('ToMars = POSITION OF MARS -')

 DIRECTION_SPECS += ('FROM M01 -')

 DIRECTION_SPECS += ('CORRECTION NONE')

 DIRECTION_SPECS += ('scVelocity = VELOCITY OF M01 -')

 DIRECTION_SPECS += ('FROM MARS -')

 DIRECTION_SPECS += ('CORRECTION NONE')

 ORIENTATION_NAME += 'CameratoMars'

 PRIMARY += '+Z = ToMars'

 SECONDARY += '+Y = scVelocity'

 BASE_FRAME += 'J2000'

 CK-SCLK = 53

 CK-SPK = -53

 CK-FRAMES += -53000

 CK-53000ORIENTATION += 'SOLUTION TO M01_THEMIS_IR = CameratoMars'

 CK-53000START += @2004-FEB-10-00:00

 CK-53000STOP += @2004-FEB-15-00:00

\begintext

PREDICKT - Example (1)

Navigation and Ancillary Information Facility

N IF

Making a CK File 28

Terminal Window
$ cat m01_map_nadir.furnsh
\begindata

 KERNELS_TO_LOAD = ('naif0007.tls'

 'm01_v26.tf'

 'mar033-5.bsp'

 'm01_map_rec.bsp'

 'm01.tsc')

\begintext

$ prediCkt -furnish m01_map_nadir.furnsh -spec m01_map_nadir.prediCkt -ck m01_map_nadir.bc -tol
0.01 degrees -sclk m01.tsc

Begin Segment: 1 --- SOLUTION TO M01_THEMIS_IR = CameratoMars

Constructing Segment

From: 2004 FEB 10 00:00:00.000

To : 2004 FEB 15 00:00:00.000

 Percentage finished: 0.0%

 Percentage finished: 5.0 % (50 quaternions)

 ...

 Percentage finished: 95.0 % (925 quaternions)

$

PREDICKT - Example (2)

	00_Madrid_Agenda_R5
	01_welcome_to_tutorials
	02_spice_overview
	03_conventions
	04_naif_ids
	05_intro_to_kernels
	06_comments
	07_intro_to_toolkit
	08_using_module_headers
	09_preparing_for_programming
	10_time
	11_lsk_and_sclk
	12_spk
	13_pck
	14_ck
	15_fk
	16_using_frames
	17_derived_quant
	18_other_functions
	19_ik
	20_reading_fk_ik
	21_exceptions
	22_common_problems
	23_toolkit_apps
	24_non_toolkit_apps
	25_geometry_finder
	26_summary_of_key_points
	27_naif_server
	28_ESA_SPICE_Server
	29_shape_model_preview
	30_spice_development
	B01_spice_intro
	B02_motivation
	B03_concepts
	B04_porting_kernels
	B05_installing_toolkit
	B06_idl_interface
	B07_matlab_interface
	B08_program_matlab
	B09_program_idl
	B10_program_c
	B11_program_fortran
	B12_ek_intro
	B13_docs_taxonomy
	B14_lunar-earth_pck-fk
	B15_dynamic_frames
	B16_making_an_spk
	B17_making_a_ck

