
Navigation and Ancillary Information Facility

Writing an Ephemeris File
In SPICE SPK Format

March 2006

Navigation and Ancillary Information Facility

Writing an SPK File 2

Table of Contents

• Purpose

• Scope

• Assumptions about user’s knowledge

• SPK overview

• Summary of SPK architecture

• Discussion applicable to all production methods
– Recommended SPK types

• Selecting the polynomial degree (for polynomial SPK types)

• SPK production methods
– Using the “Make SPK” (MKSPK) program

– Using SPICELIB, CSPICE or IDL writer modules (subroutines)

• Finishing up, applicable to all methods
– Adding comments

– Validation

– Merging

• Special requirements for making SPKs to be used in DSN/NSS
metric predicts or short-range scheduling

– Applies only to those entities not making JPL NAV-style “p-files”

• Issues affecting performance (reading efficiency) and usability

Navigation and Ancillary Information Facility

Writing an SPK File 3

Purpose

• This tutorial provides guidance for producing
(writing) an SPK file using software provided
by NAIF:
– the MKSPK application program

or

– SPK writer modules from the SPICELIB (FORTRAN) or
CSPICE (C-language) library, or from the Icy (IDL) system

» (Only partial implementation in Icy)

Navigation and Ancillary Information Facility

Writing an SPK File 4

Scope

• This tutorial addresses production of SPK files.
– For general purposes.

– For use with NASA’s Deep Space Network (the “NSS”).

» For antenna scheduling purposes.

» For operational metric predicts (tracking) using currently
operational DSN software systems.

• It does not address the presumably less restricted case of metric predicts
production once new DSN SPS software is in use.

– SPS is planned for full operational deployment around June 2006.

• This tutorial does not address SPK production by
JPL NAV teams using the NIOSPK application, which
was specially built to process JPL’s NAVIO-format
ephemeris/trajectory files.
– Those NAV teams may simply learn how to use the NIOSPK

program and any useful SPK-related utilities.

Navigation and Ancillary Information Facility

Writing an SPK File 5

Background Assumptions

• It is assumed the reader has some familiarity with the SPICE
system, and with basic ideas of orbital mechanics.

– The SPICE Overview tutorial is available at:
ftp://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/05_SPICE_overview.pdf

• It is assumed the reader has read the “SPK Tutorial” that
characterizes much of the SPK subsystem, but with emphasis
on reading SPK files.

– The SPK “reading” tutorial is available at:
ftp://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/14_spk.ppt

• It is assumed the reader has available the SPK reference
document entitled “SPK Required Reading,” supplied with
each copy of the SPICE Toolkit (.../doc/spk.req)

– SPK Required Reading is also available at:
http://naif.jpl.nasa.gov/naif/documentation.html

Navigation and Ancillary Information Facility

Writing an SPK File 6

SPK References

• References for SPK production
– “Making an SPK” tutorial (this document)

– “SPK (Ephemeris System)” tutorial (focused on reading an SPK)

– “SPK Required Reading” (spk.req)

– “MKSPK Users Guide” (mkspk.ug)

– “SPKMERGE User’s Guide (spkmerge.ug)

– The source code “headers” provided as part of the SPK writer
modules (subroutines)

Navigation and Ancillary Information Facility

Writing an SPK File 7

Brief Overview - 1

• Understand the physics of your data and how that
relates to SPK type.
– Type 5 implies an orbit well approximated by a sequence of one

or more conic orbits.

– Types 9 and 13 fit data regardless of the expected physics.

» Caution: a good fit in the mathematical realm may not respect
the physics of the trajectory. For example, fitting polynomials
to an excessively sparse set of states for a planetary orbiter
could result in an interpolated path that intersects the planet.

Navigation and Ancillary Information Facility

Writing an SPK File 8

Brief Overview - 2

• Ordinarily, use the NAIF mkspk application to
create SPKs from Cartesian state data or conic
elements.
– Depending on your source data, SPK types 5, 9, 10, and 13 will

satisfy the requirements for most users.

» Type 5, yields compact SPK files when the trajectory is well
approximated by piecewise two-body motion. May be the
best choice for planetary or solar orbiters when available
state data are sparse.

» Type 9, a good, general choice

» Type 13, when you have very accurate velocity data

» Type 10 applies ONLY to Two Line Element Sets (TLEs).

• Alternatively, use the Toolkit’s SPK writing
subroutines in your own production program.

• Caution: an SPK made for DSN metric predicts has
special requirements, discussed later on.

Navigation and Ancillary Information Facility

Writing an SPK File 9

Summary of SPK Architecture

Navigation and Ancillary Information Facility

Writing an SPK File 10

SPK File Structure - Pictorial

This is a logical view of SPK
file organization. A real SPK file
is a binary, direct access file
built upon a SPICE data
structure known as the Double
Precision Array File (DAF).

Using the DAF architecture
and binary direct access
method, including buffering,
provides rapid look-up of the
data needed to fulfill a read
request, whether the data
requests are sequential or
random with respect to file
organization.

Logical Organization

of an SPK File

[] = second or more

segments used as needed

Internal file name

Comment area

(Metadata)

Segment 1

.

.

.

[Segment N]

Navigation and Ancillary Information Facility

Writing an SPK File 11

SPK Detailed File Structure

File record: always present.

Comment area (variable number of records)

D27

The comment area may be empty.

An SPK file has at least one

descriptor record and one

segment ID ("name") record.

These records contain up to 25

pairs of segment descriptors and

segment IDs.

ND, NI: Number of d.p. and integer

descriptor components

IFNAME: Internal file name

FWD, BWD: Forward and backward linked

list pointers

FREE: First free DAF address

BFF: Binary file format ID

FTP: FTP corruption test string

DN: Descriptor for segment N

IN: Segment ID for segment N

N/P/C: Next, previous record pointers

and descriptor count

U: Unused space

U*: Possibly unused space

Descriptor record

Segment ID ("Name") record

D1 D2 …

I2 …

Segment 1 (variable number of records)

Segment 2 (variable number of records)

N/P/C

I1 U

Descriptor record

Segment ID ("Name") record

…

…

Segment 26 (variable number of records)

Segment 27 (variable number of records)

N/P/C

UI27

D26

I26

Records are fixed-length: 1024 bytes on all currently supported platforms.

U*Segment 25 (variable number of records)

.

.

.

D25

I25

U*

U*

U*

…

Example: SPK file with 27 or more segments

U*

…

…

…

ID WORD IFNAMEND NI FWD BWD FREE BFF FTP0 PAD 0 PAD

Diagram not to scale.

.

.

.

Navigation and Ancillary Information Facility

Writing an SPK File 12

SPK File Structure - Description

• File record
– Contents

» Internal file name (set by file creator)

» Architecture and binary file format identifiers

» File structure parameters

» FTP transmission corruption detection string

– Used by SPK reader and writer subroutines

• Comment Area
– A place where “metadata” (data about data) may be placed to help a user of the

SPK file understand the circumstances of its production and any
recommendations about for what uses it was intended

• Descriptor record
– One of these is needed for every collection of 1-to-25 segments

• Segment[s]
– Collection[s] of ephemeris data

» Minimum of one segment

» Maximum:
• The practical maximum is a few thousand segments

• Serious performance degradation occurs above 10000 segments for a single body

• Absolute limits are imposed by the range of the INTEGER data type for your computer

– Numerous SPK types may be used within an SPK file, but only one SPK type may
appear within a given segment

– Segments of different types may be intermixed within a given SPK file

Navigation and Ancillary Information Facility

Writing an SPK File 13

What is an SPK Segment?

• A segment is a collection of information:
» providing ephemeris (position and velocity) of a single object

» given relative to a single center of motion

» specified in a single reference frame (one known to SPICE)

» covering a specified, continuous period of time, and

» using a single SPK data type.

– Example: ephemeris for the Voyager 2 spacecraft, relative to the
center of the Neptunian system (Neptune’s barycenter), given in
the J2000 inertial reference frame, covering a specific period of
time, and using the Hermite interpolation with variable length
intervals SPK type (type 13)

• An SPK segment must contain enough data to
yield an object’s state at any epoch within the time
bounds associated with the segment
– This has implications that depend on the SPK type being

produced

Navigation and Ancillary Information Facility

Writing an SPK File 14

Discussion applicable to all
SPK production methods

Navigation and Ancillary Information Facility

Writing an SPK File 15

The SPK Family

Type Description Notes

1 Modified divided difference arrays Unique form produced at JPL; not

likely to be useful to others.

2 Chebyshev polynomials for position;

fixed length time intervals

Velocity obtained by

differentiation. Used at JPL for

planets. Evaluates quickly.

3 Chebyshev polynomials for position

and velocity; fixed length time

intervals

Separate polynomial sets for

position and velocity. Used at

JPL for satellites.

4 Special form used by Hubble Space

Telescope

Not available for general use.

5 Discrete states using weighted two-

body propagation

Ok if motion very closely

approximates two-body.

6 Trigonometric expansion of elements

(Phobos and Deimos)

Not available for general use.

7 Precessing elements Not available for general use.

8 Lagrange interpolation of position and

velocity; fixed length intervals between

states

Use type 9 unless state spacing is

uniform when measured as TDB.

9 Lagrange interpolation of position and

velocity; variable length intervals

between states

Versatile type; easy to use with

MKSPK.

10 Weighted Space Command Two-Line

Elements

Handles both “near-earth” and

“deep space” versions

11 Not used

12 Hermite interpolation; fixed length

intervals between states

Use type 13 unless state spacing

is uniform when measured as

TDB.

13 Hermite interpolation; variable length

intervals between states

Use for DSN metric predicts.

14 Chebyshev polynomials for position

and velocity; variable length time

intervals

Most flexible Chebyshev type.

15 Precessing conic elements propagator

16 Special form used by ESA’s Infrared

Space Observatory

Not available for general use.

17 Equinoctial elements Used for some satellites.

18 Emulation of ESOC DDID format Used for MEX, VEX, Rosetta and

SMART-1

Navigation and Ancillary Information Facility

Writing an SPK File 16

Recommended SPK Data Types - 1

• SPK type 2 (Chebyshev polynomials for position, velocity given by
differentiation) Used at JPL for planetary ephemerides.

• SPK type 3 (Separate Chebyshev polynomials for position and velocity)
Used at JPL for satellite ephemerides.

• SPK type 5 (Weighted two-body extrapolation) Often used for comets
and asteroids, as well as for sparse data sets where a two-body
approximation is acceptable.

• SPK types 9 and 13 (Sliding-window Lagrange and Hermite interpolation
of unequally-spaced states) Often used by non-JPL ephemeris
producers and by users of NAIF’s “Make SPK” (MKSPK) application.

• SPK type 10 (weighted Space Command two-line element extrapolation)
Often used for earth orbiters.

• SPK type 14 (Separate Chebyshev polynomials for position and velocity,
with variable time steps) This is the most flexible Chebyshev data type.

• SPK type 15 (Precessing conic elements) Provides a very compact
ephemeris representation; limited to orbits where this type of
approximation is valid.

• SPK type 17 (Equinoctial elements) Most suited for representation of
ephemerides of natural satellites in equatorial or near-equatorial orbits.

Navigation and Ancillary Information Facility

Writing an SPK File 17

Recommended SPK Data Types - 2

• Each type has certain properties that may
promote or limit its usefulness in a particular
application. These properties include, but are not
limited to the following.

» Ability to model the actual ephemeris to be represented with
the accuracy required for your application.

» Consistency between velocity and derivative of position.

» Evaluation speed (performance).

» Compactness (file size).

» Availability of SPICE software needed to write files of that
type.

• Users are encouraged to consult with NAIF about
the suitability of an SPK type for a particular
purpose.

Navigation and Ancillary Information Facility

Writing an SPK File 18

Creating Multiple SPK Segments

• Each SPK segment must have a single object, center of motion,
reference frame and SPK data type.

• Limiting segment size to 10,000 states or “packets of ephemeris data”
can improve performance when searching within a segment.

– Absolute limits on segment size depend on size of INTEGER data type.

• For good SPK reading performance, the total number of segments for
any given body in a file should be kept under the dimension of the
SPKBSR segment buffer, currently set to 30,000.

– More details about reading efficiency are provided at the end of this tutorial.

– When reading data from multiple SPK files, a more stringent limit applies: the total
number of loaded segments for any body, possibly contributed by multiple files, should
be less than the SPKBSR segment buffer size.

– For best efficiency, the total number of segments loaded should be less than this buffer
size.

• One may elect to initiate a new segment (or more) as the means for
modeling a propulsive maneuver.

– This is because the SPK reader modules will NOT allow interpolation over a segment
boundary.

• When starting a new segment it is suggested, although not required,
that you use a new segment identifier.

Navigation and Ancillary Information Facility

Writing an SPK File 19

Choosing Polynomial Degree

• If you make a type 8 or 9 (Lagrange interpolation) or
a type 12 or 13 (Hermite interpolation) SPK file you
must specify the degree of the interpolating
polynomial that the SPK reader subroutine will use.
– This choice needs some consideration about desired accuracy,

file size and evaluation speed (performance).

– This choice is also affected by the “smoothness” of the orbit data
you wish to represent with an SPK file.

– The allowed range of degree is 1-to-15. In addition, to ensure
position and velocity continuity over the time span covered by
the orbit data:

» for types 8 and 9, the polynomial degree must be odd.

» for types 12 and 13, the polynomial degree must be 3-mod-4,
meaning degree 3, 7, 11 or 15.

Navigation and Ancillary Information Facility

SPK Production Methods

Navigation and Ancillary Information Facility

Writing an SPK File 21

Choices for Making an SPK File

• There are two methods available for making an SPK
file.
1. Take a data file produced by your own trajectory propagator program

and input this into the conversion utility (MKSPK) provided by NAIF
that outputs an SPK file.

2. Incorporate the appropriate SPK writer modules (subroutines) into
your own code.

» Add these routines to your trajectory estimator/ propagator.

 or...

» Write your own “post-processor” conversion utility, similar to
MKSPK described above.

• Both methods are described in the next few pages.

Navigation and Ancillary Information Facility

Writing an SPK File 22

Making Your Choice - 1

• Using the MKSPK program provided in the Toolkit
could be easiest for “simple” situations.
– Provides considerable flexibility for accepting a wide assortment of

input data formats.

– Does allow one to make multi-segment SPK files when the target,
center of motion, reference frame, or SPK type changes, but not as
straight forward as it could/should be.

» Best done through multiple program executions (although one
could be tricky and accomplish this in a single execution).

» A future version of MKSPK may better accommodate this.

» Note: production of multiple segments in type 5, 8, 9, 12 and 13
files when the amount of input data requires so, is automatically
handled.

Navigation and Ancillary Information Facility

Writing an SPK File 23

Making Your Choice - 2

• Using the SPK “writer” modules found in
SPICELIB, CSPICE, and Icy offers the greatest
flexibility and user control.
– Using these requires that you write your own program.

– You’ll likely need to use some additional SPICE modules as
well.

Navigation and Ancillary Information Facility

Writing an SPK File 24

Using NAIF’s
MKSPK

Application Program

Navigation and Ancillary Information Facility

Writing an SPK File 25

Using the MKSPK Utility - 1

NAIF’s
MKSPK
Program

SPK File

Possible SPK
data types
produced are:

 - Type 05
 - Type 08
 - Type 09
 - Type 10
 - Type 12
 - Type 13
 - Type 15
 - Type 17

Suitable kinds of input
ephemeris data are:

 - Table of Cartesian state vectors
 - Table of conic elements
 - One or more sets of equinoctial elements
 - One or more sets of Space Command two-
line elements

ASCII file of
ephemeris

data

setup file

Optional
comment file

Navigation and Ancillary Information Facility

Writing an SPK File 26

Using the MKSPK Utility - 2

This table indicates which SPK types
can be made from the four kinds
of input data accepted by MKSPK

Y = Yes N = No

SPK Type Produced by MKSPK --> 5 8 9 10 12 13 15 17

Input Data Type

 Cartesian state vectors Y Y Y N Y Y Y Y

 Conic elements Y Y Y N Y Y Y Y

 Equinoctial elements N N N N N N N Y

 Space Command Two-line elements N N N Y N N N N

Navigation and Ancillary Information Facility

Writing an SPK File 27

Using the MKSPK Utility - 3

• MKSPK will produce a file consisting of one or more
segments as needed.
– It will write up to 10,000 data points in one segment.

– For multi-segment files based on types 5, 8, 9, 12 and 13 the
program will repeat sufficient data points at both sides of each
interior segment boundary to ensure the SPK file will provide a
continuous ephemeris through the segment boundary epoch.

• You can use MKSPK to add a new segment to an
existing SPK file.

• You can use SPKMERGE to merge two or more SPK
files made from separate executions of MKSPK.
– It’s important to fully understand how SPKMERGE works if you do

this.

Navigation and Ancillary Information Facility

Writing an SPK File 28

Using the MKSPK Utility - 4

• MKSPK does not provide direct/specific means for
including propulsive maneuvers within an SPK file.
– Instead, use either of these two methods.

» Append a new SPK segment to an existing SPK file, using
MKSPK.

» Merge a collection of SPK files, using SPKMERGE.

Navigation and Ancillary Information Facility

Writing an SPK File 29

Using SPK “Writer” Modules

Navigation and Ancillary Information Facility

Writing an SPK File 30

Using SPK Writer Routines

• The next several charts outline how to use
the“SPK writer” modules available in the Toolkit
libraries.
– SPICELIB (FORTRAN)

– CSPICE (C)

» All types supported except Type 1

– Icy (IDL)

» All types supported except Type 1, 15, 17, 18

• These routines could be embedded in your
existing trajectory propagator program, or they
could be used to build a separate conversion
program analogous to MKSPK.

Navigation and Ancillary Information Facility

Writing an SPK File 31

What Routines To Use - 1

SPKOPN Open a new SPK file. (Use

 SPKOPA to append to existing file.)

SPKWxx Write a segment of SPK type xx

.

.

[SPKWxx] [Write more segments]

. [Repeat as needed]

.

SPKCLS Close the file

For all except SPK type 14

[…] indicates possible multiple occurrences

These routine names are for the FORTRAN (SPICELIB) Toolkit. For CSPICE
the names are the same but are in lower case and have an “_c” appended. For Icy,
module names are case-insensitive and have "cspice_" prepended.

Navigation and Ancillary Information Facility

Writing an SPK File 32

What Routines To Use - 2

SPKOPN, SPKOPA Open file to add data

SPK14B Begin a new segment

SPK14A Add data to segment

[SPK14A] Add more data

SPK14E End the segment

SPK14B Begin a new segment

SPK14A Add data to segment

[SPK14A] Add more data

SPK14E End the segment

 etc.

SPKCLS Close the file

For SPK type 14

[…] indicates possible multiple occurrences

Repeat
as needed

Navigation and Ancillary Information Facility

Writing an SPK File 33

Close the SPK File

• Once you have completed the addition of all
data to your SPK file, be sure to call the
SPKCLS routine to close the file.
– Failure to properly close an SPK file will result in a problem

file having been produced.

• This point is emphasized here because it has
been a frequent problem.

Navigation and Ancillary Information Facility

Writing an SPK File 34

Finishing Up

Navigation and Ancillary Information Facility

Writing an SPK File 35

Not Quite Done Yet

• You’ve now used either MKSPK or the appropriate
SPK writer routines to produce an SPK file. To
complete the job you should consider the
following.
– Add comments (metadata) to the comment area of the SPK file.

» This could have been done during execution of MKSPK.

» It can be done after the SPK has been created by using the
Toolkit’s “commnt” utility program.

– Validate the file before sending it off to your customer.

– Consider if there is a need to merge this newly made SPK file with
others.

• See the next several charts for more information on
these subjects.

Navigation and Ancillary Information Facility

Writing an SPK File 36

Add Comments (metadata)

• It is recommended (but not a technical requirement) that the
producer of an SPK file add to the file, in the “comment area,”
appropriate descriptive information.
– When, how and by whom the file was created.

– Intended use for the file.

– Cautions or restrictions on how the file is to be used.

• The comments might also include some of these topics.
– Time coverage.

– Ephemeris objects included.

– Type(s) of data used (in the sense of reconstructed versus predicted).

– Any available estimates of accuracy.

– Sources of the data used to produce this SPK file.

– Name(s) of previously generated SPK file(s) being replaced by this file.

– Any knowledge of plans for future updates to (replacements for) this file.

– Name and version number of your SPK production program.

– Type of platform (hardware/OS/compiler) on which the SPK file was
generated.

Navigation and Ancillary Information Facility

Writing an SPK File 37

How to Add Comments to an SPK

• Several means are available for adding comments
(metadata) to an SPK file.
– An option in the MKSPK program allows comments supplied in

a separate text file to be added to the comment area during
MKSPK execution.

– Use the “commnt” utility program from the SPICE Toolkit.

» This may be run as an interactive program or in command
line mode within a script.

– In FORTRAN use SPICELIB subroutines.

» Not currently supported in CSPICE and Icy.

Navigation and Ancillary Information Facility

Writing an SPK File 38

Validate the SPK File

• Validation of SPK files is recommended
– Caution is needed more for one-of-a-kind files than for those

generated in a previously tested, unchanging process.

– Some SPICE utility programs might help with this validation.

» The following are under development at NAIF and will become
available in the future.

• “CHECKER” - examines the structure and some contents of an SPK file and
reports any errors found.

• “CMPSPK2” - reads data from two supposedly similar SPK files and provides
statistics on the differences in both position and velocity, mapped into down-
track, cross-track and out-of-plane components.

• “DUMP13” - does an ASCII “dump” of a type 9 or type 13 SPK file.

– Consider writing your own validation program.

– Caution: successfully running an SPK summary program (e.g.
BRIEF or SPACIT) or successfully running the format conversion
program (TOXFR or SPACIT) is a positive sign, but is not a fully
sufficient test.

Navigation and Ancillary Information Facility

Writing an SPK File 39

Validate the Process

• When you first start producing SPK files, or when
changing the SPK “type” used or the kind of
mission (trajectory) to be represented, validation
(or revalidation) of the overall process is advised.
– Validation of not only SPKs, but of end products derived from

SPKs, is advised.

• Consider writing a program that compares states
from your source data with states extracted from
your new SPK file.
– Do this using interpolated states from your source data–not

only the states placed in the SPK file.

– Verify a uniformly good fit on the whole time interval covered
by the file.

Navigation and Ancillary Information Facility

Writing an SPK File 40

Make a Merged SPK File ?

• Sometimes it is helpful to customers if portions of two
or more SPK files are merged into just one.
– (Sometimes the opposite is true, so be careful!)

• If making a merged product is appropriate, use the
SPICE utility SPKMERGE.
– Read the SPKMERGE User’s Guide.

» Be especially aware of how SPKMERGE directives affect the
precedence order of the data being merged. (This is different from
the precedence order that applies when one reads an SPK file or
files.)

– Carefully examine your results (probably using either BRIEF or
SPACIT) to help verify you got what you expected.

Navigation and Ancillary Information Facility

Writing an SPK File 41

Get Help

• Ask JPL’s NAIF team for assistance with:
– picking the SPK type to be used

– picking the method for producing SPK files

– designing tests to validate the process

• Ask NAIF for samples of SPK files from other
missions that could help you check your process.

Navigation and Ancillary Information Facility

What SPK Type to Use for
Interfaces with the DSN?

Navigation and Ancillary Information Facility

Writing an SPK File 43

DSN Interface Overview

• The version of the DSN “operating system”
current as of March 2006 is known as the Network
Support System (NSS). This has been in use for
many years.
– SPK files intended for use in generating DSN/NSS operational

metric predicts and/or short-range scheduling must meet some
strict limitations, delineated in the next few pages.

– When the future DSN “operating system” known as the Service
Preparation Subsystem (SPS) can be used, many fewer--if any--
restrictions on SPK files are expected.

» SPS is expected to become operational around December
2006.

» Consult with DSN staff to determine specific requirements.

Navigation and Ancillary Information Facility

Writing an SPK File 44

What SPK Type to Use for
Interfaces with the DSN/NSS?

• For short-term scheduling of DSN antennas, and for
producing “metric predicts” that control DSN
antennas during tracking operations, limitations in
the current end-to-end DSN software system (the
“NSS”) restrict the SPK choice to only type 13*.
– See next pages for additional restrictions and recommendations.

• Long range SPICE-based scheduling software not
associated with the NSS is not restricted to these two
SPK types.

*JPL navigation teams can and always do provide type 1
files. This type is unique to JPL software.

Navigation and Ancillary Information Facility

Writing an SPK File 45

Restrictions for DSN/NSS
Use of Type 13 SPKs

• These apply only when the DSN’s “NSS” software
will be used
– The SPK must contain data for a single spacecraft

» If the SPK also contains data for natural bodies, it’s ok;
these will be ignored

– The maximum size of an acceptable SPK file is limited and must
be determined by consulting with the DSN.

» This limitation appears to stem from:
• Disk space limitations on the NSS VAX computer

• Slow CPU of the NSS VAX as compared to modern computers

– The minimum spacing between states must be at least one
second.

» This limitation is inherent in the implementation of the NSS
metric predicts software and cannot be changed.

– The degree specified for the type 13 polynomials must be 3-
mod-4, which means degree 3, 7, 11 or 15.

Navigation and Ancillary Information Facility

Issues Affecting
SPK Reading Efficiency

The way you write an SPK file could substantially affect
how quickly your customers will be able to read the file.

Navigation and Ancillary Information Facility

Writing an SPK File 47

SPK Reading: Efficiency Issues - 1

• SPK file creators should design files to support
efficient read access.
– This requires knowledge of how SPK file attributes impact efficiency.

• When you store "large" amounts (>10^5 states or data
packets) of ephemeris data in one or more SPK files,
SPK reading efficiency may be affected by:
– SPK segment size

– Number of segments for a body in one SPK file

– Number of segments for a body contributed by multiple SPK files

– The number of loaded segments for all bodies

– The number of loaded files

Navigation and Ancillary Information Facility

Writing an SPK File 48

SPK Reading: Efficiency Issues - 2

• Segment size
– When a segment contains more than 10,000 states or data packets,

the SPK readers will generally take longer to search the segment for
requested data.

» When the segment is larger than this size, more records are read
to look up segment directory information. If these records are not
buffered, more physical records are read from the SPK file.

– There is a trade-off between segment size and numbers of segments
and files.

» It can be preferable to have large segments rather than have "too
many" segments or files. (Read on)

Navigation and Ancillary Information Facility

Writing an SPK File 49

SPK Reading: Efficiency Issues - 3

• Number of segments for a body in one SPK file

– An SPK file MUST not contain more segments for one body
than can be "buffered" at one time.

» The SPK reading system buffers coverage descriptions ("segment
descriptors") for segments it has examined to satisfy previous
requests for state data.

• Don't confuse descriptor buffering with data buffering.

– The SPK reading system also buffers segment DATA, as opposed to
segment descriptors, but this is not relevant to this discussion.

» One fixed-size buffer is used for all SPK segments.

• The size of this buffer is given by the parameter "STSIZE," declared in
the SPKBSR suite of routines.

• STSIZE is currently set by NAIF to 30,000.

– NAIF recommends that users NOT change this parameter, since
maintenance problems may result.

» Unsurprisingly, the system works best when all needed segment
descriptors are buffered simultaneously.

continues

Navigation and Ancillary Information Facility

Writing an SPK File 50

SPK Reading: Efficiency Issues - 4

• Number of segments for a body in one SPK file,
continued:

» The buffering scheme is "lazy": no descriptors are buffered for
segments that haven't been examined.

• But when an SPK file is searched for data for a specified body, descriptor data for
ALL segments in the file for that body are buffered.

» The buffering algorithm can "make room" in the buffer by
discarding unneeded, buffered descriptor data.

• A "least cost" algorithm decides which buffered data to discard.

» When more buffer room is needed than can be found:

• The SPK reading system reads data directly from SPK files without
buffering descriptor information.

• This is NOT an error case: the SPK system will continue to provide
correct answers.

• BUT: the system will run VERY SLOWLY.

– This situation is analogous to "thrashing" in a virtual-memory
operating system.

– If buffer overflow occurs frequently, the SPK reading system may be
too slow to be of practical use.

Navigation and Ancillary Information Facility

Writing an SPK File 51

SPK Reading: Efficiency Issues - 5

• Number of segments for a body contributed by
multiple SPK files:
– Buffer overflow can occur if too many segments for one body are

contributed by multiple loaded SPK files.

» Overflow can take longer to occur than in the single-SPK case,
due to lazy buffering: files that haven't been searched don't
consume buffer space.

• Thus an impending overflow problem may not be detected early in a
program run.

– User applications can avoid buffer overflow if data are appropriately
spread across multiple SPK files.

» Applications can avoid buffer overflow by:

• loading only those files of immediate interest

• unloading files once they're no longer needed

Navigation and Ancillary Information Facility

Writing an SPK File 52

SPK Reading: Efficiency Issues - 6

• Number of segments for all bodies, contributed by all
loaded SPK files:
– Buffer overflow does not result from loading SPK files contributing

more than STSIZE segments for different bodies.

– However, if the total number of loaded segments for bodies of
interest exceeds STSIZE, thrashing can occur as descriptor data are
repeatedly discarded from the buffer and then re-read.

» Loaded segments for bodies for which data are not requested do
not contribute to the problem.

– For best efficiency, load only files contributing fewer than a total of
STSIZE segments for all bodies of interest.

» When more than STSIZE segments are needed, applications
should process data in batches: unload files containing
unneeded data in order to make room for new files.

Navigation and Ancillary Information Facility

Writing an SPK File 53

SPK Reading: Efficiency Issues - 7

• Number of loaded SPK files:
– Up to 1000 SPK files may be loaded at one time by an application.

» The "1000" limit applies to DAF-based files, so loaded C-kernels
and binary PCK kernels count against this limit.

– But loading large numbers of SPK files hurts efficiency:

» Since operating systems usually allow a process to open much
fewer than 1000 files, the SPK system must open and close files
via the host system's file I/O API in order to provide a "virtual"
view of 1000 open files.

• The more such file I/O, the slower an application runs.

» Loading a large number of SPK files could result in a buffering
problem if too many segments are loaded for bodies of interest.

Navigation and Ancillary Information Facility

Writing an SPK File 54

SPK Reading: Efficiency Issues - 8

• Recommendations
– Limit segment counts to avoid buffer overflow and thrashing

» Never have more than STSIZE segments for one body in an SPK
file and never have more than STSIZE segments for one body
loaded simultaneously.

» Don't require users to have more than STSIZE segments loaded at
one time.

» If necessary, use larger segments to enable smaller segment
counts.

– Consider distributing SPK data across multiple files:

» so as to make selective SPK loading convenient

• facilitate processing data in batches

» so that loading very large numbers of SPK files at once is
unnecessary

Navigation and Ancillary Information Facility

Writing an SPK File 55

SPK Reading: Further Usability Issues

• We've discussed reading efficiency in terms of
application execution speed; other usability concerns
include:

– ease with which files can be transferred between systems

– simplicity of file management required of user applications

– ease with which files of interest can be identified by users,
both for current use and in an archival setting

