
Navigation and Ancillary Information Facility

N IF

Making a CK file

March 2006

Navigation and Ancillary Information Facility

Making a CK File 2

N IF

• SPICE provides means to create CK files either by
simply packaging orientation computed elsewhere
or by first computing orientation and then storing it
in a CK file

• Packaging of pre-computed orientation can be done
in two ways:

– Use SPICE CK writer routines by calling them from within a
SPICE-based application

– Convert a text file containing attitude data to a CK using the
msopck program

• Computing and storing orientation can be done in
two ways:

– Use SPICE geometry routines and CK writer routines by calling
them from within a SPICE-based application

» Constructing attitude using SPICE routines is not discussed here

– Convert orientation rules and schedules to a CK using the
prediCkt program

Summary

Navigation and Ancillary Information Facility

Making a CK File 3

N IF CK Writer Routines

• The SPICE toolkit provides the following CK writer
routines:

– For Type 1 CK

» CKW01 / ckw01_c / cspice_ckw01

– For Type 2 CK

» CKW02 / ckw02_c / cspice_ckw02

– For Type 3 CK

» CKW03 / ckw03_c / cspice_ckw03

– For Type 4 CK

» CKW04B, CKW04A, CKW04E (no CSPICE or IDL wrappers)

– For Type 5 CK

» CKW05 / ckw03_c (no IDL wrapper)

• Only the Type 3 writer is discussed in this tutorial
– Writers for Types 1 and 2 have very similar interfaces

– Types 4 and 5 are are not commonly used

Navigation and Ancillary Information Facility

Making a CK File 4

N IF Type 3 Writer - Example

• The following code fragment illustrates the creation
of a Type 3 C-kernel having a single segment.

ckopn_c (filename, “my-ckernel”, 0, &handle);

/*

 Insert code that properly constructs the

 sclkdp, quats, avvs, and starts arrays.

*/

ckw03_c (handle, begtim, endtim, inst,

 “reference_frame”, avflag, “segment_id”,

 nrec, sclkdp, quats, avvs, nints, starts);

ckcls_c (handle);

Navigation and Ancillary Information Facility

Making a CK File 5

N IF Type 3 Writer - ckw03_c (1)

• handle - file handle for the newly created C-kernel.

• begtim, endtim - start and stop times in SCLK
ticks for the segment.

• inst - instrument ID code for the C-kernel.

• ref - name of the reference or base frame that is
known to SPICE.

• avflag - a SpiceBoolean indicating whether or
not to include angular velocity in the segment.

• segid - a string identifying the segment. It should
be less than 40 characters in length.

Navigation and Ancillary Information Facility

Making a CK File 6

N IF Type 3 Writer - ckw03_c (2)

• nrec - number of records in sclkdp, quats, and avvs.

• sclkdp - monotonically increasing list of times in
SCLK ticks that identify when quats and avvs were
sampled.

• quats - a list of SPICE quaternions that rotate vectors
from the frame specified by ref argument to the inst
frame.
– m2q_c (C_matrix, quaterion);

• avvs - angular rate vectors given in the frame
specified by ref argument.

• starts - a list of SCLK ticks indicating the start of
interpolation intervals. They must correspond to
entries in sclkdp.

• nints - number of entries in starts.

Navigation and Ancillary Information Facility

Making a CK File 7

N IF Type 3 writer - Making Up Rates

• One of the easiest ways to accomplish this is to
assume a constant rotation rate between
subsequent quaternions:

 for(k=0; k<(nrec-1); k++) {

 q2m_c (quats[k][0], init_rot);

 q2m_c (quats[k+1][0], final_rot);

 mtxm_c (final_rot, init_rot, rotmat);

 raxisa_c (rotmat, axis, &angle);

 sct2e_c (scid, sclkdp[k], &init_et);

 sct2e_c (scid, sclkdp[k+1], &final_et);

 vscl_c (angle/(final_et-init_et), axis,

 &avvs[k][0]); }

• Lastly, simply copy the (nrec-1) value of avvs
into the last element of avvs.

Navigation and Ancillary Information Facility

Making a CK File 8

N IF Type 3 Writer - Making Up Rates (2)

• Constructing angular rates in this fashion
assumes that between subsequent quaternions
no more than a 180-degree rotation has occurred.
In short raxisa_c chooses the smallest angle
that performs the rotation encapsulated in the
input matrix.

• Other techniques exist, including differentiating
quaternions. Care must be exercised when taking
that particular approach, however.

Navigation and Ancillary Information Facility

Making a CK File 9

N IF MSOPCK

• msopck is a program for making CK files from
orientation provided as a time tagged, space-
delimited table in a text file

• msopck can process quaternions (SPICE and non-
SPICE flavors), Euler angles, or matrixes, tagged
with UTC or SCLK

• msopck requires all setups to be provided in a
setup file that follows the SPICE text kernel syntax

• msopck has a simple command line interface with
the following usage

msopck setup_file input_data_file output_ck_file

• If output CK already exists, new segment(s) are
appended to it

Navigation and Ancillary Information Facility

Making a CK File 10

N IF MSOPCK - Setup File Keywords

 LSK_FILE_NAME = 'LSK file'

 SCLK_FILE_NAME = 'SCLK file'

 FRAMES_FILE_NAME = 'FRAMES file'

 COMMENTS_FILE_NAME = 'file containing comments'

 PRODUCER_ID = 'producer group/person name'

 INTERNAL_FILE_NAME = 'internal file name string'

 CK_SEGMENT_ID = 'segment ID string'

 CK_TYPE = 1, 2, or 3

 INSTRUMENT_ID = CK ID

 REFERENCE_FRAME_NAME = 'reference frame name'

 MAXIMUM_VALID_INTERVAL = interval length, seconds

 INPUT_TIME_TYPE = 'SCLK', 'UTC', or 'TICKS'

 TIME_CORRECTION = bias to be applied to input times, seconds

 INPUT_DATA_TYPE = 'MSOP QUATERNIONS', 'SPICE QUATERNIONS',

 'EULER ANGLES', or 'MATRICES'

 QUATERNION_NORM_ERROR = maximum normalization error

 EULER_ANGLE_UNITS = 'DEGREES' or 'RADIANS'

 EULER_ROTATIONS_ORDER = (’axis3’, ’axis2’, ’axis1')

 EULER_ROTATIONS_TYPE = 'BODY' or 'SPACE'

 ANGULAR_RATE_PRESENT = 'YES', 'NO', 'MAKE UP', 'MAKE UP/NO AVERAGING'

 ANGULAR_RATE_FRAME = 'REFERENCE' or 'INSTRUMENT'

 ANGULAR_RATE_THRESHOLD = (max X rate, max Y rate, max Z rate)

 OFFSET_ROTATION_ANGLES = (angle3, angle2, angle1)

 OFFSET_ROTATION_AXES = (’axis3’, ’axis2’, ’axis1')

 OFFSET_ROTATION_UNITS = 'DEGREES' or 'RADIANS'

Supporing

Kernels/Files

Output CK

Specs

Input data

Specs

Optional keywords

are shown in green

Navigation and Ancillary Information Facility

Making a CK File 11

N IF MSOPCK - Input Details (1)

INPUT_DATA_TYPE = 'SPICE QUATERNIONS'

Input file: TIME1 [TIME2] QCOS QSIN1 QSIN2 QSIN3 [ARX ARY ARZ]

 TIME1 [TIME2] QCOS QSIN1 QSIN2 QSIN3 [ARX ARY ARZ]

INPUT_DATA_TYPE = 'MSOP QUATERNIONS'

Input file: TIME1 [TIME2] -QSIN1 -QSIN2 -QSIN3 QCOS [ARX ARY ARZ]

 TIME1 [TIME2] -QSIN1 -QSIN2 -QSIN3 QCOS [ARX ARY ARZ]

INPUT_DATA_TYPE = 'EULER ANGLES'

Input file: TIME1 [TIME2] ANG3 ANG2 ANG1 [ARX ARY ARZ]

 TIME1 [TIME2] ANG3 ANG2 ANG1 [ARX ARY ARZ]

INPUT_DATA_TYPE = 'MATRICES'

Input file: TIME1 [TIME2] M11 M12 M13 M21 ... M33 [ARX ARY ARZ]

 TIME1 [TIME2] M11 M12 M13 M21 ... M33 [ARX ARY ARZ]

Navigation and Ancillary Information Facility

Making a CK File 12

N IF MSOPCK - Input Details (2)

• Quaternions

– INPUT_DATA_TYPE=‘SPICE QUATERNIONS’ indicates the quaternions being
used follow the SPICE formation rules(*)

– INPUT_DATA_TYPE=‘MSOP QUATERNIONS’ indicates the quaternions being
used follow the traditional AACS formation rules(*)

» Normally quaternions that come in telemetry are of this type

– QUATERNION_NORM_ERROR keyword may be used to identify and filter out
input records with quaternions that are not unit vectors

» It is set a tolerance for comparing the norm of the input quaternion with 1

• Euler anges

– All three angles must be provided

– For the angles provided on the input as
TIME1 [TIME2] ANG3 ANG2 ANG1 [ARX ARY ARZ]

 and rotation axes specified in the setup as
 EULER_ROTATIONS_ORDER = (’axis3’, ’axis2’, ’axis1')

 the matrix rotating vectors from base to the structure frame is computed as
 Vinst = [ANG3]axis3 * [ANG2]axis2 * [ANG1]axis1 * Vref

– Angles can be provided in degrees or radians

(*) NAIF prepared and provides on demand a “white paper” explaining differences between various quaternion styles.

Navigation and Ancillary Information Facility

Making a CK File 13

N IF MSOPCK - Input Details (3)

• Angular rates are an optional input. Their presence or absence
must be indicated using the ANGULAR_RATE_PRESENT
keyword

– If angular rates are provided (ANGULAR_RATE_PRESENT=‘YES’), they must
be in a form of 3d vector expressed either in the base frame (less common)
or structure frame (more common)

» The ANGULAR_RATE_FRAME keyword must be set to indicate which of
the two is used

– If angular rates are not provided, the program can either make a CK without
rates (ANGULAR_RATE_PRESENT=‘NO’), or try to compute rates from the
orientation data by using uniform rotation algorithm implemented in Type 3
CK, either with averaging (ANGULAR_RATE_PRESENT=‘MAKE UP’) or
without averaging (ANGULAR_RATE_PRESENT=‘MAKE UP/NO
AVERAGING’) of the rates computed for adjacent orientation data points

– ANGULAR_RATE_THRESHOLD may be used to identify and filter out input
records with angular rate components that are too large to be real

• Input data can be tagged with UTC, SCLK, or SCLK ticks,
specified using the INPUT_TIME_TYPE keyword

– Time tags must not have embedded spaces

Navigation and Ancillary Information Facility

Making a CK File 14

N IF MSOPCK - Output Details (1)

• msopck can generate type 1, 2, or 3 CKs

– Type 1 is rarely used - only in cases when the input contains very few data
points that are far apart so that interpolation between them make no sense

– Type 2 is also rarely used, primarily to package orientation for spinners

» Normally the input for making Type 2 CKs should contain two times and
the angular rate in each record

– Type 3 is the most commonly used output type because it provides
interpolation between the orientation data points stored in the CK

• Interpolation intervals are determined based on the threshold
value specified in the MAXIMUM_VALID_INTERVAL keyword

– The threshold interval is given in seconds

– The output Type 3 CK will allow interpolation between all input points that are
less than or equal to the threshold

• An additional transformation to be combined with the input
attitude may be specified using OFFSET_ROTATION_* keywords

– Convention for specification of the offset rotation angles is the same as for
the input Euler angles

– A vector defined in the base frame is first multiplied by the offset rotation
 Vinst = [ROTinput] * [ROToffset] * Vref

Navigation and Ancillary Information Facility

Making a CK File 15

N IF MSOPCK - Output Details (2)

• Input times may be adjusted by a constant value specified
in seconds using TIME_CORRECTION keyword

• The output CK file contains one or more CK segments

– Multiple segments are generated if the input data volume is large and
does not fit into the program’s internal buffer (100,000 pointing
records)

– When the output file has many segments, each segment’s start time is
equal to the stop time of the previous segment, i.e. there are no gaps at
the segment boundaries

• Comment area of the output CK contains the following
information:

– Contents of the comment file, if it was specified using
theCOMMENT_FILE_NAME keyword

– Contents of the setup file

– Summary of coverage for each segment written to the file, including a
table listing interpolation intervals for segments of Type 2 or 3

Navigation and Ancillary Information Facility

Making a CK File 16

N IF

Terminal Window

$ more msopck_setup.example

MSOPCK setup for predict M'01 CK generation.

==

\begindata

 PRODUCER_ID = ’NAIF/JPL'

 LSK_FILE_NAME = 'naif0007.tls'

 SCLK_FILE_NAME = 'ORB1_SCLKSCET.00001.tsc'

 COMMENTS_FILE_NAME = 'msopck_comments.example'

 INTERNAL_FILE_NAME = 'sample M01 SC Orientation CK File'

 CK_SEGMENT_ID = 'SAMPLE M01 SC BUS ATTITUDE'

 INSTRUMENT_ID = -53000

 REFERENCE_FRAME_NAME = 'MARSIAU'

 CK_TYPE = 3

 MAXIMUM_VALID_INTERVAL = 60

 INPUT_TIME_TYPE = ’SCLK'

 INPUT_DATA_TYPE = 'MSOP QUATERNIONS'

 QUATERNION_NORM_ERROR = 1.0E-3

 ANGULAR_RATE_PRESENT = 'MAKE UP'

\begintext

$

MSOPCK - Example (1)

Navigation and Ancillary Information Facility

Making a CK File 17

N IF

Terminal Window

$ more msopck_comments.example

Sample Mars Surveyor '01 Orbiter Spacecraft Orientation CK File

===

Orientation Data in the File

--

 This file contains sample orientation for the Mars Surveyor ‘01

 Orbiter (M01) spacecraft frame, 'M01_SPACECRAFT', relative

 to the Mars Mean Equator and IAU vector of J2000, 'MARSIAU', inertial

 frame. The NAIF ID code for the 'M01_SPACECRAFT' frame is -53000.

Status

--

 This file is a special sample C-Kernel file created by NAIF to illustrate

 MSOPCK program. This file should not be used for any other purposes.

...

MSOPCK - Example (2)

Navigation and Ancillary Information Facility

Making a CK File 18

N IF

Terminal Window

$ more msopck_input.example

0767491368.064 -0.24376335 0.68291384 0.28475901 0.62699316

0767491372.114 -0.24249471 0.68338563 0.28591829 0.62644323

0767491373.242 -0.24204185 0.68355329 0.28633291 0.62624605

0767491374.064 -0.24194814 0.68358228 0.28641744 0.62621196

0767491380.064 -0.24012676 0.68424169 0.28807922 0.62543010

0767491386.064 -0.23830473 0.68489895 0.28973563 0.62464193

0767491392.064 -0.23648008 0.68555126 0.29139303 0.62384833

0767491398.064 -0.23465389 0.68620253 0.29304524 0.62304745

0767491404.064 -0.23282999 0.68684150 0.29470173 0.62224580

0767491404.114 -0.23277293 0.68686688 0.29475362 0.62221455

0767491405.242 -0.23231585 0.68702790 0.29516507 0.62201253

0767491410.064 -0.23100059 0.68748174 0.29634561 0.62143935

0767491416.064 -0.22917353 0.68811325 0.29799308 0.62062853

0767491422.064 -0.22734161 0.68874177 0.29963482 0.61981412

0767491428.064 -0.22551078 0.68936246 0.30128030 0.61899473

0767491434.064 -0.22367453 0.68998299 0.30291779 0.61816987

0767491436.114 -0.22300583 0.69021050 0.30351804 0.61786298

0767491438.011 -0.22251770 0.69037871 0.30395477 0.61763631

...

MSOPCK - Example (3)

Navigation and Ancillary Information Facility

Making a CK File 19

N IF

Terminal Window

$ msopck msopck_setup.example msopck_input.example msopck_example_ck.bc

MSOPCK Utility Program, Version 3.0.0, 2003-05-05; SPICE Toolkit Ver. N0057

...

<comment file contents>

...

<setup file contents>

...

**

RUN-TIME OBTAINED META INFORMATION:

**

PRODUCT_CREATION_TIME = 2004-04-29T12:17:55

START_TIME = 2004-04-27T00:00:05.516

STOP_TIME = 2004-04-27T23:59:56.275

**

INTERPOLATION INTERVALS IN THE FILE SEGMENTS:

**

SEG.SUMMARY: ID -53000, COVERG: 2004-04-27T00:00:05.516 2004-04-27T23:59:56.275

--

 2004-04-27T00:00:05.516 2004-04-27T20:05:26.282

 2004-04-27T20:11:20.278 2004-04-27T23:59:56.273

MSOPCK - Example (4)

Navigation and Ancillary Information Facility

Making a CK File 20

N IF PREDICKT

• prediCkt is a program for making CK files from a
set of orientation specification rules, and
schedules defining when these rules are to be
followed

• prediCkt has a simple command line interface

• prediCkt requires orientation and schedule
specification to be provided in a setup file that
follows the SPICE text kernel syntax

• prediCkt requires all supporting kernels -- SPK,
PCK, etc -- to be provided in a meta-kernel

Navigation and Ancillary Information Facility

Making a CK File 21

N IF PREDICKT - Usage

• prediCkt has the following command line arguments

 prediCkt -furnish support_data

 -spec ck_specs

 -ck outfile

 -tol fit_tolerance [units]

 -<sclk|newsclk> sclk_kernel

• ‘-furnish’, ‘-spec’ and ‘-ck’ are used to specify the input meta-
kernel, input attitude specification file and output CK file

• ‘-tol’ is used to specify the tolerance to which the orientation
stored in the CK should match the specified attitude profile

• ‘-sclk’ and ‘-newsclk’ specify the name of an existing SCLK or
the new “fake” SCLK to be created for use with the output CK

Navigation and Ancillary Information Facility

Making a CK File 22

N IF PREDICKT - Furnsh and Spec Files

• A “FURNSH” kernel lists SPICE kernels that are
to be used by prediCkt to determine geometry
needed to compute orientations

• A prediCkt attitude specification (spec) file
follows the text kernel syntax and provides three
types of information:

– Specification of dynamic directions

– Specification of orientations based on these directions

– Specification of the schedules defining when those
orientations should be followed

• The contents of the FURNSH kernel and the spec
file are included in the comment area of the
output CK file

Navigation and Ancillary Information Facility

Making a CK File 23

N IF PREDICKT - Directions

• Dynamic directions can be of the following types:
– Based on ephemeris (position vectors, velocity vectors)

– Fixed with respect to a frame (expressed as Cartesian vector or
specified by RA and DEC)

– Towards sub-observer point

– Based on the surface normal and lines of constant latitude or
longitude

– Based on other, already defined directions (rotated from them,
computed as cross products using them, etc)

• Example: these two sets of spec file keyword
assignments specify nadir and spacecraft velocity
directions for M01

DIRECTION_SPECS += ('ToMars = POSITION OF MARS -')

DIRECTION_SPECS += ('FROM M01 -')

DIRECTION_SPECS += ('CORRECTION NONE')

DIRECTION_SPECS += ('scVelocity = VELOCITY OF M01 -')

DIRECTION_SPECS += ('FROM MARS -')

DIRECTION_SPECS += ('CORRECTION NONE')

Navigation and Ancillary Information Facility

Making a CK File 24

N IF PREDICKT - Orientations

• An orientation is specified by:
– defining that one of the frames axes (+X,+Y,+Z,-X,-Y,-Z) points

exactly along one of the defined directions

– defining that another frame axis points as closely as possible to
another defined direction

» The third axis is the cross product of the first two

– specifying the base frame with respect to which the orientation of
this “constructed” frame is to be computed

• Example: these spec file keyword assignments
specify the nominal nadir orientation for THEMIS,
flown on M01

ORIENTATION_NAME += 'CameratoMars'

PRIMARY += '+Z = ToMars'

SECONDARY += '+Y = scVelocity'

BASE_FRAME += 'J2000'

Navigation and Ancillary Information Facility

Making a CK File 25

N IF PREDICKT - Schedules (1)

• A schedule is defined by specifying a series of
time intervals during which a given orientation is to
be followed

– For each interval for a given CK ID the spec file defines the
orientation name, start time, and stop time (as Ephemeris Times)

• Example: these spec file keyword assignments
specify a schedule with a single window during
which M01 will yield nadir-pointed orientation for
THEMIS

CK-SCLK = 53

CK-SPK = -53

CK-FRAMES += -53000

CK-53000ORIENTATION += 'SOLUTION TO M01_THEMIS_IR = CameratoMars'

CK-53000START += @2004-FEB-10-00:00

CK-53000STOP += @2004-FEB-15-00:00

Navigation and Ancillary Information Facility

Making a CK File 26

N IF PREDICKT - Schedules (2)

• In the example on the previous slide:

– CK-FRAMES keyword specifies the CK ID to be used in the
output CK

» This ID is incorporated into the keywords defining the
schedule intervals

– CK-SCLK keyword specifies the ID of the SCLK to be used in
creating the CK

– CK-SPK keyword specifies the ID of the object, the position of
which is used in applying light time correction when orientation
is computed

– “SOLUTION TO” construct specifies that although the
orientation is sought for the M01 spacecraft frame (ID -53000), it
is computed for the camera frame (M01_THEMIS_IR) and then
transformed to be for the spacecraft frame

Navigation and Ancillary Information Facility

Making a CK File 27

N IF

Terminal Window

$ cat m01_map_nadir.prediCkt

\begindata

 DIRECTION_SPECS += ('ToMars = POSITION OF MARS -')

 DIRECTION_SPECS += ('FROM M01 -')

 DIRECTION_SPECS += ('CORRECTION NONE')

 DIRECTION_SPECS += ('scVelocity = VELOCITY OF M01 -')

 DIRECTION_SPECS += ('FROM MARS -')

 DIRECTION_SPECS += ('CORRECTION NONE')

 ORIENTATION_NAME += 'CameratoMars'

 PRIMARY += '+Z = ToMars'

 SECONDARY += '+Y = scVelocity'

 BASE_FRAME += 'J2000'

 CK-SCLK = 53

 CK-SPK = -53

 CK-FRAMES += -53000

 CK-53000ORIENTATION += 'SOLUTION TO M01_THEMIS_IR = CameratoMars'

 CK-53000START += @2004-FEB-10-00:00

 CK-53000STOP += @2004-FEB-15-00:00

\begintext

PREDICKT - Example (1)

Navigation and Ancillary Information Facility

Making a CK File 28

N IF

Terminal Window

$ cat m01_map_nadir.furnsh

\begindata

 KERNELS_TO_LOAD = ('naif0007.tls'

 'm01_v26.tf'

 'mar033-5.bsp'

 'm01_map_rec.bsp'

 'm01.tsc')

\begintext

$ prediCkt -furnish m01_map_nadir.furnsh -spec m01_map_nadir.prediCkt -ck m01_map_nadir.bc -tol
0.01 degrees -sclk m01.tsc

Begin Segment: 1 --- SOLUTION TO M01_THEMIS_IR = CameratoMars

Constructing Segment

From: 2004 FEB 10 00:00:00.000

To : 2004 FEB 15 00:00:00.000

 Percentage finished: 0.0%

 Percentage finished: 5.0 % (50 quaternions)

 ...

 Percentage finished: 95.0 % (925 quaternions)

$

PREDICKT - Example (2)

