

Planetary Constants Kernel PCK

March 2006

Topics

- Overview
- Body-Fixed Frames
- Shape Models
- IAU Rotation Models
- High Precision Rotation Models
- PCK Files
- Interface Routines

 The P_constants kernel (PCK or PcK) is logically part of the "planet kernel."

• SPICE PCK data consist of:

- Orientation (also known as "rotation") models for extended, natural solar system bodies: sun, planets, natural satellites, a few asteroids
 - » Models yield the mapping from a specified inertial frame to a body-fixed frame as a function of time.
 - » The data also provide the time derivative of the inertial-frame-tobody-fixed mapping.
- Physical and cartographic constants
 - » Sets of radii for triaxial shape models.
 - » Additional items could be included, such as:
 - · prime meridian offset from principal axis
 - magnetic dipole location
 - gravity parameters: GM, J2, higher order gravity field terms
 - ring model parameters

PcK Subsystem

Overview - 2

Navigation and Ancillary Information Facility

- The SPICE PCK subsystem provides interface routines that enable SPICE-based applications to:
 - for a user-specified epoch, compute the transformation between any SPICE supported frame and a body-fixed frame specified within the PCK
 - » using a 3x3 rotation matrix for position transformations (PXFORM)
 - » using a 6x6 state transformation matrix for state transformations (SXFORM)
 - obtain available cartographic and physical constants associated with a specified body.

Body-Fixed Frames

Navigation and Ancillary Information Facility

Body-fixed frames used in PCK files are planetocentric.

- Z-axis is aligned with +/- spin axis. The positive Z-axis points toward the north side of the invariable plane of the solar system.
- The invariable plane is normal to the solar system's angular momentum vector. It is
 - » approximately the same as Jupiter's orbital plane.
 - » roughly parallel to the ecliptic plane.
- X-axis defines the prime meridian.
- Y-axis completes the right-handed frame.
- High-precision earth-fixed frames have names of the form ITRFnn, for example ITRF93.
 - The International Earth Rotation Service (IERS) defines these frames.

PcK Subsystem

Navigation and Ancillary Information Facility

· Shape models are triaxial, having the form:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

- Although many bodies are in fact modeled by spheroids or oblate spheroids, SPICE deals with the general, triaxial case.
 - Exception: SPICE supports geodetic coordinate transformations only for bodies modeled as spheroids or oblate spheroids.
 - » RECGEO and GEOREC are the modules performing these transformations.

IAU Rotation Models - 1

Navigation and Ancillary Information Facility

- SPICE shape models use data from the IAU/IAG (formerly IAU/IAG/COSPAR) Working Group Report, as published in ICARUS.
 - Latest full report used by NAIF was issued in 2000.
- IAU rotation models are provided:
 - for the sun and planets:
 - » IAU models use low-degree (typically linear) polynomials to represent RA and DEC of the pole (body-fixed +Z-axis) as a function of time.
 - » The prime meridian is also represented by a low-degree polynomial.
 - » Trigonometric polynomial terms are now supported by SPICE.
 - for natural satellites:
 - » Additional trigonometric polynomial terms are used to more accurately represent precession and nutation.
 - » A few satellites exhibit chaotic rotation and so are not modeled.
 - for some major asteroids (e.g. Ida, Eros, Gaspra, Vesta)

PcK Subsystem

Navigation and Ancillary Information Facility

• IAU shape models

- Nominally triaxial
- For many bodies, two of the axes (equatorial axes) have the same value (spheroidal)
- For some bodies, one or more radii have not been determined.
- The IAU base frame is the IERS-defined International Celestial Reference Frame (ICRF).
 - SPICE treats the ICRF as equivalent to J2000 (EME2000).
- The IAU reference epoch is J2000 (2000 Jan 1 12:00:00 TDB).

SPICE high precision rotation data are currently available only for the earth, moon, and Eros.

The IERS provides the data for the earth.

- » Much more accurate than the earth's IAU rotation model
- » Very "perishable" data: the highest accuracy is obtainable only for past epochs.
- Data for the moon come from JPL's DE405 planet/lunar ephemeris
 - » The binary lunar PCK represents the moon's so-called "principal axis" reference frame.
- SPICE <u>binary</u> PCK files are used to accommodate these high precision models.
 - Chebyshev polynomials represent Euler angles giving orientation as a function of time.
 - Data available from a loaded binary PCK always takes precedence over functionally equivalent data available in a loaded text kernel, independent of file loading order.

PcK Subsystem

Navigation and Ancillary Information Facility

- The IERS high precision earth rotation model takes into account:
 - Precession: 1976 IAU model due to Lieske.
 - Nutation: 1980 IAU model
 - True sidereal time using accurate values of TAI-UT1
 - Polar motion *
 - Nutation corrections *
 - * Polar motion and nutation corrections aren't used in implementing the "Earth true equator and equinox of date" frame.
- Update rate for rapidly changing components: several times per week.
 - NAIF has recently initiated an automatic script to capture these updates and produce a new high precision earth PCK
 - » File is placed on the NAIF server. Full path and file name:
 - pub/naif/generic_kernels/pck/earth_000101_yymmdd_yymmdd.bpc
 - » SPICE users may capture file with wget: wget "ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/earth_000101*.bpc"

- High accuracy determination of surface locations relative to an inertial frame involves motions in addition to earth rotation, including:
 - tidal effects
 - ocean and atmospheric loading
 - tectonic plate motion
- Tectonic plate motion is now accounted for in NAIF's DSN station SPK file. It is not currently modeled in SPK files for non-DSN stations.
- The other non-rotational effects affecting surface locations are NOT modeled by a PCK, and in fact are not modeled by any SPICE component.

PcK Subsystem

NAIF

PCK Files - 1

Navigation and Ancillary Information Facility

- The SPICE text kernel mechanism is used to implement generic PCK files.
 - Users may easily visually inspect data.
 - Users may (carefully!) modify kernels with a text editor.
 - » Data or comments may be added, deleted, or changed.
 - » Comments should be added to explain changes.
 - Kernel variables contain the mathematical terms appearing in rotation or shape models.
 - » BODY699_RADII = (60268 60268 54364)
 - $\text{BODY699}_{POLE}RA = (40.58 0.036 0.)$
 - The user may include additional kernel variables to change the base frame or reference epoch.
 - Kernel variable names are case-sensitive.
- NAIF creates and distributes text PCK files based on IAU/IAG reports, published in *ICARUS*.

- The SPICE system stores high-precision models in <u>binary</u> PCKs.
 - They include a "comment area" to store metadata.
 - They support high-speed, direct access.
 - They support multiple data types.
 - » Chebyshev, position only. Polynomials represent Euler angles. Rates are obtained by differentiating polynomials. Coverage intervals have fixed length.
 - Used for the earth and moon
 - » Chebyshev, position and velocity. Separate sets of polynomials are used to represent Euler angles and their rates. Coverage intervals have variable length.

PcK Subsystem

NAIF

Navigation and Ancillary Information Facility

- SPICE Toolkit utilities enable reading and writing comments, summarizing, and porting <u>binary</u> PCKs.
 - Use the commnt utility to access a binary PCK comment area.
 - Use the brief or spacit utility to summarize a binary PCK.
 - Use the *toxfr* and *tobin* utilities, or the *spacit* utility, to port binary PCK files between computers with incompatible binary standards.
 - » If using NAIF Toolkit Version N0052 or later, you can read nonnative binary format PCK files using SPICE Toolkit software: simply move the binary file between the two computers using binary mode of FTP. (Not including VAX or Alpha machines.)

PCK Files - 3

 See the "introduction_to_kernels" tutorial for details about porting a binary PCK and manipulating comments in a binary PCK.

Interface Routines - 1

Navigation and Ancillary Information Facility

- Call FURNSH to load PCKs.
- Call SXFORM to return a state transformation.
 - Returns 6x6 matrix (position and angular rate)

CALL SXFORM (FROM, TO, ET, XFORM) sxform_c (from, to, et, xform); cspice sxform, from, to, et, xform

- Call PXFORM to return a position transformation.
 - Returns 3x3 matrix (position only)

CALL PXFORM (FROM, TO, ET, ROTATE) pxform_c (from, to, et, rotate); cspice pxform, from, to, et, rotate

• The older routines TISBOD, TIPBOD, and BODMAT are still supported, but NAIF recommends users not call them directly.

PcK Subsystem

15

Interface Routines - 2

Navigation and Ancillary Information Facility

Call BODVRD or BODVCD to retrieve constants associated with a body. For example:

CALL BODVRD (BODYNM, MAXN, N, ITEM, VALUES) CALL BODVRD ('SATURN', 'RADII', 3 N, RADII) CALL BODVCD (699, 'RADII', 3 N, RADII) bodvrd c (bodynm, item, maxn, &n, values); bodvrd c ("SATURN", "RADII", 3 &n, radii); bodvcd c (699, "RADII", 3 &n, radii); cspice bodvrd, bodynm, item, maxn, values cspice bodvrd, 'SATURN', item, 3, radii cspice bodvcd, 699, item, 3, radii - These calls retrieve values associated with the variable BODY699 RADII.

- The variable name is case-sensitive, so the string "RADII" above must be in upper case.
- You can also use general kernel pool fetch routines to fetch data assigned to non-standard names:
 - GCPOOL, GDPOOL, GIPOOL