
Navigation and Ancillary Information Facility

N IF

Writing a CSPICE Based Program

March 2006

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 2

N IF

This coding example is an
“animated” presentation that is best
viewed using PowerPoint set to
“Slide Show” mode.

Undefined variables are displayed in
red; results are displayed in blue.

Viewing This Tutorial

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 3

N IF

First, let's go over the important steps in the process of writing a CSPICE-based

program and putting it to work:

• Understand the geometry problem.

• Identify the set of SPICE kernels that contain the data needed to perform the
computation.

• Formulate an algorithm to compute the quantities of interest using SPICE.

• Write and compile the program.

• Get actual kernel files and verify that they contain the data needed to support
the computation for the time(s) of interest.

• Run the program.

To illustrate these steps, let's write a program that computes the apparent

intersection of the boresight ray of a given CASSINI science instrument with the

surface of a given Saturnian satellite. The program will compute

• Planetocentric and planetodetic (geodetic) latitudes and longitudes of the
intercept point.

• Range from spacecraft to intercept point and from spacecraft to target center.

• Illumination angles (phase, solar incidence, and emission) at the intercept point.

Introduction

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 4

N IF

on-board clock ephemeris time UTC time

inertial frame

spacecraft
 frame

instrument

 frame

instrument
 boresight

body-fixed
 frame

 surface

intersection

spacecraft
 position

planetocentric
 latitude

planetocentric

 longitudeUsing what model?

We want the boresight

intercept on the surface, range

from s/c to intercept and target

center, and illumination angles at

the intercept point.

When?

On what object?

For which instrument?

For what spacecraft?

 TIME (UTC, TDB or TT)

SATNM

 INSTNM

SCNM

SETUPF

Observation Geometry

Phase angle

solar incidence angle

surface normal

emission angle

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 5

N IF Needed Data

on-board clock ephemeris time UTC time

inertial frame

spacecraft
 frame

instrument

 frame

instrument
 boresight

body-fixed
 frame

 surface

intersection

spacecraft
 position

planetocentric
 latitude

planetocentric

 longitude

Time transformation kernels

Orientation models

Instrument descriptions

Shapes of satellites, planets

Ephemerides for spacecraft,

Saturn barycenter and satellites.

surface normal

solar incidence angle

emission angle

Phase angle

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 6

N IF

Data required to compute vectors, rotations and other parameters shown in

the picture are stored in the SPICE kernels listed below.

 Note: these kernels have been selected to support this presentation; they should not be assumed to be
appropriate for user applications.

 Parameter Kernel Type File name

 ----------------------- -------------- ------------

 time conversions generic LSK naif0007.tls

 CASSINI SCLK cassini.tsc

 satellite orientation generic PCK pck00008.tpc

 satellite shape generic PCK pck00008.tpc

 satellite position planet/sat

 ephemeris SPK 020514_SE_SAT105.bsp

 planet barycenter position planet SPK 981005_PLTEPH-DE405S.bsp

 spacecraft position spacecraft SPK tour9201.bsp

 spacecraft orientation spacecraft CK cas_050215.bc

 instrument alignment CASSINI FK cas_v37.tf

 instrument boresight Instrument IK cas_iss_v09.ti

 Which Kinds of Kernels are Needed?

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 7

N IF

The easiest and most flexible way to make required kernels available to the
program is via furnsh_c. For this example we make a setup file (also called a

“metakernel” or “furnsh kernel”) containing a list of kernels to be loaded:

\begindata

 KERNELS_TO_LOAD = ('naif0007.tls', 'cassini.tsc',
 'pck00008.tpc', '020514_SE_SAT105.bsp',
 '981005_PLTEPH-DE405S.bsp', 'tour9201.bsp',
 'cas_050215.bc', 'cas_v37.tf',
 'cas_iss_v09.ti')
\begintext

 and we make the program prompt for the name of this setup file:

 prompt_c ("Enter setup file name > ", FILESZ, setupf);
 furnsh_c (setupf);

Load Kernels

Note: these kernels have been selected to support this presentation; they
should not be assumed to be appropriate for user applications.

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 8

N IF Programming Solution

• Prompt for setup file (“metakernel”) name; load kernels specified via setup

file. (Done on previous chart.)

• Prompt for user inputs required to completely specify problem. Obtain

further inputs required by geometry routines via CSPICE calls.

• Compute the intersection of the boresight direction ray with the surface of

the satellite, presented as a triaxial ellipsoid.

 If there is an intersection,

•Convert Cartesian coordinates of the intercept point to planetocentric

latitudinal and planetodetic coordinates

•Compute spacecraft-to-intercept point range and spacecraft-to-target

center range

•Find the illumination angles (phase, solar incidence, and emission) at

the intercept point

• Display the results.

We discuss the geometric portion of the problem next.

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 9

N IF Compute Surface Intercept and Ranges

The ranges we want are obtained from the outputs of srfxpt_c. These outputs
are defined only if a surface intercept is found. If found is true, the
spacecraft-to-surface intercept range is the output argument dist, and the

spacecraft-to-target center range is the norm of the output argument obspos.

Units are km. We use the CSPICE function vnorm_c to obtain the norm:
vnorm_c (obspos)

We'll write out the range data along with the other program results.

Compute the intercept point (point) of the instrument boresight vector (insite)

with the satellite’s (satnm) surface at the TDB time of interest (et). This call

also returns the distance between the spacecraft and intercept point (dist),

the light-time corrected epoch at the intercept point (trgepc), the target
center-to-spacecraft vector (obspos), and a boolean flag indicating whether

the intercept was found (found). We use "converged Newtonian" light time

plus stellar aberration corrections to produce the most accurate surface

Intercept solution possible.

 srfxpt_c ("Ellipsoid", satnm, et, "CN+S", scnm, iframe,
 insite, point, &dist, &trgepc, obspos, &found);

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 10

N IF

Compute the planetocentric latitude (pclat) and longitude (pclon), as well as
the planetodetic latitude (pdlat) and longitude (pdlon) of the intersection
point.

 if (found)
 {

 reclat_c (point, &r, &pclon, &pclat);

Compute Lat/Lon and Illumination Angles

The illumination angles we want are the outputs of illum_c. Units are radians.

For this call, normal light time and stellar aberration corrections suffice.

 illum_c (satnm, et, "LT+S", scnm,
 point, &phase, &solar, &emissn);

/* Let re, rp, and f be the satellite's longer equatorial
 radius, polar radius, and flattening factor. */
re = radii[0];
rp = radii[2];
f = (re – rp) / re;

recgeo_c (point, re, f, &pdlon, &pdlat, &alt);

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 11

N IF

 illum_c (satnm, et, "LT+S", scnm, point, &phase, &solar, &emissn);
 ...
 }
 else
 {
 ...
 }

 /* Compute the boresight ray intersection with the surface of the
 satellite. `dist’ and vnorm_c(obspos) yield desired ranges. */

 srfxpt_c ("Ellipsoid", satnm, et, "CN+S", scnm, iframe,
 insite, point, &dist, &trgepc, obspos, &found);

 /* If an intercept is found, compute planetocentric and planetodetic
 latitude and longitude of the point. */

 if (found)
 {
 reclat_c (point, &r, &pclon, &pclat);

 /* Let re, rp, and f be the satellite's longer equatorial
 radius, polar radius, and flattening factor. */
 re = radii[0];
 rp = radii[2];
 f = (re – rp) / re;
 recgeo_c (point, re, f, &pdlon, &pdlat, &alt);

 /* Compute illumination angles at the surface point. */

Geometry Calculations: Summary

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 12

N IF

The code above used quite a few inputs that we don't have yet:

• TDB epoch of interest (et);

• satellite and s/c names (satnm, scnm);

• satellite ellipsoid radii (radii);

• instrument fixed frame name (iframe);

• instrument boresight vector in the instrument frame (insite);

Some of these values are user inputs; others can be obtained via CSPICE calls

once the required kernels have been loaded.

Let's prompt for the satellite name (satnm), spacecraft name (scnm), instrument

name (instnm) and time of interest (time):

 prompt_c ("Enter satellite name > ", WORDSZ, satnm);
 prompt_c ("Enter spacecraft name > ", WORDSZ, scnm);
 prompt_c ("Enter instrument name > ", WORDSZ, instnm);
 prompt_c ("Enter time > ", WORDSZ, time);

Get Inputs - 1

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 13

N IF Get Inputs - 2

Then we can get the rest of the inputs from CSPICE calls:

To get the TDB epoch (et) from the user-supplied time string (which may

refer to the UTC, TDB or TT time systems):
 str2et_c (time, &et);

To get the satellite’s ellipsoid radii (radii):

 bodvrd_c (satnm, "RADII", 3, &i, radii);

To get the instrument boresight direction (insite) and the name of the

 instrument frame (iframe) in which it is defined:

 bodn2c_c (instnm, &instid, &found);

 if (!found)
 {
 setmsg_c ("Instrument name # could not be "
 "translated to an ID code.");
 errch_c ("#", instnm);
 sigerr_c ("NAMENOTFOUND");
 }
 getfov_c (instid, ROOM, WORDSZ, WORDSZ,
 shape, iframe, insite, &n, bundry);

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 14

N IF Getting Inputs: Summary

 bodn2c_c (instnm, &instid, &found);
 if (!found)
 {
 setmsg_c ("Instrument name # could not be "
 "translated to an ID code.");
 errch_c ("#", instnm);
 sigerr_c ("NAMENOTFOUND");
 }

 getfov_c (instid, ROOM, WORDSZ, WORDSZ,
 shape, iframe, insite, &n, bundry);

/* Prompt for the user-supplied inputs for our program */

 prompt_c ("Enter setup file name > ", FILESZ, setupf);
 furnsh_c (setupf);
 prompt_c ("Enter satellite name > ", WORDSZ, satnm);
 prompt_c ("Enter spacecraft name > ", WORDSZ, scnm);
 prompt_c ("Enter instrument name > ", WORDSZ, instnm);
 prompt_c ("Enter time > ", WORDSZ, time);

/* Get the epoch corresponding to the input time: */

 str2et_c (time, &et);

/* Get the radii of the satellite. */

bodvrd_c (satnm, "RADII", 3, &i, radii);

/* Get the instrument boresight and frame name. */

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 15

N IF Display Results

/* Display results. Convert angles from radians to degrees for output. */
printf ("\n"
 "Intercept planetocentric longitude (deg): %11.6f\n"
 "Intercept planetocentric latitude (deg): %11.6f\n"
 "Intercept planetodetic longitude (deg): %11.6f\n"
 "Intercept planetodetic latitude (deg): %11.6f\n"
 "Range from spacecraft to intercept point (km): %11.6f\n"
 "Range from spacecraft to target center (km): %11.6f\n"
 "Intercept phase angle (deg): %11.6f\n"
 "Intercept solar incidence angle (deg): %11.6f\n"
 "Intercept emission angle (deg): %11.6f\n",
 dpr_c() * pclon,
 dpr_c() * pclat,
 dpr_c() * pdlon,
 dpr_c() * pdlat,
 dist,
 vnorm_c(obspos),
 dpr_c() * phase,
 dpr_c() * solar,
 dpr_c() * emissn
);

}
else
{
 printf ("No intercept point found at %s\n", time);
}

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 16

N IF

To finish up the program we need to declare the variables we've used.

• We'll highlight techniques used by NAIF programmers

• Add remaining C code required to make a syntactically valid program

Complete the Program

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 17

N IF

#include <stdio.h>
#include "SpiceUsr.h"

Complete Source Code - 1

 SpiceDouble alt;
 SpiceDouble bundry[ROOM][3];
 SpiceDouble dist;
 SpiceDouble emissn;
 SpiceDouble et;
 SpiceDouble f;
 SpiceDouble insite[3];
 SpiceDouble obspos[3];
 SpiceDouble pclat;
 SpiceDouble pclon;
 SpiceDouble pdlat;
 SpiceDouble pdlon;
 SpiceDouble phase;
 SpiceDouble point [3];
 SpiceDouble r;
 SpiceDouble radii [3];
 SpiceDouble re;
 SpiceDouble rp;
 SpiceDouble solar;
 SpiceDouble trgepc;

 SpiceChar iframe[WORDSZ];
 SpiceChar instnm[WORDSZ];
 SpiceChar satnm [WORDSZ];
 SpiceChar scnm [WORDSZ];
 SpiceChar setupf[FILESZ];
 SpiceChar shape [WORDSZ];
 SpiceChar time [WORDSZ];

 SpiceBoolean found;

 #define FILESZ 256
 #define WORDSZ 41
 #define ROOM 10

int main ()
{

 SpiceInt i;
 SpiceInt instid;
 SpiceInt n;

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 18

N IF Complete Source Code - 2

 bodn2c_c (instnm, &instid, &found);
 if (!found)
 {
 setmsg_c ("Instrument name # could not be "
 "translated to an ID code.");
 errch_c ("#", instnm);
 sigerr_c ("NAMENOTFOUND");
 }

 getfov_c (instid, ROOM, WORDSZ, WORDSZ,
 shape, iframe, insite, &n, bundry);

/* Prompt for the user-supplied inputs for our program */

 prompt_c ("Enter setup file name > ", FILESZ, setupf);
 furnsh_c (setupf);
 prompt_c ("Enter satellite name > ", WORDSZ, satnm);
 prompt_c ("Enter spacecraft name > ", WORDSZ, scnm);
 prompt_c ("Enter instrument name > ", WORDSZ, instnm);
 prompt_c ("Enter time > ", WORDSZ, time);

/* Get the epoch corresponding to the input time: */

 str2et_c (time, &et);

/* Get the radii of the satellite. */

bodvrd_c (satnm, "RADII", 3, &i, radii);

/* Get the instrument boresight and frame name. */

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 19

N IF

 illum_c (satnm, et, "LT+S", scnm, point, &phase, &solar, &emissn
);

 /* Compute the boresight ray intersection with the surface of the
 satellite. `dist’ and vnorm_c(obspos) yield desired ranges. */

 srfxpt_c ("Ellipsoid", satnm, et, "CN+S", scnm, iframe,
 insite, point, &dist, &trgepc, obspos, &found);

 /* If an intercept is found, compute planetocentric and planetodetic
 latitude and longitude of the point. */

 if (found)
 {
 reclat_c (point, &r, &pclon, &pclat);
 /* Let re, rp, and f be the satellite's longer equatorial
 radius, polar radius, and flattening factor. */
 re = radii[0];
 rp = radii[2];
 f = (re – rp) / re;
 recgeo_c (point, re, f, &pdlon, &pdlat, &alt);

 /* Compute illumination angles at the surface point.
*/

Complete Source Code - 3

printf ("\n"
 "Intercept planetocentric longitude (deg):

%11.6f\n"
 "Intercept planetocentric latitude (deg):

%11.6f\n"

/* Display results. Convert angles from radians to degrees
 for output. */

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 20

N IF Complete Source Code - 4

 "Intercept planetodetic longitude (deg): %11.6f\n"
 "Intercept planetodetic latitude (deg): %11.6f\n"
 "Range from spacecraft to intercept point (km): %11.6f\n"
 "Range from spacecraft to target center (km): %11.6f\n"
 "Intercept phase angle (deg): %11.6f\n"
 "Intercept solar incidence angle (deg): %11.6f\n"
 "Intercept emission angle (deg): %11.6f\n",
 dpr_c() * pclon,
 dpr_c() * pclat,
 dpr_c() * pdlon,
 dpr_c() * pdlat,
 dist,
 vnorm_c(obspos),
 dpr_c() * phase,
 dpr_c() * solar,
 dpr_c() * emissn
); }

 else {
 printf ("No intercept point found at %s\n", time);
 }
 return(0);
 }

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 21

N IF

• First be sure that both the CSPICE Toolkit and a C compiler
are properly installed.

– A "hello world" C program must be able to compile, link, and run
successfully in your environment.

– Any of the mkprodct.* scripts in the cspice/src/* paths of the CSPICE
installation should execute properly.

• Ways to compile and link the program:
– If you're familiar with the "make" utility, create a makefile. Use compiler

and linker options from the mkprodct.* script found in the
cspice/src/cook_c path of your CSPICE installation.

– Or, modify the cookbook mkprodct.* build script.

» Your program name must be *.pgm, for example demo.pgm, to be
recognized by the script.

» Change the library references in the script to use absolute
pathnames.

» Change the path for the executable to the current working directory.

» If you compiler supports it, add a –I option to reference the
cspice/include path to make CSPICE *.h files available. Otherwise,
copy those files from the include path to your current working
directory.

» On some platforms, you must modify the script to refer to your
program by name.

Compile and Link the Program - 1

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 22

N IF

– Or, compile the program on the command line. The program
must be linked against the CSPICE object library cspice.a
(cspice.lib under MS Visual C++/C) and the C math library. On a
PC running Linux and gcc, if

» The gcc compiler is in your path
• As indicated by the response to the command "which gcc"

» the Toolkit is installed in the path (for the purpose of this
example) /myhome/cspice

» You've named the program demo.c

 then you can compile and link your program using the
command

» gcc –I/myhome/cspice/include \

 -o demo \

 demo.c /myhome/cspice/lib/cspice.a –lm
• Note: the preprocessor flag

-DNON_UNIX_STDIO

 used in the mkprodct.csh script is needed for code generated by f2c, but
is usually unnecessary for compiling user code.

Compile and Link the Program - 2

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 23

N IF

Terminal Window

Prompt>

 Setting default compiler:

gcc

 Setting default compile options:

 -c -ansi -O2 -DNON_UNIX_STDIO

 Setting default link options:

 -lm

 Compiling and linking: demo.pgm

Compiling and linking: demo.pgm

Prompt>

 mkprodct.csh

Compile and Link the Program - 3

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 24

N IF

It looks like we have everything taken care of:

• We have all necessary kernels

• We made a setup file (metakernel) pointing to them

• We wrote the program

• We compiled and linked it

Let's run it.

Running the Program - 1

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 25

N IF Running the Program - 2

Terminal Window

Prompt>

Enter setup file name > setup.ker

Enter satellite name > titan

Enter spacecraft name > cassini

Enter instrument name > cassini_iss_nac

Enter time > 2005 feb 15 8:15 UTC

Intercept planetocentric longitude (deg): -156.443003

Intercept planetocentric latitude (deg): 18.788539

Intercept planetodetic longitude (deg): -156.443003

Intercept planetodetic latitude (deg): 18.788539

Range from spacecraft to intercept point (km): 4810.941881

Range from spacecraft to target center (km): 7384.326555

Intercept phase angle (deg): 43.274588

Intercept solar incidence angle (deg): 41.038424

Intercept emission angle (deg): 2.514613

Prompt>

 demo

Navigation and Ancillary Information Facility

Writing a CSPICE-based program 26

N IF

• Latitude definitions:
– Planetocentric latitude of a point P: angle between segment from

origin to point and x-y plane (red arc in diagram).

– Planetodetic latitude of a point P: angle between x-y plane and
extension of ellipsoid normal vector N that connects x-y plane and
P (blue arc in diagram).

Backup

P

O

Reference ellipsoid

x-y plane

z-axis

N

Planetocentric

latitude
Planetodetic

latitude

