NAIE,

Navigation and Ancillary Information Facility

JNISPICE

March 2006

@ Topics

Navigation and Ancillary Information Facility

» User feedback

* Introduction

» Overview of the JNISPICE prototype system

» Possible Java SPICE Implementation Structures
* Possible OO SPICE Implementation Structures

JNISPICE



@ User Feedback

Navigation and Ancillary Information Facility

* NAIF would like to hear your ideas on JNISPICE and
more generally on the concept of an object-oriented
SPICE Toolkit.

— Would such a product be useful to you?
— If so, what characteristics would this product have?

* To reply, please contact
— Nat Bachman:
— Chuck Acton:

JNISPICE

@ Introduction

Navigation and Ancillary Information Facility

* JNISPICE is a prototype implementation of the SPICE
system in Java, using the Java native interface (JNI)
capability.

— High level, object-oriented code is written in Java.
— Low level implementation is largely based on CSPICE.

* Motivation for the JNISPICE experiment:

— Various SPICE users are already using SPICE via JNI calls. Need
for product of this type appears to exist.

— Value of a complete, robust, well-documented, well-supported
version of such a product is evident.

— This development work may become the basis of a fully-OO
version of SPICE, either in Java or other OO languages.

— JNISPICE may facilitate development of higher-level SPICE-based
tools, particularly GUI tools, by NAIF and others.

— Arguably NAIF is the right team to do the job.

JNISPICE



@ JNISPICE Implementation Layers

Navigation and Ancillary Information Facility

JNISPICE has three implementation layers:

« APl level: Object-oriented view of SPICE based on
“natural” Java classes
— States, Times, Reference frames, Units, SPICE exceptions, etc.
— Functionality of OO layer, when complete
» Will include functionality of CSPICE
» May include higher-level functionality not provided by CSPICE
+ Classes to support building SPICE-based GUIs?

* JNI level: Java class or classes declaring native
methods
— Methods correspond to CSPICE wrappers
— Method functionality is as close as possible to that of CSPICE.

— Methods provide error handling: trap SPICE errors, fetch SPICE
error messages, throw exceptions

— Methods are synchronized

* CSPICE level: C shared object library

JNISPICE

@ JNISPICE Documentation

Navigation and Ancillary Information Facility

JNISPICE documentation

« Java source code is documented via javadoc.
— All documentation is presented as HTML pages

— System-scope and package-scope documentation resides in
stand-alone files.

— Java source code contains detailed documentation:

» Class-scope documentation is located at the start of each
class source file.

» Method documentation in the style of SPICE module headers.
Most “SPICE Toolkit header style” documentation is presented
in the “Constructor Detail” or “Method Detail” portions of Java
class documentation pages

— For an example of javadoc-style documentation, see Sun’s own
Java documentation at

» http://java.sun.com/j2se/1.4.2/docs/api

» CSPICE code has traditional CSPICE Toolkit
documentation

JNISPICE



JNISPICE

JNISPICE

NISPICE Implementation: Components

Navigation and Ancillary Information Facility

» Seven packages

— spice.basic

spice.daf

spice.jni

spice.coverage

spice.geometry

spice.timesystem
spice.units

» About 60 classes and interfaces

 About 400 methods

— As with most OO systems, there are many trivial methods.

» System is not as big as it looks.

Package spice.basic: Components

Navigation and Ancillary Information Facility

» Classes
AberrationCorrection

Body

Engineering Quaternion

GeodeticCoords
KernelDatabase
LatitudinalCoords
Matrix33

MatrixG
PositionRecord
PositionVector
Quaternion
ReferenceFrame
SCLK
SCLKTime
SpiceQuaternion
StateRecord
StateVector
Time

Vector3

VectorG
VelocityVector

Interfaces
— Coordinates

» Implemented by
* GeodeticCoords
* LatitudinalCoords

+ Exceptions

— SpiceException
» Superclass for all JNISPICE
exceptions
» Non-error exceptions are also
derived from SpiceException
« PointingNotFoundException

— SpiceErrorException

» All. CSPICE errors cause a
SpiceErrorException to be
thrown



ackage spice.basic: Selected Hierarchies

Navigation and Ancillary Information Facility

State vector class hierarchy
java.lang.Object
spice.basic.VectorG
spice.basic.StateVector
spice.basic.StateRecord

Position vector class hierarchy
java.lang.Object

spice.basic.Vector3
spice.basic.PositionVector
spice.basic.PositionRecord

JNISPICE 9

Package spice.daf

Navigation and Ancillary Information Facility

* Interfaces

* Classes —  DAFReader
— DAFArraySearch » The interface to be
. implemented by all classes
» An array search is an that emulate traditional DAF
object, rather than a access methods
set of variables
comprising a “state”
as in SPICELIB
— DAFFileRecord
— DAFNameRecord
— DAFSegmentDescr
— DAFSummaryRecord « Exceptions
— ReadOnlyDAF

— DAFRecordNotFoundException
» A class implementing

the DAFReader
interface

JNISPICE 10



spice.basic Example Program - 1

Navigation and Ancillary Information Facility

//

// Find the state of the moon relative to the earth at a specified
// UTC time. Use light time and stellar aberration corrections.

// Express the state relative to the J2000 reference frame. Display
// the results of the computation.

//

import java.awt.*;
import spice.basic.*;

public class SRExample extends Object
{
//
// Load the JNISpice C shared object library.
//
static
{
System.loadLibrary( "JNISpice" );

public static void main ( String[] args )
{
//
// Get line terminator character for host system.
//

String nl = System.getProperty ( "line.separator" );

JNISPICE

- L}
spice.basic Example Program - 2
Navigation and Ancillary Information Facility
try
{
//
// Load SPICE kernels: a planetary ephemeris SPK file and a
// leapseconds kernel.
//
KernelDatabase.load ( "de405.bsp" ),
KernelDatabase.load ( "leapseconds.ker" );
//
// Declare and initialize inputs for state look-up.
//
Body targ = new Body ( "moon" )
Body obs = new Body ( "earth" )
Time t = new Time ( "2003 nov 6" );
ReferenceFrame ref = new ReferenceFrame ( "J2000" );
AberrationCorrection abcorr = new AberrationCorrection ( "LT+S" );
//
// Create a new "state record." This is a traditional SPICE state
// vector with additional information grouped together in a
// data structure.
//
StateRecord sr = new StateRecord ( targ, t, ref, abcorr, obs );

JNISPICE

1

12



JNISPICE

JNISPICE

}

spice.basic Example Program - 3

Navigation and Ancillary Information Facility

// Display the state record using StateRecord class' default

// formatting method toString(), which is implicitly invoked by
// Java's System.out.println method.

//

System.out.println ( sr );

//
// Express the target position in latitudinal coordinates.
//

System.out.println ( new LatitudinalCoords(sr) + nl );

catch ( SpiceException se )

{

//
// Display description of the exception and a traceback.
//

se.printStackTrace() ;

When this program is executed, the following output is produced:

spice.basic Program Output

Navigation and Ancillary Information Facility

Target = MOON (NAIF ID 301)
Observer = EARTH (NAIF ID 399)
Time = 2003-NOV-06 00:01:04.182 TDB

Reference frame

J2000

Aberration correction = LT+S

State vector =

1
B0 H D JdWw

.9366537814844770E 005 (km)
.0833486231944120E 004 (km)
.3878137398047400E 003 (km)
.2859001690543082E-001  (km/s)
.6712178855283640E-001 (km/s)
.4855824031090030E-001 (km/s)

Distance =

4.0001133188191880E 005 (km)

Speed =

9.8470304334942540E-001 (km/s)

One way light time =

1.3342941798819998E 000 (seconds)

Radius = 4.0001133188191880E 005 (km)
Longitude = 1.0200268551633691E 001 (degrees)
Latitude = 6.2850282091979340E-001 (degrees)

13

14



@Altemative Java SPICE Implementations

Navigation and Ancillary Information Facility

JNISPICE style
*Could be build on CSPICE Pure Java
*Could be built on C++

JNISPICE 15

@ Possible OO SPICE Layered Structure -1

Navigation and Ancillary Information Facility

Partially OO: parallel APls, CSPICE implementation
IDL API Java API C++ API Python API

JNISPICE 16

Python OO amnm
API layer
A




Possible OO SPICE Layered Structure -2

Navigation and Ancillary Information Facility

Fully OO: Parallel APIs for non-C++ Toolkits, C++ implementation

C++ SPICE IDL API Java API Python API

JNISPICE

Python OO -
API layer
A

17

Independent OO SPICE Implementations

Navigation and Ancillary Information Facility
Multiple fully OO systems: completely independent
implementations in different languages

* Functionality of systems in different languages may diverge as Toolkit grows.

+ Each system can take advantage of features unique to its implementation
language
* Maintenance and development cost appears prohibitive
+ But this design *might* be feasible using automatic translation techniques

C++ SPICE IDL SPICE Java SPICE Python SPICE

Python SPICE -
implementation

JNISPICE

18



Possible OO SPICE Distributed Implementation

Navigation and Ancillary Information Facility

Distributed OO implementation

+ SPICE OO implementation language is transparent to clients
* May be unsuitable for number-crunching applications
*Tight coupling with SPICE objects preferable for these
applications

Object request broke

JNISPICE 19



