

Using the Frames Subsystem

March 2006

What is the power of Frames?

Navigation and Ancillary Information Facility

- The "power" of the Frames capability stems from the SPICE system's ability to construct complex reference frame transformations with no effort required of you - the end user
- The principal benefit from the Frames capability is obtained through the main SPK subsystem interfaces (SPKEZR and SPKPOS) and the Frames subsystem interfaces (SXFORM and PXFORM)
- The remaining pages illustrate typical use of frames
- Several VERY IMPORTANT usage issues are mentioned in the core Frames tutorial (fk.*); be sure to also read that.

Remember: "reference frame" ≠ "coordinate system"

Using Frames 2

Offset between Instruments

Navigation and Ancillary Information Facility

Compute the angular separation between the ISS Narrow Angle Camera and Wide Angle Camera boresights:

```
C Retrieve the matrix that transforms vectors from NAC to WAC frame CALL PXFORM( 'CASSINI_ISS NAC', 'CASSINI_ISS_WAC', ET, MAT )
```

C Transform NAC boresight to WAC frame and find separation angle
CALL MXV (MAT, NAC_BORESIGHT_nac, NAC_BORESIGHT_wac)
ANGLE = VSEP(NAC BORESIGHT wac , WAC BORESIGHT wac)

Using Frames

Angular Constraints

3

Navigation and Ancillary Information Facility

Check whether the angle between camera boresight and direction to Sun is within allowed range:

```
CALL SPKPOS( 'SUN', ET, 'CASSINI_ISS_NAC', 'LT+S', 'CASSINI', SUNVEC, LT )
ANGLE = VSEP( NAC_BORESIGHT_nac, SUNVEC )
IF ( ANGLE .LE. CONSTRAINT ) WRITE(*,*) 'WE ARE IN TROUBLE!'
```

Using Frames 4

Angles at the Surface

Navigation and Ancillary Information Facility

Compute solar azimuth and elevation at the Huygens probe landing site:

CALL SPKPOS('SUN',ET,'HUYGENS_LOCAL_LEVEL','LT+S','HUYGENS_PROBE',SUNVEC,LT)
CALL RECRAD(SUNVEC, R, AZIMUTH, ELEVATION)

Using Frames 5

Relative Position of Sensors

Find the position of one MGS MAG sensor with respect to the other in the MGS s/c frame. Also find the relative orientation of sensors:

CALL SPKEZR('MGS_MAG-Y', ET, 'MGS_SPACECRAFT', 'NONE', 'MGS_MAG+Y', STATE, LT)
CALL PXFORM('MGS_MAG_+Y_SENSOR', 'MGS_MAG_-Y_SENSOR', ET, MAT)

Using Frames 6

Manipulators - 1

Navigation and Ancillary Information Facility

Compute the angle between the direction to Earth and the MGS HGA boresight:

```
CALL SPKEZR( 'EARTH', ET, 'MGS_HGA', 'LT+S', 'MGS', EARTH_STATE, LT )

ANGLE = VSEP( HGA_BORESIGHT, EARTH_STATE )
```

Using Frames 7

Manipulators - 2

Navigation and Ancillary Information Facility

Compute the dig location in MPL surface-fixed and camera left eye frames:

```
CALL SPKEZR( 'MPL_RA_SCOOP',ET, 'MPL_SURFACE_FIXED', 'NONE', 'MPL_SURF',ST1,LT )

CALL SPKEZR( 'MPL_RA_SCOOP',ET, 'MPL_SSI_LEFT', 'NONE', 'MPL_SSI', ST2,LT )

Using Frames
```

8