

Geometry Library: The Concept

April 2005

- The Geometry Index
 - General Concept
 - The 'Line' Concept
 - Center and Number of Lines
 - Parameters
- Geometry Library: GeoLib
 - Concept
 - Routines vs. Geometry Index File Parameters
- · Usage of GeoLib in the PSA

- PSA Generic Geometry Index provides:
 - Geometry and Position Information
 - Look-up table for data products for geometry searches
- Mission and Instrument Independent format:
 - Same format for all missions and all instruments
 - Two generic types of instruments considered:
 - Mapping Instruments
 - Space/Spacecraft Environment Measurement Instruments (i.e. Plasma Instruments).
- Flexibility to define more than one index line for each data product.

Geometry Library: The Concept

Cesa____ The 'Line' Concept

- Provides a instrument independent way of describing instrument observations/measurements.
- Index Lines describe samples of the data products:
 - A physical line in the footprint of a mapping instrument.
 - A point in time when a measurement was acquired
 - A projected line on the surface of a body for limb-atmospheric measurements.
- For mapping instruments:
 - Simple way to describe a footprint in an instrument independent way
 - Possibility of reconstructing the footprint by joining all the lefthand points and all the right-hand points.
- For non-mapping instruments:
 - Simple way to describe a continuous measurement (i.e. along one orbit)

3

- The Number of lines:
 - Variable:
 - Between data sets
 - · Between data products
 - · Between observations within a data product
 - Related with the Sampling frequency:
 - Constant in time;
 - Variable: to keep the same distance between to consecutive physical lines in the footprint.
- Center of a line (mapping instruments):
 - Geometrical center point in latitude and longitude, as seen from the Instrument.
 - Depends on the orientation of the spacecraft/instrument.
 - This center time has a time associated (needs to be computed)

Geometry Library: The Concept

Geometry Library: The Concept

5

LOCAL_TRUE_SOLAR_TIME

HORIZONTAL_PIXEL_SCALE VERTICAL_PIXEL_SCALE

- Library based on CSPICE that provides a common set of routines to compute the required geometry parameters of the PSA Geometry Index File (see table)
- Additionally, GeoLib provides writing routines for formatting and PDS label generation for the Geometry Index File.
- · Before using GeoLib, it is required to be familiar with CSPICE
- The use of GeoLib implies determining the footprint of your instrument (if any):
 - Extract data product information from the data product's label (release and revision information, dataset ID, product ID)
 - Extract time information about each single observation in the data product.
 - Compute the corner points of each line or the 'sampling' time:
 - For mapping instruments: compute the corner points of each of the lines that will describe the footprint
 - For non-mapping instruments: determine the succession of times that will represent the 'sampling' of the measurement.
- Only available for MEX; mission independent in the future

North State	GeoLib Routines				
	clnblank	Clean blank columns + gmaxlenghts functionality			
	gmaxlengths	Maximum length of columns & records. No Lines.			
	writegln	Write a line in the Geometry Index File			
	wrtidxobj	Write Geometry Index Table Object (PDS)			
	orbit_number	ORBIT_NUMBER			
	solar_longitude	SOLAR_LONGITUDE			
	<pre>sub_solar_point</pre>	SUB_SOLAR_LATITUDE			
		SUB_SOLAR_LONGITUDE			
	<pre>sc_sun_distance</pre>	SC_SUN_DISTANCE			
	<pre>sc_sun_state_vector</pre>	X/Y/Z_SC_SUN_POSITION_VECTOR			
		X/Y/Z_SC_SUN_VELOCITY_VECTOR			
	<pre>sc_target_state_vector</pre>	X/Y/Z_SC_TARGET_POSITION_VECTOR			
		X/Y/Z_SC_TARGET_VELOCITY_VECTOR			
	<pre>spacecraft_altitude</pre>	SPACECRAFT_ALTITUDE			
	<pre>sub_spacecraft_point</pre>	SUB_SPACECRAFT_LATITUDE			
		SUB_SPACECRAFT_LONGITUDE			
	local_true_solar_time	LOCAL_TRUE_SOLAR_TIME			

center_point	CENTER_LATITUDE
	CENTER_LONGITUDE
illumination_angles	PHASE_ANGLE
	INCIDENCE_ANGLE
	EMISSION_ANGLE
slant_distance	SLANT_DISTANCE
azimuth_angles (tbw)	NORTH_POLE_AZIMUTH_ANGLE
	SUB_SC_AZIMUTH_ANGLE
	SUB_SOLAR_AZIMUTH_ANGLE
<pre>pixel_scale (tbw)</pre>	HORIZONTAL_PIXEL_SCALE
	VERTICAL_PIXEL_SCALE
pointing_mode (tbw)	Returns the pointing modes.

 GeoLib is used in Mars Express to generate the Geometry Index files that are used in the geometrical search engine:

Close Geometrical Searches		Clear
Reference Target Any -		
Center Latitude	Center Longitude	
Phase Angle (0-180)	Emission Angle (0-90)	
Incidence Angle (0-90)	Slant Distance [Km]	
Local True Solar Time		

Geometry Library: The Concept