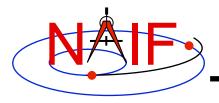
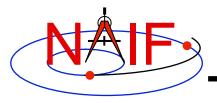

Navigation and Ancillary Information Facility

"Camera-matrix" Kernel CK

(Orientation or Attitude Kernel)


Emphasis on reading CK files

March 2010

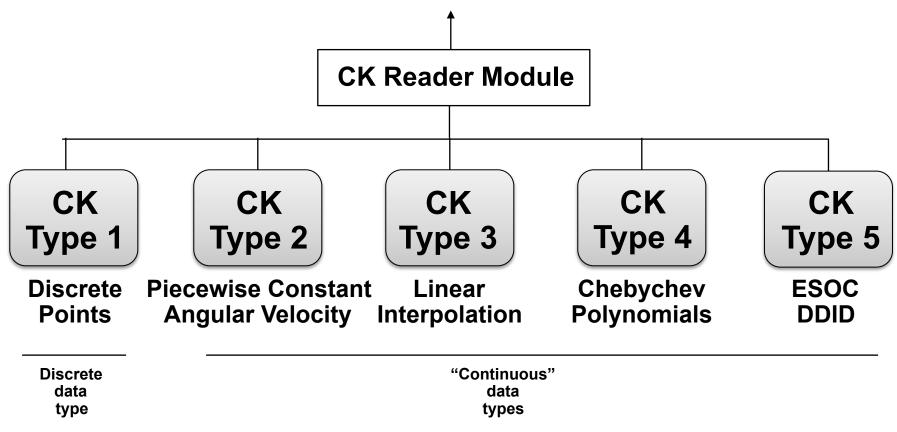

CK File Contents - 1

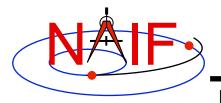
- A CK file holds orientation data for a spacecraft or a moving structure on the spacecraft
 - "Orientation data" ⇒ quaternions, from which orientation matrices are formed by SPICE software. These matrices are used to rotate position vectors from a base reference frame (the "from" frame) into a second reference frame (the "to" frame)
 - » In SPICE this is often called the "C-matrix, short for "Camera matrix"
 - Optionally may include angular velocity of rotation of the "to" frame with respect to the "from" frame
 - » Angular velocity vectors are expressed relative to the "from" frame.
- A CK file should also contain comments–sometimes called metadata–that provide some details about the CK such as:
 - the purpose for this particular CK
 - when and how it was made
 - what time span(s) the data cover

CK File Contents - 2

- A single CK file can hold orientation data for one, or for any combination of spacecraft or their structures
 - Some examples
 - 1. Huygens Probe
 - 2. Cassini Orbiter and its CDA instrument mirror
 - 3. Mars Express Orbiter, PFS scanner, Beagle Lander
 - 4. MRO orbiter, MRO high gain antenna, MRO solar arrays
- In practice CKs usually contain data for just one structure

CK File Varieties

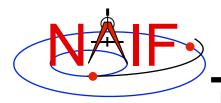

- "Reconstruction" CK (also called "definitive" CK)
 - A CK file can be made from orientation telemetry returned from a spacecraft or other structure
 - A CK might also be made from some process that improves upon the pointing determined from downlinked telemetry ("C-smithing")
 - These kinds of files are generally used for science data analysis or spacecraft performance analysis
- "Predict" CK
 - A CK file can be made using information that predicts what the orientation will be some time in the future
 - » Input data usually come from a modeling program, or a set of orientation rules
 - This kind of file is generally used for engineering assessment, science observation planning, software testing and quick-look science data analysis
 - » If it has good fidelity, such a file might be used to "fill in the data gaps" of a reconstruction CK file
 - » In some cases (ESA in particular) the predict meets the reconstruction accuracy requirements; a true reconstruction CK is not produced



CK Data Types Concept

Navigation and Ancillary Information Facility

The underlying orientation data are of varying types, but the user interface to each of these CK types is the same.



Kernel Data needed

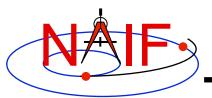
Navigation and Ancillary Information Facility

• To get orientation (rotation matrix) and angular velocity of a spacecraft or one of its moving structures, one needs at least three SPICE kernel types: CK, SCLK and LSK. One may also need an FK, if he or she plans to access CK data via high level SPICE interfaces.

- CK contains spacecraft or other structure orientation
- SCLK and LSK contain time correlation coefficients used to convert between ephemeris time (ET) and spacecraft clock time (SCLK)
 - » Sometimes an LSK is not needed in this conversion, but best to have it available as it is usually needed for other purposes
- FK associates reference frames with CK IDs
 - » Needed if high level SPICE interfaces are used to access CK data (see next page)

What SPICE Routines Access CKs?

- High-level SPICELIB routines are used more often than the "original" CK readers to access CK data. These high-level routines are:
 - Position or state transformation matrix determination
 - » PXFORM: return a rotation matrix (3x3) from one frame to another, either of which can be a CK-based frame or have CK-based frames as "links" in its chain
 - » SXFORM: return a state transformation matrix (6x6) from one frame to another, either of which can be a CK-based frame or have CK-based frames as "links" in its chain
 - Position or state vector determination
 - » SPKPOS: return a position vector (3x1) in a specified frame, which can be a CK-based frame or have CK-based frames as "links" in its chain
 - » SPKEZR: return a state vector (6x1) in a specified frame, which can be a CK-based frame or have CK-based frames as "links" in its chain
- Use of the above mentioned routines is discussed in the FK, Using Frames, and SPK tutorials
- The "original" CK access routines are CKGP and CKGPAV
 - Use of these routines is described in this tutorial, along with topics applicable to all of the routines mentioned above



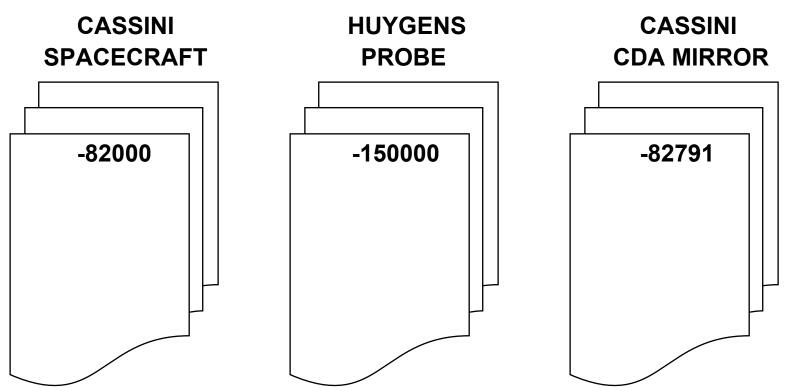
Initialization ... typically once per program run
Tell your program which SPICE files to use ("loading" files)
CALL FURNSH('lsk_file_name')
CALL FURNSH('sclk_file_name')
CALL FURNSH('ck_file_name')
Loop ... do as often as you need
Convert UTC to SCLK ticks *
CALL STR2ET('utc_string', tdb)
CALL SCE2C (spacecraft id, tdb, sclkdp)

Get rotation matrix, or rotation matrix and angular velocity at requested time

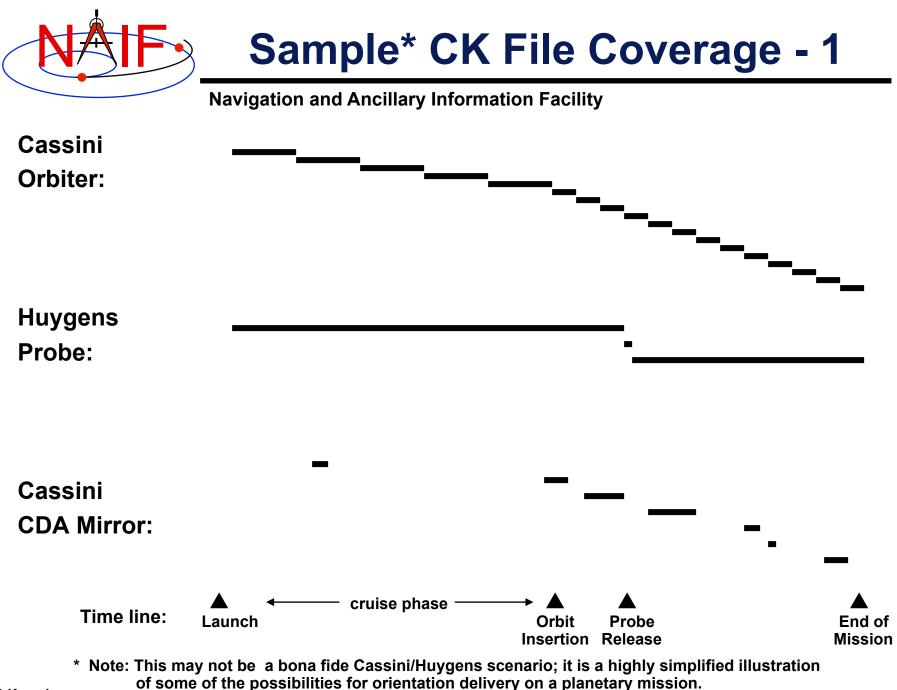
Or CALL CKGP (instid,sclkdp,tol,'ref_frame',cmat, clkout,found) CALL CKGPAV (instid,sclkdp,tol,'ref_frame',cmat,av,clkout,found) inputs outputs

* Although most spacecraft have a single on-board clock and this clock has the same ID as the spacecraft, the user should know which SCLK was used to tag data in a CK file to specify the correct ID in a call to SCE2C.

Arguments of CKGPAV

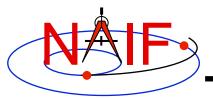

Navigation and Ancillary Information Facility

Inputs		
instid	NAIF ID for the spacecraft, instrument or other structure for which the orientation is to be returned	
sclkdp	the time at which the orientation matrix and angular velocity are to be computed. The time system used is encoded spacecraft clock time (SCLK). The units are ticks since the zero epoch of the clock	
tol*	the tolerance, expressed as number of SCLK ticks, to be used in searching for and computing the orientation data	
ref_frame	the name of the reference frame with respect to which the orientation is to be computed. This is also called the "base" or "from" frame.	
Outputs		
cmat	the 3x3 rotation matrix that you requested	
av	the angular velocity that you requested	
clkout	the exact time for which the orientation and angular velocity was computed	
found	the logical flag indicating whether the orientation and angular velocity data were found. Note that if the loaded CK file(s) do not contain angular velocity data, CKGPAV will return a FALSE found flag even if orientation could have been computed. If "found" is .FALSE., then the values of the output arguments "cmat" and "av" are undefined and should not be used! Always check the FOUND flag returned by CKGPAV and CKGP!	


* tol is explained in detail in backup slides

A user's program must be able to load as many of these files as needed to satisfy his/her requirements. It is strongly recommended that such programs have the flexibility to load a list of CK files provided to the program at run time; this is easily accomplished using the Toolkit's FURNSH routine.

C-Kernel


Even though a project's CK production process may suggest that CK files provide continuous coverage for the interval of time for which they were generated, in reality this is rarely the case. CK files almost always contain gaps in coverage. Below is an example of this.

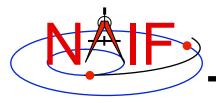
•	Time		
Coverage of	T _{start}	T _{stop}	
a CK file: as appears in file name/comments			
CK file segments: as appears in ckbrief/spacit summary			
Segments with "continuous" data: (Types 2 - 5)			
Summary of pointing available to the CK reader for this CK file:			

Blue line segments represent interpolation intervals-times when pointing will be returned and the FOUND flag set to "TRUE."

- An interpolation interval is a time period for which the CK reader routines can compute and return pointing.
 - For CK Types 3 and 5 the pointing is computed by interpolating between the attitude data points that fall within the interval.
 - For CK Type 2 the pointing within each interval is computed by extrapolating from a single attitude and associated angular velocity.
 - For CK Type 4 the pointing is computed by evaluating polynomials covering the interval.
 - For CK Type 1 (discrete pointing instances) the notion of an interpolation interval is not relevant.
- The time periods between interpolation intervals are gaps during which the CK readers are not able to compute pointing.
- The interpolation intervals in Type 3 CK segments can be modified without changing the actual pointing data.
 - The CKSPANIT and CKSMRG programs are used to make these changes.

Obtaining Coverage of CK File

Navigation and Ancillary Information Facility

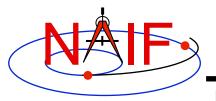

- High-level subroutine interfaces allow for obtaining CK coverage information.
 - Call CKOBJ to find the set of structures for which a specified CK provides data.
 - » INPUT: an CK file name and initialized SPICE integer "Set" data structure. The set may optionally contain ID codes obtained from previous calls.
 - » OUTPUT: the input set, to which have been added (via set union) the ID codes of structures for which the specified CK provides coverage.

```
CALL CKOBJ ( CK, IDS )
```

- Call CKCOV to find the window of times for which a specified CK file provides coverage for a specified structure:
 - » INPUT: a CK file name, structure ID code, flag indicating whether angular rates are needed, flag indicating whether coverage on segment or interval level is to be returned, tolerance, output time system, and initialized SPICE double precision "Window" data structure. The window may optionally contain coverage data from previous calls.
 - » OUTPUT: the input window, to which have been added (via window union) the sequence of start and stop times of coverage intervals of the specified CK, expressed as encoded SCLK or ET seconds past J2000.

CALL CKCOV (CK, ID, NEEDAV, LEVEL, TOL, TIMSYS, COVER)

- See the headers of these routines for example programs.
- Also see the CELLS, SETS and WINDOWS Required Reading for background information on these SPICE data types.



Make Use of CKCOV

Navigation and Ancillary Information Facility

- When using high-level routines* that need orientation data from a C-kernel, it's often a good idea to first determine what are the valid interpolation intervals in your CK using CKCOV.
 - If using multiple CKs, all of which are needed to construct a frame chain, call CKCOV for each one and then intersect the coverage windows.
- Then check each time of interest for your geometry calculations against the window of valid intervals before proceeding onwards.

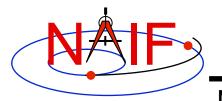
* E.g. SPKEZR, SPKPOS, SXFORM, PXFORM, SINCPT

Navigation and Ancillary Information Facility

• A brief summary of a CK can be made using the Toolkit utility CKBRIEF

 At your command prompt, type the program name followed by the names of CK, LSK and SCLK files (given in any order)

% ckbrief 07102 07107ra.bc naif0008.tls cas00106.tsc


CKBRIEF Ver 3.2.0, 2006-11-02. SPICE Toolkit Version: N0061.

Summary for: 07102 07107ra.bc

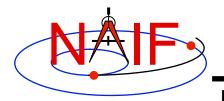
Object: -82000

Interval Begin ET Interval End ET AV

2007-APR-12 00:01:06.462 2007-APR-17 00:01:03.726 Y

Navigation and Ancillary Information Facility

• A summary of interpolation intervals in a CK can be made using CKBRIEF with '-dump' option

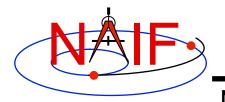

% ckbrief -dump 07102_07107ra.bc naif0008.tls cas00106.tsc

CKBRIEF Ver 3.2.0, 2006-11-02. SPICE Toolkit Version: N0061.

Summary for: 07102 07107ra.bc

Segment No.: 1

. . .



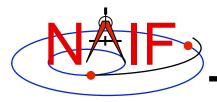
Navigation and Ancillary Information Facility

• A summary of interpolation intervals gaps in a CK can also be made using the Toolkit utility FRMDIFF with '-t dumpc' option –FRMDIFF can also display gaps in CK coverage using '-t dumpg' option

```
% frmdiff -t dumpg \
          -k cas v40.tf naif0008.tls cas00106.tsc \setminus
          -f 'YYYY-MM-DDTHR:MN:SC ::RND' \
          07102 07107ra.bc
#
#
 . . . <FRMDIFF report header> . . .
#
# gap start, gap stop, gap duration sec, gap duration string
2007 - 102T05:56:57 2007 - 102T05:57:17 19.999
                                               0:00:00:19.999
                                    19.999
2007-102т21:33:21 2007-102т21:33:41
                                               0:00:00:19.999
2007-102T21:34:57 2007-102T21:35:25 27.999
                                               0:00:00:27.999
```

• • •

Navigation and Ancillary Information Facility

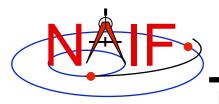

• A detailed summary of a CK can be made using the Toolkit utility SPACIT. See the SPACIT User's Guide for details.

```
Segment ID : CASSINI ATT: -Y TO TITAN, +Z - VELCTY
Instrument Code: -82000
Spacecraft : Body -82, CAS
Reference Frame: Frame 1, J2000
CK Data Type : Type 3
Description : Continuous Pointing: Linear Interpolation
Available Data : Pointing and Angular Velocity
UTC Start Time : 2005 FEB 15 07:59:59.999
UTC Stop Time : 2005 FEB 15 08:59:59.998
SCLK Start Time: 1/1487147147.203
SCLK Stop Time : 1/1487150747.209
```

etc. etc.

•

•



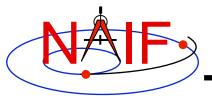
CK Utility Programs

Navigation and Ancillary Information Facility

- The following CK utility programs are included in the Toolkit: CKBRIEF summarizes coverage for one or more CK files SPACIT generates segment-by-segment summary of a CK file
 - COMMNT reads, appends, or deletes comments in an CK file
 - MSOPCK converts attitude data provided in a text file into a CK file
 - **FRMDIFF** samples or compares orientation of CK-based frames
- These additional CK utility programs are provided on the NAIF Web site (http://naif.jpl.nasa.gov/naif/utilities.html)
 - CKSLICER subsets a CK file
 - CKSMRG merges segments in a type 3 CK file (*)
 - DAFCAT concatenates together CK files (*)
 - CKSPANIT modifies interpolation interval information in a Type 3 CK file
 - DAFMOD alters structure or frame IDs in a CK file
 - prediCkt creates a CK file representing an orientation profile described by a set of orientation rules and a schedule
 - BFF displays binary file format of an CK file
 - BINGO converts CK files between IEEE and PC binary formats

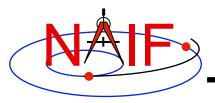
(*) DAFCAT and SKSMRG are frequently used together to first merge many CK files into a single file using DAFCAT and then merge segments inside the merged file using CKSMRG.

Additional Information on CK


Navigation and Ancillary Information Facility

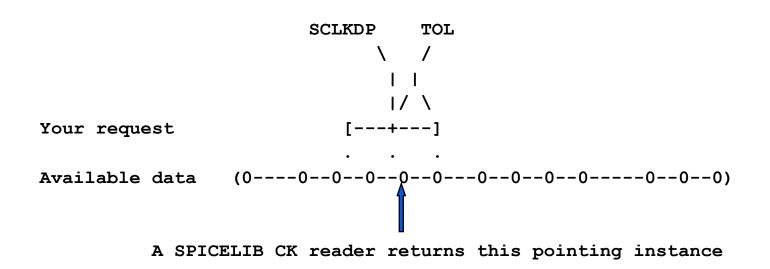
- For more information about CK, look at the following documents
 - CK Required Reading
 - headers for the CKGP and CKGPAV routines
 - Most Useful SPICELIB Routines
 - CKBRIEF and FRMDIFF User's Guides

 - Porting_kernels tutorial


Related documents

- SCLK Required Reading
- Time Required Reading
- Frames Required Reading
- NAIF_IDS Required Reading
- Rotations Required Reading

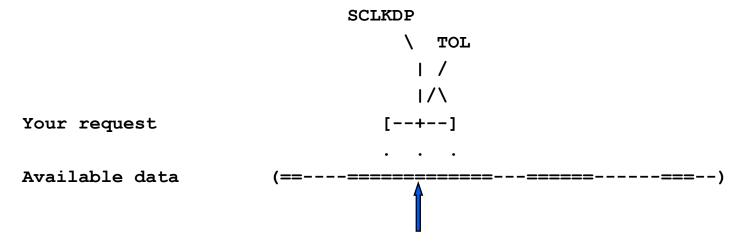
- Meaning of Tolerance
- Examples of Problems Encountered When Using CK Subsystem



The Meaning of Tolerance - 1

- The CKGP and CKGPAV routines use a time tolerance, "tol," measured in ticks, in executing pointing lookups.
 - No matter whether your CK is a discrete type (Type 1) or a continuous type (Types 2 - 5), if pointing information is not found within +/- tol of your pointing request time, no pointing will be returned and the "found flag" will be set to "FALSE."
 - For Type 1 (discrete) CKs, the pointing instance nearest* to your request time will be returned, as long as it is within tol of your request time.
 - » If the nearest pointing instances on each side of your request time are equidistant from your request time, the later instance will be selected.
 - For Types 2 5 (continuous pointing), pointing for exactly your request time will be returned if this time falls anywhere within an interpolation interval.
 - For all Types, the time tag associated with the pointing data will also be returned.

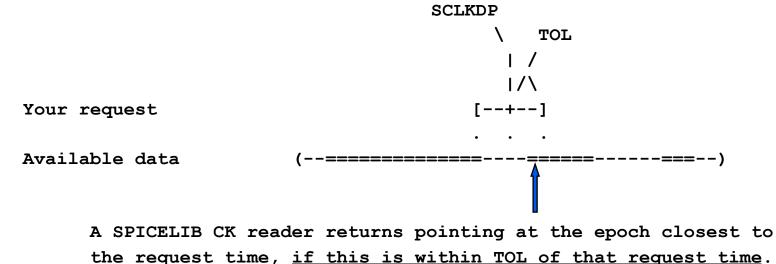
When reading a Type 1 CK containing discrete pointing instances


- "0" is used to represent discrete pointing instances (quaternions)
- "()" are used to represent the end points of a segment within a CK file
- SCLKDP is the time at which you have requested pointing
- TOL is the time tolerance you have specified in your pointing request
- The quaternions occurring in the segment need not be evenly spaced in time

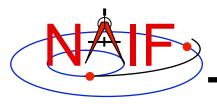
The Meaning of Tolerance - 3

Navigation and Ancillary Information Facility

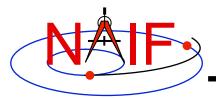
When reading a Type 2, 3, 4 or 5 CK (continuous pointing), with a "pointing request" that falls within a span of continuous pointing (an "interpolation interval")


A SPICELIB CK reader returns pointing at precisely the requested epoch

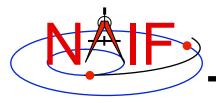
- "==" is used to indicate interpolation intervals of continuous pointing
- "()" are used to represent the end points of a segment within a CK file
- SCLKDP is the time at which you have requested pointing
- TOL is the time tolerance you have specified in your pointing request; for this particular case it does not come into play
- The quaternions occurring in the periods of continuous pointing need not be evenly spaced in time



Navigation and Ancillary Information Facility

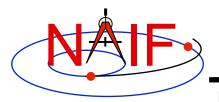

When reading a Type 2, 3, 4 or 5 CK (continuous pointing), with a "pointing request" that is NOT within a span of continuous pointing (an "interpolation interval")

- "==" is used to indicate interpolation intervals of continuous pointing
- "()" are used to represent the end points of a segment within a CK file
- SCLKDP is the time at which you have requested pointing
- TOL is the time tolerance you have specified in your pointing request
- The quaternions occurring in the periods of continuous pointing need not be evenly spaced in time


- The file or files you loaded do not contain orientation data for the object of interest.
 - Make sure the ID that you use in a call to CKGP or CKGPAV matches one in the CK file(s) you have loaded.
 - Make sure the frame that you specify in a call to SXFORM, PXFORM, SPKEZR, or SPKPOS is transformable to one available in the loaded CK files.
- CKGP or CKGPAV returns a transformation matrix and/or angular velocity that does not appear correct.
 - Probably the FOUND flag is "FALSE" and you are using data left over from a previous query. Remember to always check the FOUND flag! (If the FOUND flag is "TRUE" but the data seem bad, contact the data producer.)

- The file, or files, you loaded do not cover the <u>time</u> at which you requested orientation
 - Check file coverage on the segment level by summarizing the file (s) using CKBRIEF or SPACIT
 - Check interpolation interval coverage using CKBRIEF with option "-dump," or by examining comments provided in the comment area of the file - you may be asking for data within a coverage gap (outside of interpolation intervals)
- One of the frames routines (SPKEZR, SPKPOS, SXFORM, PXFORM, SINCPT) signals an error

– All frames routines read CK files using tolerance = 0


- » For discrete CKs (Type 1) the orientation of a CK-based frame will be computed only if the time provided to a Frames routine <u>exactly</u> matches one of the times stored in the CK file; otherwise an error will be signaled.
- » For continuous CKs (all but Type 1) the orientation of a CKbased frame will be computed only if the time provided to a frame routine falls within one of the interpolation intervals defined by the CK file; otherwise an error will be signaled.

- You've confirmed not having any of the previously described problems, but the FOUND flag comes back "FALSE" when using CKGPAV, or SXFORM or SPKEZR signals a frame related error.
 - You are using a SPICE routine that expects angular velocity as well as orientation, but the CK segments available at your requested epoch don't contain angular velocity.
 - » Routines expecting AV are: CKGPAV, SXFORM, SPKEZR
 - » Routines not expecting AV are: CKGP, PXFORM, SPKPOS

- The FOUND flag comes back "TRUE" when using CKGPAV but returned angular velocity does not appear correct.
 - While many other sources of the angular rate data, for example spacecraft telemetry, specify it relative to the spacecraft frame, SPICE CK files store it, and CKGPAV returns it, with respect to the base frame. So the CK style of returned angular velocity may be unexpected.
- The FOUND flag comes back "TRUE" when using CKGP/ CKPGAV but the quaternion computed from the returned transformation matrix via a call to M2Q does not appear correct.
 - The quaternion returned by M2Q follows the SPICE style, which is different from the quaternion styles used by some other sources of orientation data, for example most spacecraft telemetry.
 - » See the headers of the M2Q and Q2M routines, and the Rotations Required reading document for more details.
 - » NAIF also prepared and can provide a "white paper" explaining differences between various quaternion styles commonly used in space applications.

- You're trying to use a CK file that is not properly formatted for your computer
 - You can read only a binary CK file with the CK subroutines; you can't read a "transfer format" file
 - » Although not required, binary CK files often have a name like "xxxxxx.bc"
 - » Although not required, transfer format CK files often have a name like "xxxxx.xc"
 - If using Toolkit Version N0051 or earlier you must have the proper kind of CK binary file for your computer (a native binary file)
 - » Sun, HP, SGI and MAC (Motorola cpu) use the unix binary standard
 - » PC (Windows or Linux) uses its own binary standard
 - » The pair of utility programs named TOBIN and TOXFR, or the utility program SPACIT, can be used to port CK files between computers having incompatible binary standards