
Navigation and Ancillary Information Facility

N IF

Writing an Icy Based Program

March 2006

Navigation and Ancillary Information Facility

Writing a Icy-based program 2

N IF

This coding example is an
“animated” presentation that is best
viewed using PowerPoint set to
“Slide Show” mode.

Undefined variables are displayed in
red; results are displayed in blue.

Viewing This Tutorial

Navigation and Ancillary Information Facility

Writing a Icy-based program 3

N IF

First, let's go over the important steps in the process of writing a Icy-based

program and putting it to work:

• Understand the geometry problem.

• Identify the set of SPICE kernels that contain the data needed to perform the
computation.

• Formulate an algorithm to compute the quantities of interest using SPICE.

• Write and compile the program.

• Get actual kernel files and verify that they contain the data needed to support
the computation for the time(s) of interest.

• Run the program.

To illustrate these steps, let's write a program that computes the apparent

intersection of the boresight ray of a given CASSINI science instrument with the

surface of a given Saturnian satellite. The program will compute:

• Planetocentric and planetodetic (geodetic) latitudes and longitudes of the
intercept point.

• Range from spacecraft to intercept point and from spacecraft to target center.

• Illumination angles (phase, solar incidence, and emission) at the intercept point.

Introduction

Navigation and Ancillary Information Facility

Writing a Icy-based program 4

N IF

on-board clock ephemeris time UTC time

inertial frame

spacecraft
 frame

instrument

 frame

instrument
 boresight

body-fixed
 frame

 surface

intersection

spacecraft
 position

planetocentric
 latitude

planetocentric

 longitudeUsing what model?

We want the boresight

intercept on the surface, range

from s/c to intercept and target

center, and illumination angles at

the intercept point.

When?

On what object?

For which instrument?

For what spacecraft?

TIME (UTC, TDB or TT)

SATNM

 INSTNM

SCNM

SETUPF

Observation geometry

Phase angle

solar incidence angle

surface normal

emission angle

Navigation and Ancillary Information Facility

Writing a Icy-based program 5

N IF Needed Data

on-board clock ephemeris time UTC time

inertial frame

spacecraft
 frame

instrument

 frame

instrument
 boresight

body-fixed
 frame

 surface

intersection

spacecraft
 position

planetocentric
 latitude

planetocentric

 longitude

Time transformation kernels

Orientation models

Instrument descriptions

Shapes of satellites, planets

Ephemerides for spacecraft,

Saturn barycenter and satellites.

surface normal

solar incidence angle

emission angle

Phase angle

Navigation and Ancillary Information Facility

Writing a Icy-based program 6

N IF

Data required to compute vectors, rotations and other parameters shown in the
picture are stored in the SPICE kernels listed below.

 Note: these kernels have been selected to support this presentation; they should not be assumed to be
appropriate for user applications.

 Parameter Kernel Type File name

 ----------------------- -------------- ------------

 time conversions generic LSK naif0008.tls

 CASSINI SCLK cassini.tsc

 satellite orientation generic PCK pck00008.tpc

 satellite shape generic PCK pck00008.tpc

 satellite position planet/sat

 ephemeris SPK 020514_SE_SAT105.bsp

 planet barycenter position planet SPK 981005_PLTEPH-DE405S.bsp

 spacecraft position spacecraft SPK tour9201.bsp

 spacecraft orientation spacecraft CK cas_050215.bc

 instrument alignment CASSINI FK cas_v37.tf

 instrument boresight Instrument IK cas_iss_v09.ti

 Which kinds of kernels are needed?

Navigation and Ancillary Information Facility

Writing a Icy-based program 7

N IF

The easiest and most flexible way to make these kernels available to the program is
via cspice_furnsh. For this example we make a setup file (also called a “metakernel”
or “furnsh kernel”) containing a list of kernels to be loaded:

\begindata

 KERNELS_TO_LOAD = ('naif0008.tls', 'cassini.tsc',
 'pck00008.tpc', '020514_SE_SAT105.bsp',
 '981005_PLTEPH-DE405S.bsp', 'tour9201.bsp',
 'cas_050215.bc', 'cas_v37.tf',
 'cas_iss_v09.ti')
\begintext

 and we make the program prompt for the name of this setup file:

 read, setupf, PROMPT='Enter setup file name > '

 cspice_furnsh, setupf

Load kernels

Note: these kernels have been selected to support this presentation; they
should not be assumed to be appropriate for user applications.

Navigation and Ancillary Information Facility

Writing a Icy-based program 8

N IF Programming Solution

• Prompt for setup file (“metakernel”) name; load kernels specified via setup

file. (Done on previous chart.)

• Prompt for user inputs required to completely specify problem. Obtain

further inputs required by geometry routines via Icy calls.

• Compute the intersection of the boresight direction ray with the surface of

the satellite, presented as a triaxial ellipsoid.

 If there is an intersection,

•Convert Cartesian coordinates of the intersection point to planetocentric

latitudinal and planetodetic coordinates

•Compute spacecraft-to-intercept point range and spacecraft-to-target

center range

•Find the illumination angles (phase, solar incidence, and emission) at

the intercept point

• Display the results.

We discuss the geometric portion of the problem first.

Navigation and Ancillary Information Facility

Writing a Icy-based program 9

N IF

Compute the intercept point (point) of the instrument boresight vector (insite)

with the satellite’s (satnm) surface at the TDB time of interest (et). This call

also returns the distance between the spacecraft and intercept point (dist),

the light-time corrected epoch at the intercept point (trgepc), the target

center-to-spacecraft vector (obspos), and a boolean flag indicating whether

the intercept was found (found).

Note: undefined variables are in red; results are in blue.

 cspice_srfxpt, ‘Ellipsoid’, satnm, et, ‘CN+S’, scnm, iframe, $

 insite, point, dist, trgepc, obspos, found

Compute surface intercept

The ranges we want are obtained from the outputs of cspice_srfxpt. These
outputs are defined only if a surface intercept is found. If found is true, the
spacecraft-to-surface intercept range is the output argument dist, and the

spacecraft-to-target center range is the norm of the output argument obspos.

Units are km. We use the Icy function cspice_vnorm to obtain the norm:

cspice_vnorm(obspos)

We'll write out the range data along with the other program results.

Navigation and Ancillary Information Facility

Writing a Icy-based program 10

N IF Compute Lat/Lon and Illumination Angles

Compute the planetocentric latitude (pclat) and longitude (pclon), as well as
the planetodetic latitude (pdlat) and longitude (pdlon) of the intersection
point.

if (found) then begin

 cspice_reclat, point, r, pclon, pclat

;; Let re, rp, and f be the satellite's longer equatorial

;; radius, polar radius, and flattening factor.

re = radii[0]

rp = radii[2]

f = (re – rp) / re;

cspice_recgeo, point, re, f, pdlon, pdlat, alt

The illumination angles we want are the outputs of cspice_illum. Units are
radians.

cspice_illum, satnm, et, ‘CN+S’, scnm, point, phase, solar, emissn

Navigation and Ancillary Information Facility

Writing a Icy-based program 11

N IF

 cspice_illum, satnm, et, ‘CN+S’, scnm, point, phase, solar, emissn
 ...
 endif else begin
 ...

 ;; Compute the boresight ray intersection with the surface of the
 ;; target body. `dist’ and cspice_vnorm(obspos) yield desired ranges.

 cspice_srfxpt, ‘Ellipsoid’, satnm, et, ‘CN+S’, scnm, iframe, $

 insite, point, dist, trgepc, obspos, found

 ;; If an intercept is found, compute planetocentric and planetodetic
 ;; latitude and longitude of the point.

 if (found) then begin
 cspice_reclat, point, r, pclon, pclat

 ;; Let re, rp, and f be the satellite's longer equatorial
 ;; radius, polar radius, and flattening factor.

 re = radii[0]

 rp = radii[2]

 f = (re – rp) / re;

 cspice_recgeo, point, re, f, pdlon, pdlat, alt

 ;; Compute illumination angles at the surface point.

Geometry Calculations: Summary

Navigation and Ancillary Information Facility

Writing a Icy-based program 12

N IF

The code above used quite a few inputs that we don't have yet:

• TDB epoch of interest (et);

• satellite and s/c names (satnm, scnm);

• satellite ellipsoid radii (radii);

• instrument fixed frame name (iframe);

• instrument boresight vector in the instrument frame (insite);

Some of these values are user inputs; others can be obtained via CSPICE calls

once the required kernels have been loaded.

Let's prompt for the satellite name (satnm), spacecraft name (scnm), instrument

name (instnm) and time of interest (time):

 read, satnm , PROMPT='Enter satellite name > '

 read, scnm , PROMPT='Enter spacecraft name > '

 read, instnm, PROMPT='Enter instrument name > '

 read, time , PROMPT='Enter time > '

Get inputs - 1

Navigation and Ancillary Information Facility

Writing a Icy-based program 13

N IF Get Inputs - 2

Then we can get the rest of the inputs from CSPICE calls:

To get the TDB epoch (et) from the user-supplied time string (which may

refer to the UTC, TDB or TT time systems):
 cspice_str2et, time, et

To get the satellite’s ellipsoid radii (radii):

 cspice_bodvrd, satnm, "RADII", 3, radii

To get the instrument boresight direction (insite) and the name of the

 instrument frame (iframe) in which it is defined:

 cspice_bodn2c, instnm, instid, found
 if (NOT found) then begin
 print, "Unable to determine ID for instrument: ", instnm
 return
 endif
 cspice_getfov, instid, ROOM, shape, iframe, insite, bundry

Navigation and Ancillary Information Facility

Writing a Icy-based program 14

N IF Getting inputs: summary

 cspice_bodn2c, instnm, instid, found
 cspice_getfov, instid, ROOM, shape, iframe, insite, bundry

 ;; Prompt for the user-supplied inputs for our program

 read, setupf, PROMPT='Enter setup file name > ’

 cspice_furnsh, setupf

 read, satnm , PROMPT='Enter satellite name > '

 read, scnm , PROMPT='Enter spacecraft name > '

 read, instnm, PROMPT='Enter instrument name > '

 read, time , PROMPT='Enter time > '

 ;; Get the epoch corresponding to the input time:

 cspice_str2et, time, et

 ;; Get the radii of the satellite.

 cspice_bodvrd, satnm, "RADII", 3, radii

 ;; Get the instrument boresight and frame name.

Navigation and Ancillary Information Facility

Writing a Icy-based program 15

N IF Display results

;; Display results. Convert angles from radians to degrees for output.

print
print, 'Intercept planetocentric longitude (deg): ', $
 cspice_dpr()*pclon
print, 'Intercept planetocentric latitude (deg): ', $
 cspice_dpr()*pclat
print, 'Intercept planetodetic longitude (deg): ', $
 cspice_dpr()*pdlon
print, 'Intercept planetodetic latitude (deg): ', $
 cspice_dpr()*pdlat
print, 'Range from spacecraft to intercept point (km): ', $
 dist
print, 'Range from spacecraft to target center (km): ', $
 cspice_vnorm(obspos)
print, 'Intercept phase angle (deg): ', $
 cspice_dpr()*phase
print, 'Intercept solar incidence angle (deg): ', $
 cspice_dpr()*solar
print, 'Intercept emission angle (deg): ', $
 cspice_dpr()*emissn

 endif else begin
 print, 'No intercept point found at ' + time
 endelse
END

Navigation and Ancillary Information Facility

Writing a Icy-based program 16

N IF

To finish up the program we need to declare the variables we've used.

• We'll highlight techniques used by NAIF programmers

• Add remaining IDL code required to make a syntactically valid program

Complete the program

 ABCORR = ’CN+S'
 ROOM = 10L
 setupf = ''
 satnm = ''
 scnm = ''
 instnm = ''
 time = ''
 R2D = cspice_dpr()

PRO PROG_28

Navigation and Ancillary Information Facility

Writing a Icy-based program 17

N IF Complete source code -1

 cspice_bodn2c, instnm, instid, found

 if (NOT found) then begin
 print, "Unable to determine ID for instrument: ", instnm
 return
 endif
 cspice_getfov, instid, ROOM, shape, iframe, insite, bundry

 ;; Prompt for the user-supplied inputs for our program.

 read, setupf, PROMPT='Enter setup file name > '
 cspice_furnsh, setupf
 read, satnm , PROMPT='Enter satellite name > '
 read, scnm , PROMPT='Enter spacecraft name > '
 read, instnm, PROMPT='Enter instrument name > '
 read, time , PROMPT='Enter time > '

 ;; Get the epoch corresponding to the input time:

 cspice_str2et, time, et

 ;; Get the radii of the satellite.

 cspice_bodvrd, satnm, 'RADII', 3, radii

 ;; Get the instrument boresight and frame name.

Navigation and Ancillary Information Facility

Writing a Icy-based program 18

N IF

 cspice_illum, satnm, et, ABCORR, scnm, point, phase, solar, emissn

 ;; Compute the boresight ray intersection with the surface of the
 ;; target body. `dist’ and cspice_vnorm(obspos) yield desired ranges.

cspice_srfxpt, 'Ellipsoid', satnm, et, ABCORR, scnm , iframe, $
 insite, point, dist, trgepc, obspos, found

 ;; If an intercept is found, compute planetocentric and planetodetic
 ;; latitude and longitude of the point.
 if (found) then begin
 cspice_reclat, point, r, pclon, pclat
 ;;Let re, rp, and f be the satellite's longer equatorial
 ;; radius, polar radius, and flattening factor.
 re = radii[0]
 rp = radii[2]
 f = (re - rp) / re
 cspice_recgeo, point, re, f, pdlon, pdlat, alt

 ;; Compute illumination angles at the surface point.

Complete source code -2

print
print, 'Intercept planetocentric longitude (deg): ', $
 R2D*pclon

;; Display results. Convert angles from radians to degrees
;; for output.

Navigation and Ancillary Information Facility

Writing a Icy-based program 19

N IF Complete source code -4

 print, 'Intercept planetocentric latitude (deg): ', $
 R2D*pclat
 print, 'Intercept planetodetic longitude (deg): ', $
 R2D*pdlon
 print, 'Intercept planetodetic latitude (deg): ', $
 R2D*pdlat
 print, 'Range from spacecraft to intercept point (km): ', $
 dist
 print, 'Range from spacecraft to target center (km): ', $
 cspice_vnorm(obspos)
 print, 'Intercept phase angle (deg): ', $
 R2D*phase
 print, 'Intercept solar incidence angle (deg): ', $
 R2D*solar
 print, 'Intercept emission angle (deg): ', $
 R2D*emissn

 endif else begin
 print, 'No intercept point found at ' + time
 endelse

 ;; Police-up active IDL memory, unload the kernels.
 cspice_unload, setupf
END

Navigation and Ancillary Information Facility

Writing a Icy-based program 20

N IF

Though IDL functions in a manner similar to interpreted languages, it does
compile source files to a binary form.

First, ensure that both the Icy Toolkit, and an IDL installation are properly
installed. IDL must load the Icy DLM, icy.dlm/icy.so(dll) to compile those
scripts containing Icy calls. IDL loads DLMs from default locations and from
the current directory when the user ran IDL. The user may also explicitly load
a DLM with the dlm_register command.

Now compile the code.

Compile the program

Navigation and Ancillary Information Facility

Writing a Icy-based program 21

N IF

Terminal Window

IDL>

% Compiled module: PROG_28.

.compile prog_28.pro

Compile and link the program - 2

Navigation and Ancillary Information Facility

Writing a Icy-based program 22

N IF

It looks like we have everything taken care of:

• We have all necessary kernels

• We made a setup file (metakernel) pointing to them

• We wrote the program

• We compiled the program

Let's run it.

Running the program

Navigation and Ancillary Information Facility

Writing a Icy-based program 23

N IF Running the program

Terminal Window

IDL>

Enter setup file name > setup.ker

Enter satellite name > titan

Enter spacecraft name > cassini

Enter instrument name > cassini_iss_nac

Enter time > 2005 feb 15 8:15 UTC

Intercept planetocentric longitude (deg): -156.44300

Intercept planetocentric latitude (deg): 18.788539

Intercept planetodetic longitude (deg): -156.44300

Intercept planetodetic latitude (deg): 18.788539

Range from spacecraft to intercept point (km): 4810.9419

Range from spacecraft to target center (km): 7384.3266

Intercept phase angle (deg): 43.274593

Intercept solar incidence angle (deg): 41.038429

Intercept emission angle (deg): 2.5146132

prog_28

