Preface - Other Stuff (The Red Shirt topics) (IDL) |
Table of ContentsPreface - Other Stuff (The Red Shirt topics) (IDL) Coding and Use Lessons Note About HTML Links NAIF Documentation Required Reading and Users Guides Library Source Code Documentation API Documentation Tutorials Text kernels Text kernel format Kernels for lessons Input kernel files Output Lesson 1: Kernel Management with the Kernel Subsystem Relevant Routines Requirements and References Programming Task Code Solution First, create a meta text kernel: Now the solution source code: Run the code example Lesson 2: The Kernel Pool Relevant Routines Requirements and References Programming Task Code Solution Run the code example Lesson 3: Coordinate Conversions Relevant Routines Requirements and References Programming Task Code Solution Run the code example Lesson 4: Advanced Time Manipulation Routines Relevant Routines Requirements and References Programming Task Code Solution Run the code example Lesson 5: Error Handling Relevant Routines: Requirements and References Programming Task Code Solution Run the code example Lesson 6: Windows, and Cells Relevant Routines Requirements and References Programming task: Code Solution Run the code example Lesson 7: Utility and Constants Routines Relevant Routines Requirements and References Programming Task Code Solution Run the code example Programming Task Code Solution Run the code example Preface - Other Stuff (The Red Shirt topics) (IDL)
The extensive scope of the Icy system's functionality includes features the average user may not expect or appreciate, features NAIF refers to as "Other Stuff." This workbook includes a set of lessons to introduce the beginning to moderate user to such features. The lessons provide a brief description to several related sets of routines, associated reference documents, a programming task designed to teach the use of the routines, and an example solution to the programming problem. Coding and Use Lessons
Note About HTML Links
In order for the links to be resolved, create a subdirectory called ``lessons'' under the ``doc/html'' directory of the Toolkit tree and copy this document to that subdirectory before loading it into a Web browser. NAIF Documentation
The sources for a user needing information concerning the Icy System or other NAIF product:
Required Reading and Users Guides
cells.req ck.req cspice.req daf.req das.req ek.req ellipses.req error.req frames.req icy.req intrdctn.req kernel.req mice.req naif_ids.req pck.req planes.req problems.req rotation.req scanning.req sclk.req sets.req spc.req spk.req symbols.req time.req windows.reqNAIF Users Guides (*.ug) describe the proper use of particular Icy tools:
brief.ug chronos.ug ckbrief.ug commnt.ug convert.ug inspekt.ug mkspk.ug msopck.ug simple.ug spacit.ug spkdiff.ug spkmerge.ug states.ug subpt.ug tictoc.ug tobin.ug toxfr.ug version.ugThese text documents exist in the 'doc' directory of the main Toolkit directory:
../icy/doc/HTML format documentation The Icy distributions include HTML versions of Required Readings and Users Guides, accessible from the HTML documentation directory:
../icy/doc/html/index.html Library Source Code Documentation
A header consists of several marked sections:
../icy/src/Find the CSPICE library source code in:
../icy/src/cspice/Note: The CSPICE source files have two forms: C files created by the f2c conversion process on a SPICELIB files, indicated with a name of the form "module.c," and wrappers files indicated by names of the form "module_c.c" The f2c converted source code is very difficult to read, refer to the wrapper routines if possible. In some cases, NAIF replaced an f2c converted file with a hand written version. API Documentation
...icy/doc/html/cspice/index.htmlAlso included is Icy Reference Guide, an index of all Icy APIs with hyperlinks to API specific documentation. Each API documentation page includes cross-links to any other Icy APIs mentioned in the document and a link to the API documentation for the CSPICE routine called by the Icy interface.
...icy/doc/html/icy/index.html Tutorials
http://naif.jpl.nasa.gov/naif/tutorials.htmlAccess individual files in the 'office/individual_docs/' directory; an archive of all tutorial files is available in the 'office/packages/' directory. Text kernels
The subsystem uses two tags:
\begintextand
\begindatato mark information blocks within the text kernel. The \begintext tag specifies all text following the tag as comment information to be ignored by the subsystem. Things to know:
\begintext ... commentary information on the data assignments ... \begindata ... data assignments ...
Text kernel format
VAR_NAME_DP = 1.234 VAR_NAME_INT = 1234 VAR_NAME_STR = 'FORBIN'Please note the use of a single quote in string assignments. Vector assignments. Vectors must contain the same type data.
VEC_NAME_DP = ( 1.234 , 45.678 , 901234.5 ) VEC_NAME_INT = ( 1234 , 456 , 789 ) VEC_NAME_STR = ( 'FORBIN', 'FALKEN', 'ROBUR' ) also VEC_NAME_DP = ( 1.234, 45.678, 901234.5 ) VEC_NAME_STR = ( 'FORBIN', 'FALKEN', 'ROBUR' )Time assignments.
TIME_VAL = @31-JAN-2003-12:34:56.798 TIME_VEC = ( @01-DEC-2004, @15-MAR-2004 )The at-sign character '@' indicates a time string. The pool subsystem converts the strings to double precision TDB (a numeric value). Please note, the time strings must not contain embedded blanks. WARNING - a TDB string is not the same as a UTC string. The above examples depict direct assignments via the '=' operator. The kernel pool also permits incremental assignments via the '+=' operator. Please refer to the kernels required reading, kernel.req, for additional information. Kernels for lessonsInput kernel files
FILE NAME TYPE DESCRIPTION ----------------------- ---- ---------------------- naif0008.tls LSK Generic LSK leapseconds.tls LSK The current leapseconds kernel (naif0008.tls as of Jan 2006) de405s.bsp SPK Planet Ephemeris SPK pck00008.tpc PCK Generic PCKThese SPICE kernels are included in the lesson package available from the NAIF server at JPL:
ftp://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Lessons/ Output
Lesson 1: Kernel Management with the Kernel Subsystem
This lesson demonstrates use of the kernel subsystem to load, unload, and list loaded kernels. This lesson requires creation of a SPICE meta kernel. Relevant Routines
Requirements and References
Programming Task
Code SolutionFirst, create a meta text kernel:
\begindata KERNELS_TO_LOAD = ( 'kernels/spk/de405s.bsp', 'kernels/pck/pck00008.tpc', 'kernels/lsk/leapseconds.tls') \begintext... or a more generic meta kernel using the PATH_VALUES/PATH_SYMBOLS functionality to declare path names as variables:
\begintext Define the paths to the kernel directory. Use the PATH_SYMBOLS as aliases to the paths. \begindata PATH_VALUES = ( 'kernels/lsk', 'kernels/spk', 'kernels/pck' ) PATH_SYMBOLS = ( 'LSK', 'SPK', 'PCK' ) KERNELS_TO_LOAD = ( '$LSK/naif0008.tls', '$SPK/de405s.bsp', '$PCK/pck00008.tpc' ) \begintext Now the solution source code:
PRO KERNEL ;; ;; Assign the path name of the meta kernel to META. ;; META = 'meta.tm' ;; ;; Load the meta kernel then use KTOTAL to interrogate the SPICE ;; kernel subsystem. ;; cspice_furnsh, META cspice_ktotal, 'ALL', count print, 'Kernel count after load: ', count ;; ;; Loop over the number of files; interrogate the SPICE system ;; with kdata_c for the kernel names and the type. 'found' ;; returns a boolean indicating whether any kernel files of ;; the specified type were loaded by the kernel subsystem. ;; This example ignores checking 'found' as kernels are known ;; to be loaded. ;; for i = 0, (count-1) do begin cspice_kdata, i, 'ALL', file, type, source, handle, found print, 'File ' + file print, 'Type ' + type print, 'Source ' + source print endfor ;; ;; Unload one kernel then check the count. ;; cspice_unload, 'kernels/spk/de405s.bsp' cspice_ktotal, 'ALL', count ;; ;; The subsystem should report one less kernel. ;; print, 'Kernel count after one unload : ', count ;; ;; Now unload the meta kernel. This action unloads all ;; files listed in the meta kernel. ;; cspice_unload, META ;; ;; Check the count. Icy should return a count of zero. ;; cspice_ktotal, 'ALL', count print, 'Kernel count after meta unload: ', count END Run the code example
Kernel count after load: 4Now the cspice_kdata loop returns the name of each loaded kernel, the type of kernel (SPK, CK, TEXT, etc.) and the source of the kernel - the mechanism that loaded the kernel. The source either identifies a meta kernel, or contains an empty string. An empty source string indicates a direct load of the kernel with a cspice_furnsh call.
File meta.tm Type META Source File kernels/spk/de405s.bsp Type SPK Source meta.tm File kernels/pck/pck00008.tpc Type TEXT Source meta.tm File kernels/lsk/naif0008.tls Type TEXT Source meta.tm Kernel count after one unload : 3 Kernel count after meta unload: 0 Lesson 2: The Kernel Pool
The lesson demonstrates the Icy system's facility to retrieve different types of data (string, numeric, scalar, array) from the kernel pool. For the code examples, use this generic text kernel (cassini.tm) containing PCK-type data, kernels to load, and example time strings:
\begintext Ring model data. \begindata BODY699_RING1_NAME = 'A Ring' BODY699_RING1 = (122170.0 136780.0 0.1 0.1 0.5) BODY699_RING1_1_NAME = 'Encke Gap' BODY699_RING1_1 = (133405.0 133730.0 0.0 0.0 0.0) BODY699_RING2_NAME = 'Cassini Division' BODY699_RING2 = (117580.0 122170.0 0.0 0.0 0.0) \begintext The kernel pool recognizes values preceded by '@' as time values. When read, the kernel subsystem converts these representations into double precision ephemeris time. Caution: The kernel subsystem interprets the time strings identified by '@' as TDB. The same string passed as input to @STR2ET is processed as UTC. The three expressions stored in the EXAMPLE_TIMES array represent the same epoch. \begindata EXAMPLE_TIMES = ( @APRIL-1-2004-12:34:56.789, @4/1/2004-12:34:56.789, @JD2453097.0242684 ) \begintext Name the kernels to load. Use path symbols. \begindata PATH_VALUES = ('kernels/spk', 'kernels/pck', 'kernels/lsk') PATH_SYMBOLS = ('SPK' , 'PCK' , 'LSK' ) KERNELS_TO_LOAD = ( '$SPK/de405s.bsp', '$PCK/pck00008.tpc', '$LSK/leapseconds.tls') \begintext Relevant Routines
Requirements and References
The main references for pool routines are found in the API documentation for the particular routines. Programming Task
Code Solution
PRO KERVAR ;; ;; Define the max number of kernel variables ;; of concern for this examples. ;; N_ITEMS = 20 ;; ;; Define the maximum length for any string. 80 characters, ;; plus on for the C null terminator. ;; STRLEN = 81 ;; ;; Load the example kernel containing the kernel variables. ;; The kernels defined in KERNELS_TO_LOAD load into the ;; kernel pool with this call. ;; cspice_furnsh, 'cassini.tm' ;; ;; Initialize the start value. This values indicates ;; index of the first element to return if a kernel ;; variable is an array. START = 0 indicates return everything. ;; START = 1 indicates return everything but the first element. ;; START = 0; ;; ;; Set the template for the variable names to find. Let's ;; look for all variables containing the string RING. ;; Define this with the wildcard template '*RING*'. Note: ;; the template '*RING' would match any variable name ;; ending with the RING string. ;; tmplate = '*RING*' ;; ;; We're ready to interrogate the kernel pool for the ;; variables matching the template. cspice_gnpool tells us: ;; ;; 1. Does the kernel pool contain any variables that ;; match the template (value of found). ;; 2. If so, how many variables? ;; 3. The variable names. (cvals, an array of strings) ;; cspice_gnpool, tmplate, START, N_ITEMS, STRLEN, cvals, found if ( found) then begin print, 'No. variables matching template: ', n_elements(cvals) endif else begin print, 'No kernel variables matched template' stop endelse ;; ;; Okay, now we know something about the kernel pool ;; variables of interest to us. Let's find out more... ;; for i=0L, (n_elements(cvals)-1L) do begin ;; ;; Use dtpool to return the dimension and type, ;; C (character) or N (numeric), of each pool ;; variable name in the cvals array. ;; cspice_dtpool, cvals[i], found, dim, type print, cvals[i] print, ' No. items: ' + string(dim) + ' Of type: ' + type ;; ;; Test character equality, 'N' or 'C'. ;; case type of 'N': begin ;; ;; If 'type' equals 'N', we found a numeric array. ;; In this case any numeric array will be an array ;; of double precision numbers ("doubles"). ;; cspice_gdpool retrieves doubles from the ;; kernel pool. ;; cspice_gdpool, cvals[i], start, N_ITEMS, dvars, $ found for m=0L, (n_elements(dvars)-1L) do begin print, ' Numeric value: ', dvars[m] endfor end 'C': begin ;; ;; If 'type' equals 'C', we found a string array. ;; gcpool retrieves string values from the ;; kernel pool. ;; cspice_gcpool, cvals[i], start, N_ITEMS, STRLEN, $ cvars, found for j=0L, (n_elements(cvars)-1L) do begin print, ' String value : ', cvars[j] endfor end endcase print endfor ;; ;; Now look at the time variable EXAMPLE_TIMES. Extract this ;; value as an array of doubles. ;; cspice_gdpool, 'EXAMPLE_TIMES', start, N_ITEMS, dvars, found print, 'EXAMPLE_TIMES' for j=0L, (n_elements(dvars)-1L) do begin print, FORMAT='(A14,F24.6)', ' Time value: ', dvars[j] endfor ;; ;; Done. Unload the kernels. ;; cspice_kclear END Run the code example
No. variables matching template: 6The program then loops over the cspice_dtpool 6 times, reporting the name of each pool variable, the number of data items assigned to that variable, and the variable type. Within the cspice_dtpool loop, a second loop outputs the contents of the data variable using cspice_gcpool or cspice_gdpool.
BODY699_RING1 No. items: 5 Of type: N Numeric value: 122170.00 Numeric value: 136780.00 Numeric value: 0.10000000 Numeric value: 0.10000000 Numeric value: 0.50000000 BODY699_RING2 No. items: 5 Of type: N Numeric value: 117580.00 Numeric value: 122170.00 Numeric value: 0.0000000 Numeric value: 0.0000000 Numeric value: 0.0000000 BODY699_RING1_1 No. items: 5 Of type: N Numeric value: 133405.00 Numeric value: 133730.00 Numeric value: 0.0000000 Numeric value: 0.0000000 Numeric value: 0.0000000 BODY699_RING1_NAME No. items: 1 Of type: C String value : A Ring BODY699_RING2_NAME No. items: 1 Of type: C String value : Cassini Division BODY699_RING1_1_NAME No. items: 1 Of type: C String value : Encke GapNote the final time value differs from the previous values in the final three decimal places despite the intention that all three strings represent the same time. This results from round-off when converting a decimal Julian day representation to the seconds past J2000 ET representation.
EXAMPLE_TIMES Time value: 134094896.789000 Time value: 134094896.789000 Time value: 134094896.789753 Lesson 3: Coordinate Conversions
The Icy system provides functions to convert coordinate tuples between Cartesian and various non Cartesian coordinate systems including conversion between geodetic and rectangular coordinates. This lesson presents these coordinate transform routines for rectangular, cylindrical, and spherical systems. Relevant Routines
Requirements and References
Programming Task
Code Solution
PRO COORD ;; ;; Define the inertial and non inertial frame names. ;; ;; Initialize variables or set type. All variables ;; used in a PROMPT construct must be initialized ;; as strings. ;; INRFRM = 'J2000' NONFRM = 'IAU_EARTH' timstr = '' ;; ;; Load the needed kernels using a cspice_furnsh call on the ;; meta kernel. ;; cspice_furnsh, 'meta.tm' ;; ;; Prompt the user for a time string. Convert the ;; time string to ephemeris time J2000 (ET). ;; read, timstr, PROMPT = 'Time of interest: ' cspice_str2et, timstr, et ;; ;; Access the kernel pool data for the triaxial radii of the ;; Earth, 'rad[0]' holds the equatorial radius, 'rad[2]' ;; the polar radius. ;; cspice_bodvrd, 'EARTH', 'RADII', 3, rad ;; ;; Calculate the flattening factor for the Earth. ;; ;; equatorial_radius - polar_radius ;; flat = ________________________________ ;; ;; equatorial_radius ;; flat = (rad[0] - rad[2])/rad[0]; ;; ;; Make the cspice_spkpos call to determine the apparent ;; position of the Moon w.r.t. to the Earth at 'et' in the ;; inertial frame. ;; cspice_spkpos, 'MOON', et, INRFRM, 'LT+S','EARTH', pos, ltime ;; ;; Show the current frame and time. ;; print, ' Time : ' , timstr print, ' Inertial Frame: ', inrfrm ;; ;; First convert the position vector ;; X = pos[0], Y = pos[1], Z = pos[2], to RA/DEC. ;; cspice_recrad, pos, range, ra, dec print, ' Range/Ra/Dec' print, ' Range: ', range print, ' RA : ', ra * cspice_dpr() print, ' DEC : ', dec* cspice_dpr() ;; ;; ...latitudinal coordinates... ;; cspice_reclat, pos, range, lon, lat print, ' Latitudinal' print, ' Rad : ', range print, ' Lon : ', lon * cspice_dpr() print, ' Lat : ', lat * cspice_dpr() ;; ;; ...spherical coordinates use the colatitude, ;; the angle from the Z axis. ;; cspice_recsph, pos, range, colat, lon print, ' Spherical' print, ' Rad : ', range print, ' Lon : ', lon * cspice_dpr() print, ' Colat: ', colat * cspice_dpr() ;; ;; Make the cspice_spkpos call to determine the apparent ;; position of the Moon w.r.t. to the Earth at 'et' in the ;; non-inertial, body fixed, frame. ;; cspice_spkpos, 'MOON', et, nonfrm, 'LT+S','EARTH', pos, ltime print print, ' Non-inertial Frame: ' + nonfrm ;; ;; ...latitudinal coordinates... ;; cspice_reclat, pos, range, lon, lat print, ' Latitudinal ' print, ' Rad : ', range print, ' Lon : ', lon * cspice_dpr() print, ' Lat : ', lat * cspice_dpr() ;; ;; ...spherical coordinates... ;; cspice_recsph, pos, range, colat, lon print, ' Spherical' print, ' Rad : ', range print, ' Lon : ', lon * cspice_dpr() print, ' Colat: ', colat * cspice_dpr() ;; ;; ...finally, convert the position to geodetic coordinates. ;; cspice_recgeo, pos, rad[0], flat, lon, lat, range print, ' Geodetic' print, ' Rad : ', range print, ' Lon : ', lon * cspice_dpr() print, ' Lat : ', lat * cspice_dpr() print END Run the code example
Time of interest: Feb 3 2002 TDBExamine the Moon position in the J2000 inertial frame, display the time and frame:
Time : Feb 3 2002 TDB Inertial Frame: J2000Convert the Moon Cartesian coordinates to right ascension declination.
Range/Ra/Dec Range: 369340.82 RA : 203.64369 DEC : -4.9790104Latitudinal. Note the difference in the expressions for longitude and right ascension though they represent a measure of the same quantity. The RA/DEC system measures RA in the interval [0,2Pi). Latitudinal coordinates measures longitude in the interval (-Pi,Pi].
Latitudinal Rad : 369340.82 Lon : -156.35631 Lat : -4.9790104Spherical. Note the difference between the expression of latitude in the Latitudinal system and the corresponding Spherical colatitude. The spherical coordinate system uses the colatitude, the angle measure away from the positive Z axis. Latitude is the angle between the position vector and the x-y (equatorial) plane with positive angle defined as toward the positive Z direction
Spherical Rad : 369340.82 Lon : -156.35631 Colat: 94.979010The same position look-up in a body fixed (non-inertial) frame, IAU_EARTH.
Non-inertial Frame: IAU_EARTHLatitudinal coordinates return the geocentric latitude.
Latitudinal Rad : 369340.82 Lon : 70.986950 Lat : -4.9896751Spherical.
Spherical Rad : 369340.82 Lon : 70.986950 Colat: 94.989675Geodetic. The cartographic lat/lon.
Geodetic Rad : 362962.84 Lon : 70.986950 Lat : -4.9902493 Lesson 4: Advanced Time Manipulation Routines
Introduce the routines used for advanced manipulation of time strings. Understand the concept of ephemeris time (ET) as used in Icy. Relevant Routines
Requirements and References
Also, examine the header of cspice_timout for a list of the string markers used by cspice_timout and cspice_tpictr to describe time string format. Always keep in mind cspice_str2et assumes 'UTC' unless indicated otherwise. Programming Task
Code Solution
PRO TIC ;; ;; Assign the LSK variable to the name of the leapsecond, ;; kernel and create an arbitrary time string. ;; ;; Define the maximum length for any string, 80 ;; characters plus one null terminator for C. ;; CALSTR = 'Mar 15, 2003 12:34:56.789 AM PST'; LSK = 'kernels/lsk/leapseconds.tls'; AMBIGSTR = 'Mar 15, 79 12:34:56'; STRLEN = 81 ;; ;; Load the leapseconds kernel. ;; cspice_furnsh, LSK print, 'Original time string : ' + CALSTR ;; ;; Convert the time string to the number of ephemeris ;; seconds past the J2000 epoch. This is the most common ;; internal time representation used by the CSPICE ;; system; CSPICE refers to this as ephemeris time (ET). ;; cspice_str2et, CALSTR, et print, 'Corresponding ET : ', et ;; ;; Make a picture of an output format. Describe a Unix-like ;; time string then send the picture and the 'et' value through ;; cspice_timout to format and convert the ET representation ;; of the time string into the form described in cspice_timout. ;; The '::UTC-7' token indicates the time zone for the 'timstr' ;; output - PDT. 'PDT' is part of the output, but not a time ;; system token. ;; cspice_timout, et, 'Wkd Mon DD HR:MN:SC PDT YYYY ::UTC-7', $ STRLEN, timstr print, 'Time in string format 1 : ' + timstr ;; ;; Create another picture, this time combine a calendar, ;; 2 digit year , with Julian Day format. ;; cspice_timout, et, $ 'Wkd Mon DD HR:MN ::UTC-7 YR (JULIAND.##### JDUTC)', $ STRLEN, timstr print, 'Time in string format 2 : ' + timstr ;; ;; Why create a picture by hand when Icy can do it for you? ;; Input a string to cspice_tpictr with the format of interest. ;; 'ok' returns a boolean indicating whether an error occurred ;; while parsing the picture string, if so, an error diagnostic ;; message returns in 'error'. In this example the picture ;; string is known as correct. ;; cspice_tpictr, '12:34:56.789 P.M. PDT January 1, 2006', $ STRLEN, pictr, ok, error ;; ;; Confirm the tpictr_c call succeeded. Report the error string ;; if not. ;; if ( ~ok ) then begin print, 'ERROR from cspice_tpictr: ' + error stop endif cspice_timout, et, pictr, STRLEN, timstr print, 'Time in string format 3 : ' + timstr ;; ;; Two digit year representations often cause problems due to ;; the ambiguity of the century. The routine cspice_tsetyr gives ;; the user the ability to set a default range for 2 digit year ;; representation. SPICE uses 1969AD as the default start ;; year so the numbers inclusive of 69 to 99 represent years ;; 1969AD to 1999AD, the numbers inclusive of 00 to 68 represent ;; years 2000AD to 2068AD. ;; ;; The defined time string 'AMBIGSTR' contains a two-digit ;; year. Since the SPICE base year is 1969, the time subsystem ;; interprets the string as 1979. ;; cspice_str2et, AMBIGSTR, et1 ;; ;; Set 1980 as the base year causes SPICE to interpret the ;; time string's "79" as 2079. ;; cspice_tsetyr, 1980 cspice_str2et, AMBIGSTR, et2 ;; ;; Calculate the number of years between the two ET ;; representations, ~100. ;; print, 'Years between evaluations : ', $ (et2 - et1)/cspice_jyear() ;; ;; Reset the default year to 1969. ;; cspice_tsetyr, 1969 ;; ;; Done. Unload the kernels. ;; cspice_kclear END Run the code example
Original time string : Mar 15, 2003 12:34:56.789 AM PST Corresponding ET : 1.0098936e+08 Time in string format 1 : Sat Mar 15 01:34:56 PDT 2003 Time in string format 2 : Sat Mar 15 01:34 03 (2452713.85760 JDUTC) Time in string format 3 : 01:34:56.789 A.M. PDT March 15, 2003 Years between evaluations : 100.00000 Lesson 5: Error Handling
The Icy error subsystem differs from CSPICE and SPICELIB packages in that the user cannot alter the state of the error subsystem, rather the user can respond to an error signal using the "catch" function. This function natively receives and processes any SPICE error signaled from Icy. The user can therefore "catch" an error signal so as to respond in an appropriate manner. Relevant Routines:
Requirements and References
Programming Task
Code Solution
PRO ADERR ;; ;; Set initial parameters. ;; SPICETRUE = 1B SPICEFALSE= 0B doloop = SPICETRUE; ;; ;; Load the data we need for state evaluation. ;; cspice_furnsh, 'meta.tm' ;; ;; Start our input query loop to the user. ;; while (doloop) do begin ;; ;; Initialize the input value as a string. YOU MUST ;; do this to use PROMPT in a read. ;; targ = '' ;; ;; For simplicity, we request only one input. ;; The program calculates the state vector from ;; Earth to the user specified target 'targ' in the ;; J2000 frame, at ephemeris time zero, using ;; aberration correction LT+S (light time plus ;; stellar aberration). ;; read, targ, PROMPT= 'Target: ' if cspice_eqstr( targ, 'NONE') then begin ;; ;; An exit condition. If the user inputs NONE ;; for a target name, set the loop to stop... ;; doloop = SPICEFALSE; endif else begin ;; ;; ...otherwise evaluate the state between the Earth ;; and the target. Initialize an error handler. ;; catch, err ;; ;; What if the program can't perform the evaluation? ;; Then ICY sets an error message informing ;; the user of the problem's cause. ;; ;; Examine the value of 'err' to determine if we ;; output a state vector or not. ;; if ( err ne 0 ) then begin ;; ;; Error signal detected. Output the error response ;; information. ;; print, !error_state.name print, !error_state.msg print endif else begin ;; ;; Perform the state lookup. If an error occurs, ;; program flow returns the first line after the ;; "catch, err"; in that case, 'err' will have a ;; non-zero value. ;; cspice_spkezr, targ, 0.d, 'J2000', 'LT+S', 'EARTH', $ state, ltime ;; ;; No error, output the state. ;; print, FORMAT = '( "R : ", 3F17.5)', state[0:2] print, FORMAT = '( "V : ", 3F17.5)', state[3:5] print, 'LT: ', ltime print endelse catch, /cancel endelse endwhile ;; ;; Done. Unload the kernels. ;; cspice_kclear END Run the code example
Target: Moon R : -291584.61659 -266693.40236 -76095.64756 V : 0.64353 -0.66608 -0.30132 LT: 1.3423106 Target: Mars R : 234536077.41914 -132584383.59557 -63102685.70619 V : 30.95976 28.93646 13.11449 LT: 923.00108 Target: Pluto barycenter R : -1451304742.83853-4318174144.40632 -918251433.58736 V : 35.03838 3.06560 -0.01514 LT: 15501.258 Target: Puck ICY_M_SPICE_ERROR CSPICE_SPKEZR: SPICE(SPKINSUFFDATA): [spkezr_c->SPKEZR->SPKEZ-> SPKAPP->SPKSSB->SPKGEO] Insufficient ephemeris data has been loaded to compute the state of 715 (PUCK) relative to 0 (SOLAR SYSTEM BARYCENTER) at the ephemeris epoch 2000 JAN 01 12:00:00.000.Perplexing. What happened? The kernel files named in meta.tm did not include ephemeris data for Puck. When the SPK subsystem tried to evaluate Puck's position, the evaluation failed due to lack of data, so an error signaled. The above error signifies an absence of state information at ephemeris time 2000 JAN 01 12:00:00.000 (the requested time, ephemeris time zero). Try another look-up.
Target: Casper ICY_M_SPICE_ERROR CSPICE_SPKEZR: SPICE(IDCODENOTFOUND): [spkezr_c->SPKEZR] The target, 'Casper', is not a recognized name for an ephemeris object. The cause of this problem may be that you need an updated version of the SPICE Toolkit. Alternatively you may call SPKEZ directly if you know the SPICE ID codes for both 'Casper' and 'EARTH'An easy to understand error. The SPICE system does not contain information on a body named 'Casper.' Another look-up, this time, something easy.
Target: Venus R : -80970027.54053 -139655772.57390 -53860125.95820 V : 31.16969 -27.00018 -12.31622 LT: 567.65507The look-up succeeded despite two errors in our run. The Icy system can respond to error conditions (not system errors) in much the same fashion as languages with catch/throw instructions. Lesson 6: Windows, and Cells
This lesson introduces the concepts of the SPICE data types 'cell' and 'window'. A 'cell' is a data structure designed to provide easy and safe manipulation of typed array data. An IDL SPICE cell consists of an IDL structure comprised of the same fields as a C SPICE cell. A user should create cells by use of the appropriate Icy calls. NAIF recommends against manual creation of cells. A 'window' is a type of cell containing ordered, double precision values describing a collection of zero or more intervals. We define an interval, 'i', as all double precision values bounded by and including an ordered pair of numbers,
[ a , b ] i iwhere
a < b i - iThe intervals within a window are both ordered and disjoint. That is, the beginning of each interval is greater than the end of the previous interval:
b < a i i+1A common use of the windows facility is to calculate the intersection set of a number of time intervals. Relevant Routines
Requirements and References
Programming task:
Code Solution
PRO WIN ;; ;; Define the cells to use as windows. ;; The windows can hold 8 data values i.e. ;; four intervals. ;; MAXSIZ = 8 loswin = cspice_celld( MAXSIZ ) phswin = cspice_celld( MAXSIZ ) sched = cspice_celld( MAXSIZ ) ;; ;; Define a set of time intervals. For the purposes of this ;; tutorial program, define time intervals representing ;; an unobscured line of sight between a ground station ;; and some body. ;; los = [ 'Jan 1, 2003 22:15:02', 'Jan 2, 2003 4:43:29', $ 'Jan 4, 2003 9:55:30', 'Jan 4, 2003 11:26:52', $ 'Jan 5, 2003 11:09:17', 'Jan 5, 2003 13:00:41', $ 'Jan 6, 2003 00:08:13', 'Jan 6, 2003 2:18:01' ] ;; ;; A second set of intervals representing the times for which ;; an acceptable phase angle exits between the ground station, ;; the body and the Sun. ;; phase = [ 'Jan 2, 2003 00:03:30', 'Jan 2, 2003 19:00:00', $ 'Jan 3, 2003 8:00:00', 'Jan 3, 2003 9:50:00', $ 'Jan 5, 2003 12:00:00', 'Jan 5, 2003 12:45:00', $ 'Jan 6, 2003 00:30:00', 'Jan 6, 2003 23:00:00' ] ;; ;; Load our meta kernel for the leapseconds data. ;; cspice_furnsh, 'meta.tm' ;; ;; SPICE windows consist of double precision values; convert ;; the string time tags defined in the 'los'and 'phase' ;; arrays to double precision ET. Store the double values ;; in the 'loswin' and 'phswin' windows. ;; cspice_str2et, los , los_et cspice_str2et, phase, phs_et ;; ;; Initialize the cells from the double precision arrays, ;; then validate the cells as windows. ;; for i=0L, (MAXSIZ/2L) -1L do begin cspice_wninsd, los_et[i*2], los_et[i*2 + 1], loswin cspice_wninsd, phs_et[i*2], phs_et[i*2 + 1], phswin endfor cspice_wnvald, MAXSIZ, MAXSIZ, loswin cspice_wnvald, MAXSIZ, MAXSIZ, phswin cspice_wnvald, MAXSIZ, MAXSIZ, sched ;; ;; The issue for consideration, at what times do line of ;; sight events coincide with acceptable phase angles? ;; Perform the set operation AND on loswin, phswin, ;; (the intersection of the time intervals) ;; place the results in the window 'sched'. ;; cspice_wnintd, loswin, phswin, sched ;; ;; Output the results. The number of intervals in 'sched' ;; is half the number of data points (the cardinality). ;; Use a call to card_c to retrieve the window's cardinality. ;; print print, 'No. data values in sched : ', $ cspice_card(sched) print, 'Space available for values in sched : ', $ cspice_size(sched) print print, 'Time intervals meeting defined criterion.' for i=0L, (cspice_card(sched)/2L)-1L do begin ;; ;; Extract from the derived 'sched' the values defining the ;; time intervals. ;; cspice_wnfetd, sched, i, left, right ;; ;; Convert the ET values to UTC for human comprehension. ;; cspice_et2utc, left , 'C', 3, utcstr_l cspice_et2utc, right, 'C', 3, utcstr_r ;; ;; Output the UTC string and the corresponding index ;; for the interval. ;; print, i, ' ', utcstr_l, utcstr_r endfor ;; ;; Summarize the 'sched' window. ;; cspice_wnsumd, sched, meas, avg, stddev, small, large print print, 'Summary of sched window' print, 'o Total measure of sched : ', meas print, 'o Average measure of sched : ', avg print, 'o Standard deviation of ' print, ' the measures in sched : ', stddev ;; ;; The values for small and large refer to the indexes of the ;; values in the window ('sched'). The shortest interval is ;; ;; [ sched.base[ sched.data + small] ;; sched.base[ sched.data + small +1] ]; ;; ;; the longest is ;; ;; [ sched.base[ sched.data + large] ;; sched.base[ sched.data + large +1] ]; ;; ;; Output the interval indexes for the shortest and longest ;; intervals. As IDL bases an array index on 0, the interval ;; index is half the array index. ;; print, 'o Index of shortest interval: ', small/2L print, 'o Index of longest interval : ', large/2L END Run the code example
Output the amount of data held in SCHED compared to the maximum possible amount.
No. data values in SCHED : 6 Space available for values in SCHED : 8List the time intervals for which a line of sight exists during the time of a proper phase angle.
Time intervals meeting defined criterion. 0 2003 JAN 02 00:03:30.000 2003 JAN 02 04:43:29.000 1 2003 JAN 05 12:00:00.000 2003 JAN 05 12:45:00.000 2 2003 JAN 06 00:30:00.000 2003 JAN 06 02:18:01.000Finally, an analysis of the SCHED data. The measure of an interval [a,b] (a <= b) equals b-a. Real values output in units of seconds.
Summary of sched window o Total measure of sched : 25980.000 o Average measure of sched : 8660.0000 o Standard deviation of the measures in sched : 5958.5502 o Index of shortest interval: 1 o Index of longest interval : 0 Lesson 7: Utility and Constants Routines
Icy provides several routines to perform commonly needed tasks. Among these:
Relevant Routines
Requirements and References
Programming Task
Code Solution
PRO UNITS ;; ;; Initialize variables. All variables used in a PROMPT ;; construct must be initialized as strings. ;; funits = '' fromstr = '' tunits = '' ;; ;; Display the Toolkit version string with a ;; cspice_tkvrsn call. ;; vers = cspice_tkvrsn( 'TOOLKIT' ) print, 'Convert demo program compiled against CSPICE Toolkit ' $ + vers ;; ;; The user first inputs the name of a unit of measure. ;; Send the name through TOSTAN for de-aliasing. ;; read, funits, PROMPT= 'From Units : ' tostan, funits ;; ;; Input a double precision value to express in a new ;; unit format. ;; read, fromstr, PROMPT = 'From Value : ' cspice_prsdp, fromstr, fvalue ;; ;; Now the user inputs the name of the output units. ;; Again we send the units name through TOSTAN for ;; de-aliasing. ;; read, tunits, PROMPT = 'To Units : ' tostan, tunits cspice_convrt, fvalue, funits, tunits, tvalue print, tvalue, ' ', tunits END PRO TOSTAN, alias ;; ;; As a convenience, let's alias a few common terms ;; to their appropriate counterpart. Use cspice_eqstr ;; to compare strings. The comparison ignores ;; letter case and trailing/leading spaces. NOTE: the SWITCH ;; statement performs the same function as the multiple ;; "if" blocks. SWITCH was not used in order to demonstrate ;; the cspice_eqstr call. ;; if ( cspice_eqstr( alias, 'meter') ) then begin ;; ;; First, a 'meter' by any other name is a ;; 'METER' and smells as sweet ... ;; alias = 'METERS' endif if ( cspice_eqstr( alias, 'klicks' ) OR $ cspice_eqstr( alias, 'kilometers') OR $ cspice_eqstr( alias, 'kilometer' ) ) then begin ;; ;; ... 'klicks' and 'KILOMETERS' and 'KILOMETER' ;; identifies 'KM'.... ;; alias = 'KM' endif if ( cspice_eqstr( alias, 'secs') ) then begin ;; ;; ... 'secs' to 'SECONDS'. ;; alias = 'SECONDS' endif if ( cspice_eqstr( alias, 'miles') ) then begin ;; ;; ... and finally 'miles' to 'STATUTE_MILES'. ;; Normal people think in statute miles. ;; Only sailors think in nautical miles - one ;; minute of arc at the equator. ;; alias = 'STATUTE_MILES' endif ;; ;; Much better. Now return. If the input matched ;; none of the aliases, this routine did nothing. ;; END Run the code example
Convert demo program compiled against CSPICE Toolkit CSPICE_N0060 From Units : klicks From Value : 3 To Units : miles 1.8641136 STATUTE_MILESNow we know. Three kilometers equals 1.864 miles. Legend states Pheidippides ran from the Marathon Plain to Athens. The modern marathon race (inspired by this event) spans 26.2 miles. How far in kilometers?
Convert demo program compiled against CSPICE Toolkit CSPICE_N0060 From Units : miles From Value : 26.2 To Units : km 42.164813 km Programming Task
Code Solution
PRO CONST ;; ;; All the function have the same calling sequence: ;; ;; VALUE = function_name() ;; ;; some_procedure( function_name() ) ;; ;; print, function_name() ;; ;; First a simple example using the seconds per day ;; constant... ;; print, $ FORMAT = $ '("Number of (S)econds (P)er (D)ay : ", F19.12)',$ cspice_spd() ;; ;; ...then show the value of degrees per radian, 180/Pi... ;; print, $ FORMAT = $ '("Number of (D)egrees (P)er (R)adian : ", F19.16)',$ cspice_dpr() ;; ;; ...and the inverse, radians per degree, Pi/180. ;; It is obvious cspice_dpr() equals 1.d/cspice_rpd(), or ;; more simply cspice_dpr() * cspice_rpd() equals 1 ;; print, $ FORMAT = $ '("Number of (R)adians (P)er (D)egree : ", F19.16)',$ cspice_rpd() ;; ;; What's the value for the astrophysicist's favorite ;; physical constant (in a vacuum)? ;; print, $ FORMAT = $ '("Speed of light in KM per second : ", F19.12)',$ cspice_clight() ;; ;; How long (in Julian days) from the J2000 epoch to the ;; J2100 epoch? ;; print, "Number of days between epochs J2000 and " print, $ FORMAT = $ '(" J2100 : ", F19.12)',$ cspice_j2100() - cspice_j2000() ;; ;; Redo the calculation returning seconds... ;; print, "Number of seconds between epochs J2000 " print, $ FORMAT = $ '(" and J2100 : ", F19.5)',$ cspice_spd() * (cspice_j2100() - cspice_j2000() ) ;; ;; ...then tropical years. ;; print, "Number of tropical years between epochs " print, $ FORMAT = $ '(" J2000 and J2100 : ", F19.12)',$ ( cspice_spd() / cspice_tyear() ) $ * (cspice_j2100() - cspice_j2000() ) ;; ;; Finally, how can I convert a radian value to degrees. ;; print, $ FORMAT = $ '("Number of degrees in Pi/2 radians of arc : ", F19.16)',$ cspice_halfpi() * cspice_dpr() ;; ;; and degrees to radians. ;; print, $ FORMAT = $ '("Number of radians in 250 degrees of arc : ", F19.16)',$ 250.D * cspice_rpd() END Run the code example
Number of (S)econds (P)er (D)ay : 86400.000000000000 Number of (D)egrees (P)er (R)adian : 57.2957795130823229 Number of (R)adians (P)er (D)egree : 0.0174532925199433 Speed of light in KM per second : 299792.457999999984 Number of days between epochs J2000 and J2100 : 36525.000000000000 Number of seconds between epochs J2000 and J2100 : 3155760000.00000 Number of tropical years between epochs J2000 and J2100 : 100.002135902909 Number of degrees in Pi/2 radians of arc : 90.0000000000000000 Number of radians in 250 degrees of arc : 4.3633231299858242 |