

Navigation and Ancillary Information Facility

IDL Interface to CSPICE "Icy"

How to Access the CSPICE library Using Interactive Data Language (IDL)[©]

March 2006

[©] Research Systems Inc.

Navigation and Ancillary Information Facility

- How does it work?
- · Benefits from Icy use
- Distribution
- Icy Operation
- Vectorization
- Simple Use of Icy Functionality

How Does It Work? (1)

Navigation and Ancillary Information Facility

- IDL includes an intrinsic capability to use external routines.
 - Icy functions as an IDL Dynamically Loadable Module. A DLM consists of a shared object library (icy.so/.dll) and a DLM text definition file (icy.dlm).
 - » The shared library contains a set of IDL callable C interface routines that wrap a subset of CSPICE wrapper calls.
 - » The text definition file lists the routines within the shared library and the format for the routine's call parameters.

IDL Interface to CSPICE

When a user invokes a call to a DLM routine:

1. IDL calls...

- 2. the interface routine in the shared object library, linked against...
 - 3. CSPICE, which performs its function and returns the result...
 - 4. to IDL...
- ... transparent from the user's perspective.

Benefits

Navigation and Ancillary Information Facility

Benefits from using Icy

- Ease of use: Icy operates as an extension to the IDL language regime.
- Platform independence: the lcy code base requires no modification for ports across supported platforms.* lcy now runs on:
 - » OS X (cc/gcc)
 - » Solaris in 32 bit mode for cc and gcc compilers**
 - » Linux (gcc)
 - » MS Windows
 - » and should run on any platform supporting IDL, CSPICE, and an ANSI C compiler

* CSPICE is widely portable, but not platform independent.

** NAIF successfully built an 64 bit Icy using the Solaris cc compiler.

IDL Interface to CSPICE

Icy Distribution

Navigation and Ancillary Information Facility

• NAIF distributes the Icy package as an independent product analogous to SPICELIB and CSPICE.

• The package includes:

- The CSPICE source files.
- The Icy interface source code.
- Platform specific build scripts for Icy and CSPICE.
- IDL versions of the SPICE cookbook programs, *states*, *tictoc*, *subpt*, and *simple*.
- An HTML based help system for both lcy and CSPICE, with the lcy help cross-linked to CSPICE.
- The lcy shared library and DLM file. The system is ready for use after installation of the these files.
 - » The user can recompile the shared library if the appropriate compiler is available.

Icy Operation (1)

Navigation and Ancillary Information Facility

- Icy supports many (335), but not all, CSPICE wrapper functions.
 - Icy has some functionality not available in CSPICE.
 - » As of Icy 1.1, a subset of calls accept vectorized arguments.* (See Vectorization, pg. 11).
- Icy arguments normally match the arguments in the corresponding CSPICE call in type and name, with some exceptions.
 - Routines returning vectors do not explicitly return a vector dimension.
- CSPICE error messages are returned to Icy in the form usable by the IDL error *catch* handler.

*Vectorized indicates passing a vector of N items as an argument: a vector of scalars, a vector of vectors, or a vector of matrices, the return value being an N dimensioned version of the non-vectorized output.

IDL Interface to CSPICE

Navigation and Ancillary Information Facility

- A user may occasionally encounter an IDL math exception:
- % Program caused arithmetic error: Floating underflow
 - This warning occurs most often as a consequence of CSPICE math operations.
- In all known cases, the SIGFPE exceptions caused by CSPICE can be ignored. CSPICE assumes numeric underflow as zero.
 - A user can adjust IDL's response to math exceptions by setting to the !EXCEPT variable:
 - » ! EXCEPT = 0 suppresses the SIGFPE messages.
 - » !EXCEPT = 1 the default, reports math exceptions on return to the interactive prompt.
 - » !EXCEPT = 2 reports exceptions immediately after executing the command.

Icy Operation (3)

Navigation and Ancillary Information Facility

- An operational irritant exists when using the cspice furnsh call.
 - The IDL program interprets .pro files, so use of Icy's cspice_furnsh module loads kernels to IDL, not the calling script. Therefore, kernels and pool variables persist in memory while IDL runs.
 - Possible solutions:
 - » execute a single cspice_furnsh call to load all needed kernels at the start of an IDL run
 - » balance every cspice_furnsh call with a
 cspice_unload
- Please refer to the lcy system required reading, icy.req, for further information.

IDL Interface to CSPICE

Icy Vectorization (1)

Navigation and Ancillary Information Facility

- 34 Icy interfaces now accept and return vectorized arguments. Use of such arguments can eliminate the need for explicit loops (slow).
- Calls vectorized as of Icy 1.2:

cspice_cylrec	cspice_reccyl	cspice_spkezr
cspice_deltet	cspice_recgeo	cspice_spkpos
cspice_et21st	cspice_reclat	cspice_srfrec
cspice_et2utc	cspice_removd	cspice_srfxpt
cspice_georec	cspice_removi	cspice_subpt
cspice_illum	cspice_recpgr	cspice_str2et
cspice_insrtd	cspice_recrad	cspice_sxform
cspice_insrti	cspice_recsph	cspice_timout
cspice_latrec	cspice_scdecd	
cspice_oscelt	cspice_scencd	
cspice_pxform	cspice_sce2c	
cspice_pgrrec	cspice_scs2e	
cspice radrec	cspice sphrec	

Icy Vectorization (2)

Navigation and Ancillary Information Facility

- Example: use Icy to retrieve state vectors and lighttime values for 1000 ephemeris times.
 - Create the array of 1000 ephemeris times in steps of 10 hours, keyed on July 1, 2005:

cspice_str2et, 'July 1, 2005', start
et = dindgen(1000)*36000.d + start

– Retrieve the state vectors from Mars to earth at each ${\tt et}$ in the J2000 frame with LT+S aberration correction:

cspice spkezr, 'Earth', et, 'J2000', 'LT+S', 'MARS', state, ltime

Access the *ith* state 6-vector corresponding to the *ith* ephemeris time with the expression

state i = state[*,i]

IDL Interface to CSPICE

continues on next page

11

Navigation and Ancillary Information Facility

 Convert the ephemeris time vector to UTC calendar strings with three decimal places accuracy.

```
format = 'C'
prec = 3
cspice_et2utc, et, format, prec, utcstr
```

- The call returns <code>utcstr</code>, a vector of 1000 strings, each *ith* string the calendar date corresponding to <code>et[i]</code>.
- Convert the position components of the N state vectors to latitudinal coordinates (the first three components of a state vector - IDL uses a zero based vector index).

cspice_reclat, state[0:2,*], radius, latitude, longitude

- The call returns three double precision 1000-vectors: radius, latitude, and longitude.

Navigation and Ancillary Information Facility

As an example of Icy use, calculate and plot the trajectory in the J2000 inertial frame of the Cassini spacecraft from June 20, 2004 to December 1, 2005.

```
;; Define the number of divisions of the time interval and the time interval.
STEP = 10000
utc = [ 'Jun 20, 2004', 'Dec 1, 2005' ]
;; Load the needed kernels
cspice_furnsh, 'standard.ker'
cspice_furnsh, '/kernels/cassini/spk/T18-5TDJ5.bsp'
;; Create an array of ephemeris times, then retrieve position for each time value
cspice_str2et, utc, et
times = dindgen(STEP)*(et[1]-et[0])/STEP + et[0]
cspice_spkpos, 'Cassini', times, 'J2000', 'NONE', 'SATURN BARYCENTER', pos, ltime
;; Plot the resulting trajectory.
x = pos[0, *]
y = pos[1,*]
z = pos[2,*]
iplot, x, y, z
cspice_unload, 'standard.ker'
cspice_unload, '/kernels/cassini/spk/T18-5TDJ5.bsp'
```

IDL Interface to CSPICE

Graphic Output using IDL iTool

Navigation and Ancillary Information Facility

Trajectory of the Cassini vehicle in the J2000, for June 20, 2005 to Dec 1, 2005