KPL/FK BepiColombo MPO Spacecraft Frames Kernel ============================================================================= This frame kernel contains complete set of frame definitions for the BepiColombo Mercury Planetary Orbiter Spacecraft (MPO) including definitions for the MPO fixed and MPO science instrument frames. This kernel also contains NAIF ID/name mapping for the MPO science instruments and S/C structures (see the last section of the file). Version and Date ----------------------------------------------------------------------------- Version 2.9 -- August 4, 2021 -- Alfredo Escalante Lopez, ESAC/ESA Implemented Phebus boresight misalignment in the MPO_PHEBUS_SM frame. Version 2.8 -- May 7, 2021 -- Alfredo Escalante Lopez, ESAC/ESA Corrected Star Tracker 3 rotation matrix and minor typos. Version 2.7 -- April 19, 2021 -- Alfredo Escalante Lopez, ESAC/ESA Defined Black Bodies 300K and 700K for MERTIS reference frames. Version 2.6 -- January 26, 2021 -- Alfredo Escalante Lopez, ESAC/ESA Corrected offset in azimuth axis during elevation axis determination in MPO_HGA_EL_ZERO to -0.145 degrees according to optical measurements. Added IDs for Schulte vector metrological phase centers: - MPO_SCHULTE_X_BAND_MET -121872 - MPO_SCHULTE_KA_BAND_MET -121873 Version 2.5 -- October 28, 2020 -- Marc Costa Sitja, ESAC/ESA Added IDs for MERTIS pixel field of views. Version 2.4 -- October 22, 2020 -- Alfredo Escalante, ESAC/ESA Marc Costa Sitja, ESAC/ESA Major review, cleanup and update of the HGA frames and IDs and ISA IDs for the Schulte Vector implementation. Additional minor corrections implemented as well. Added SIXS-X planning FoV IDs. Version 2.3 -- July 16, 2020 -- Marc Costa Sitja, ESAC/ESA Ingo Richter, TU-BS Added NAIF Body IDs for instrument suites, updated centers for all frames. Updated NAIF Body MPO_SIMBIO-SYS_MU to MPO_SIMBIO-SYS. Updated orientation of MPO-MAG sensors. Version 2.2 -- April 6, 2020 -- Marc Costa Sitja, ESAC/ESA Corrected PHEBUS FOV definitions and descriptions. Corrected typo in MPO_SIMBIO-SYS_HRIC_FPA frame definition. Schulte vector intermediate updates (not final). MERTIS correction for Earth Flyby (misalignment not considered). Version 2.1 -- November 22, 2019 -- Marc Costa Sitja, ESAC/ESA Alessandra Pali, MORE/UNIBO Marco Lucente, ISA/INAF Cristina Re, INAF Corrected MPO_ISA_URF and MPO_ISA_ILS frames definitions. Updated Names and IDs for the epehemeris objects relevant to the computation of the Schulte vector, major update to the HGA frames. Corrected and updated SIMBIO-SYS reference frames definitions. Fixed IDs of science reference frames due to ID clashes with SA. Updated MPO S/C Diagrams and reference frames centers for DSKs. Version 2.0 -- June 13, 2019 -- Marc Costa Sitja, ESAC/ESA Simon T. Lindsay, Uni of Leicester Updated MPO_MIXS_OB following validation from Simon T. Lindsay. Renamed MPO_HGA, SCHULTE and MORE ephemeris objects. Corrected errors in several HGA and MGA frame definitions. Implemented draft pre-launch alignment report for SIMBIO-SYS and MERTIS. Version 1.9 -- December 13, 2018 -- Marc Costa Sitja, ESAC/ESA Simplified Phebus reference frames as indicated by Eric Quemerais. Version 1.8 -- December 7, 2018 -- Marc Costa Sitja, ESAC/ESA Corrected typo in STR reference frame definition. Version 1.7 -- November 28, 2018 -- Marc Costa Sitja, ESAC/ESA Added spacecraft reference frame for planning CKs. Version 1.6 -- October 12, 2018 -- Marc Costa Sitja, ESAC/ESA Corrected MPO_STR-1 frame ID. Updated IDs for MPO-MAG. Version 1.5 -- September 6, 2018 -- Marc Costa Sitja, ESAC/ESA Cristina Re, INAF Simon T. Lindsay, Uni of Leicester General correction of the SIMBIO-SYS frames. New and updated definition for the following frames; MPO_SIMBIO-SYS_STC_H and MPO_SIMBIO-SYS_STC_L have been separated from the others 6 filters and one more level of the tree has to be created. The values of the filter offsets have been considered only in the frames kernel and and not in the boresights. Implemented update based on Alignment Test by TAS-I for the MIXS_OB frame the BELA reference frames, the MERTIS frame and for the STR and SA frames. Implemented FoV reference frame for PHEBUS. Version 1.4 -- May 21, 2018 -- Marc Costa Sitja, ESAC/ESA Ingo Richter, TU-BS Alessandro Moura, IAPS/INAF Corrected MPO_MPO-MAG frame definitions. Updated PHEBUS IDs and errors in Frame Definitions. Updated SERENA IDs and alignment of SERENA STROFIO. Version 1.3 -- March 9, 2018 -- Marc Costa Sitja, ESAC/ESA Included and updated references to science frames IDs. Version 1.2 -- March 9, 2018 -- Marc Costa Sitja, ESAC/ESA Cristina Re, INAF Eero Esko, UH Kai Wickhusen, DLR Updated SIMBIO-SYS Names, ids and added frames for filters. Fixed SIXS detector numbering in drawings. Updated SIXS axis definitions and rotation matrices. Updated SIXS-P elevation and azimuth angles. Corrected IDs for BELA Receiver and Transmitter. Updated MPO_MAG ids. Version 1.1 -- July 13, 2017 -- Marc Costa Sitja, ESAC/ESA Simon T. Lindsay, Uni of Leicester Marco Lucente, ISA/INAF Cristina Re, SIMBIO-SYSINAF Incorporated HGA frame definitions, MORE and ISA ephemeris objects for the computation of the so-called "Schulte vector"; indications on how to compute it are provided in the MORE section. Updated MIXS reference frames according to [25]. Updated MERTIS Base Frame with missalignments from [26]. Updated ISA Unit Optical Aligment Frame definition and several typos in the ISA frames from [27]. Version 1.0 -- April 3, 2017 -- Marc Costa Sitja, ESAC/ESA Marco Lucente, ISA/INAF Corrected error in MPO_MIXS-T frame definition. Updated and added ISA reference frames definitions. Added draft Schulte Vector reference frame for MORE. Version 0.9 -- March 1, 2017 -- Marc Costa Sitja, ESAC/ESA Added a STROFIO frame in order to implement CK dependency for the FoV. Corrected several typos. Version 0.8 -- February 15, 2017 -- Marc Costa Sitja, ESAC/ESA Corrected diagrams and descriptions. Updated all instrument frames and added MPO_SERENA, MPO_PHEBUS and MPO_ISA frames. Added references to MPO Science Operations frames. Replaced SIMBIOSYS references to SIMBIO-SYS. Removed MMO ID and frame definitions. Version 0.7 -- December 14, 2016 -- Marc Costa Sitja, ESAC/ESA Corrected and updated MPO_SIMBIO-SYS and MPO_SIXS frames. Version 0.6 -- November 25, 2016 -- Marc Costa Sitja, ESAC/ESA Corrected diagrams and minor edits. Updated and added MPO_SIMBIO-SYS and MPO_BELA, MPO_MERTIS frame definitions. Added MPO_PHEBUS frame definitions. Version 0.5 -- November 3, 2016 -- Marc Costa Sitja, ESAC/ESA Updated diagrams for MPO Spacecraft frame. Added description for SA frame and corrected its definition. Completed MPO HGA frames and added new definitions. Added MPO Medium Gain Antenna frames. Added MPO Low Gain Antenna frames and MPO Star Tracker frames. Updated minor edits as well. Added corresponding NAIF ID definitions. Added references from [5] to [12]. Version 0.4 -- August 12, 2016 -- Marc Costa Sitja, ESAC/ESA Updated filename and version numbering. Corrected bad non-ASCII characters. Updated BEPICOLOMBO MPO IDs from -69 to -121. Added draft MPO Magnetometer Boom Frames. Removed kernel name and version assignment. Version 0.3 -- February 8, 2016 -- J. McAuliffe, ESAC/ESA SIXS sub-unit IDs updated. Version 0.2 -- December 19, 2014 -- S. Martinez, ESAC/ESA SIXS frame details included Version 0.1 -- February 11, 2013 -- J. McAuliffe, ESAC/ESA Initial prototype. Based on MESSENGER Frames Kernel V2.1.0 13-OCT-2010 (msgr_v210.tf) Version 0.0 -- May 28, 2000 -- J. Vazquez, ESAC/ESA Preliminary Version. Only template frames for the spacecraft. References ----------------------------------------------------------------------------- 1. ``Frames Required Reading'' 2. ``Kernel Pool Required Reading'' 3. ``C-Kernel Required Reading'' 4. ``BepiColombo - System Design Description'', BC-ASD-DD-00004, Airbus DS GmbH, Issue 2, 29th November 2014 5. ``AOCS Study Assumptions for BepiColombo'', BC-ASD-TN-00051, Issue 11, Revision 1, Airbus DS GmbH, 3rd of June 2016 6. ``MPO Solar Array Control User Manual'', BC-ASD-MA-00027, Airbus DS GmbH, Issue 4.1, 19th April 2016 7. ``BC PFM MPO Configuration'', BC-ASD-DW-00081, Issue A, Astrium GmbH, 12 October 2012 8. ``HGAMA IDCD'', BC-ALS-ID-00002, Issue 3, Revision 2, Thales Alenia Space, 30 July 2010 9. ``Angular Movement of HGA and MGA'', BC-ASD-TN-00096, Issue 2.0, EADS Astrium GmbH, 17th May 2013 10. ``MGB Interfaces'', BC-SEN-ID-10002, SENER, 20th October 2009 11. ``MGAMA Interface Drawing'', BC-SEN-ID-10002, SENER, 10th February 2011 12. ``BepiColombo - MGA Major Assembly & HGA Pointing Assembly - MGAMA Users Manual'', BC-SEN-UM-10001, SENER, Revision 1, 14th March 2005 13. ``BepiColombo MPO Calibration Working Group - MPO Pointing Plan'', BC-SGS-TN-054, Issue 2, 10th June 2016 14. ``Simbio-Sys Experiment Interface Document Part - B'', BC-EST-RS-02523, Issue 1, 25th September 2012 15. ``BepiColombo MIXS - MIXS Instrument User Manual'', BC-MIX-UM-001, Issue 3, Revision 2, University of Leicester, 1st April 2015 16. ``BepiColombo MERTIS - Instrument User Manual (FM)'', MER-DLR-MA-001, Issue 1, Revision 3, German Aerospace Center, 13th September 2013 17. ``SIXS Experiment Interface Document Part - B'', BC-EST-RS-02518, Issue 1, Revision 3, 14th October 2013 18. ``SERENA Experiment Interface Document Part - B'', BC-EST-RS-02522, Draft 3, 13th February 2009 19. ``BepiColombo PHEBUS - Instrument User Manual'', PHEB_UM_INST_111107_1_LATMOS, Issue 1, Release 1, Draft 4, 15th October 2015 20. ``BepiColombo ISA - Instrument User Manual'', BC-ISA-UM-00160, Issue 4, Release 1, 2nd December 2015 21. ``MGNS Experiment Interface Document Part - B'', BC-EST-RS-02516, Draft 3, 13th February 2009 22. ``MERMAG Experiment Interface Document Part - B'', BC-EST-RS-02514, Draft 2, 12th December 2007 23. ``BepiColombo MIXS - MIXS Instrument User Manual'', BC-MIX-UM-001, Issue 3, Revision Draft, University of Leicester, 2nd December 2015 24. ``Reference Frames for the ISA Acceleration Measurements'', BC-ISA-TN-10027, Issue 1, Revision 3, ISA Science Team, 21st November 2016 25. ``BepiColombo MIXS - SPICE kernels validation'', BC-MIX-TN-299, S. Lindsay, University of Leicester, Issue 1, Revision 0, 3rd May 2017 26. ``FM Optical Alignment Report'', MER-DLR-TR-037, I. Sebastian, DLR, Issue 1, Revision 0, 19th April 2013. 27. ``Update MPO FK for ISA (26/6/17)'', Note provided via Slack, M. Lucente, 26th June 2017. 28. ``HGAMA reference system definitions for RSE'', BC-ALS-TN-00257, Thales Alenia Space, G. Cosentino, 10th December 2016. 29. ``PRELIMINARY REPORT OF LASER TRACKER MEASUREMENT BETWEEN HGA AND ISA IDA'', BC-ALS-PR-00272, Thales Alenia Space, Issue 2, 27th October 2016. 30. ``MPO Alignment Cubes, Master Reference Cube'', BC-ASD-ID-00040, Astrium GmbH, Issue 1, Revision A, 24th March 2010. 31. ``Characterisation of the IDA to HGA Phase Center Vector'', BC-ASD-TN-00543, H.R. Schulte, Issue 1, Revision 0, 28th April 2017. 32. ``HGA to ISA Alignment for the Schulte Vector Calculation Test Procedure'', BC-ALS-PR-00272, V.Quarto, Thales Alenia Space, 23rd August 2017. 33. Email from Cristina Re (INAF) ``SIMBIO Ik and fk revision'' on 28th June 2018. 34. ``BepiColombo MIXS - MIXS Feedback to TAS-I Alignment Test Report'', S. Lindsay, University of Leicester, Issue 1, Revision 0, 7th June 2018. 35. ``Review and Feedback on Alignment Measurement Test Report (BC-ALS-TR-00096-4)'' by ISA, Marco Lucente, 20th March 2018. 36. ``Alignment measurement test report'', BC-ALS-TR-00096, V. Cuarto, Thales Alenia Space, 12th February 2018. 37. ``BC-ASD-DW-00074_B_MPO_OPTB_RELEASED'', Technical Drawing, Astrium, 3rd July 2007. 38. ``BC-ASD-ID-00081_A_PFM_MPO_ALIGNMENT_CUBES_BELA_RELEASED'', Technical Drawing, Astrium, 18th September 2012. 39. ``PHEBUS Experiment Interface Document Part - B'', BC-EST-RS-02513, Draft 3, 12th February 2009. 40. ``BC-ASD-DW-00073_B_MPO_MX_RELEASED'', Technical Drawing, Astrium, 1st July 2013. 41. Email communication from E. Quemerais ``BC-PHEBUS field of view and line of sight definition'' which includes the document ``PHEBUS FoV Definition for spice kernels''. 42. ``PFM MPO Alignment Cubes - Star Tracker Cubes'', BC-ASD-ID-00091_A_PFM_MPO_ALIGNMENT_CUBES-STR_RELEASED, Technical Drawing, 3rd July 2012. 43. ``BepiColombo Magnetometer Boom Users Manual'', BC-SEN-MA-00001, Revision: 8, SENER, 23rd January 20104 44. ``BepiColombo MIXS - SPICE Kernels Validation'', S. Lindsay, University of Leicester, Issue D, Revision 0, 9th May 2019. 45. SYIMBIO-SYS Instrument Kernel (latest version). Contact Information ----------------------------------------------------------------------------- If you have any questions regarding this file contact the ESA SPICE Service at ESAC: Marc Costa Sitja (+34) 91-8131-457 marc.costa@esa.int, esa_spice@sciops.esa.int or NAIF at JPL: Boris Semenov (818) 354-8136 Boris.Semenov@jpl.nasa.gov Implementation Notes ----------------------------------------------------------------------------- This file is used by the SPICE system as follows: programs that make use of this frame kernel must "load" the kernel normally during program initialization. Loading the kernel associates the data items with their names in a data structure called the "kernel pool". The SPICELIB routine FURNSH loads a kernel into the pool as shown below: FORTRAN: (SPICELIB) CALL FURNSH ( frame_kernel_name ) C: (CSPICE) furnsh_c ( frame_kernel_name ); IDL: (ICY) cspice_furnsh, frame_kernel_name MATLAB: (MICE) cspice_furnsh ( 'frame_kernel_name' ) PYTHON: (SPICEYPY)* furnsh( frame_kernel_name ) In order for a program or routine to extract data from the pool, the SPICELIB routines GDPOOL, GIPOOL, and GCPOOL are used. See [2] for more details. This file was created and may be updated with a text editor or word processor. * SPICEPY is a non-official, community developed Python wrapper for the NAIF SPICE toolkit. Its development is managed on Github. It is available at: https://github.com/AndrewAnnex/SpiceyPy BepiColombo MPO Mission NAIF ID Codes ----------------------------------------------------------------------------- The following names and NAIF ID codes are assigned to the MPO spacecraft, its structures and science instruments (the keywords implementing these definitions are located in the section "BepiColombo Mission NAIF ID Codes -- Definition Section" at the end of this file): MPO Spacecraft and Spacecraft Structures names/IDs: MPO -121 (synonyms: BEPICOLOMBO MPO, MERCURY PLANETARY ORBITER) MPO_SPACECRAFT -121000 (synonym: MPO_SC) MPO_SA -121012 MPO_SA_GIMBAL -121010 MPO_SA_Y-1 -121911 MPO_SA_Y-2 -121912 MPO_SA_Y-3 -121913 MPO_SA_P1-1 -121914 MPO_SA_P1-2 -121915 MPO_SA_P1-3 -121916 MPO_SA_P1-4 -121917 MPO_SA_P2-1 -121918 MPO_SA_P2-2 -121919 MPO_SA_P2-3 -121920 MPO_SA_P2-4 -121921 MPO_SA_P3-1 -121922 MPO_SA_P3-2 -121923 MPO_SA_P3-3 -121924 MPO_SA_P3-4 -121925 MPO_OB -121013 MPO_MAG_BOOM-H -121030 MPO_MAG_BOOM -121031 MPO_HGA -121023 MPO_MGA_BOOM-H -121040 MPO_MGA -121043 MPO_LGA+X -121050 MPO_LGA-X -121051 MPO_STR-1 -121061 MPO_STR-2 -121062 MPO_STR-3 -121063 MPO_MOSIF -121090 BELA names/IDs: MPO_BELA -121100 MPO_BELA_RECEIVER -121101 MPO_BELA_TRANSMITTER -121102 MERTIS names/IDs: MPO_MERTIS_PLANET -121201 MPO_MERTIS_SPACE -121202 MPO_MERTIS_BB3 -121203 MPO_MERTIS_BB7 -121204 MPO_MERTIS_TIS -121210 MPO_MERTIS_PLANET_TIS -121211 MPO_MERTIS_SPACE_TIS -121212 MPO_MERTIS_TIR -121220 MPO_MERTIS_PLANET_TIR -121221 MPO_MERTIS_SPACE_TIR -121222 MPO_MERTIS -121230 MIXS names/IDs: MPO_MIXS -121300 MPO_MIXS-C -121350 MPO_MIXS-T -121355 PHEBUS names/IDs: MPO_PHEBUS -121430 MPO_PHEBUS_SLIT_75 -121431 MPO_PHEBUS_SLIT_100 -121432 MPO_PHEBUS_75 -121433 MPO_PHEBUS_100 -121434 MPO_PHEBUS_PB -121411 SERENA names/IDs: MPO_SERENA -121500 MPO_SERENA_ELENA -121510 MPO_SERENA_MIPA -121520 MPO_SERENA_PICAM -121530 MPO_SERENA_PICAM_00_30 -121531 MPO_SERENA_PICAM_30_60 -121532 MPO_SERENA_PICAM_60_90 -121533 MPO_SERENA_STROFIO -121540 MPO_SERENA_STROFIO+X -121541 MPO_SERENA_STROFIO-X -121542 MPO_SERENA_ELENA_AN_NN -1215NN* * There are NNN NAIF ID codes for the MPO_SERENA_ELENA_AN elements. NN is the anode number and ranges from 50 to 82. SIMBIO-SYS names/IDs: MPO_SIMBIO-SYS -121600 MPO_SIMBIO-SYS_HRIC_URF -121601 MPO_SIMBIO-SYS_HRIC_UORF -121602 MPO_SIMBIO-STC-VIHI_UORF -121603 MPO_SIMBIO-SYS_HRIC_FPA -121610 MPO_SIMBIO-SYS_HRIC_F550 -121611 MPO_SIMBIO-SYS_HRIC_FPAN -121612 MPO_SIMBIO-SYS_HRIC_F750 -121613 MPO_SIMBIO-SYS_HRIC_F880 -121614 MPO_SIMBIO-SYS_STC_FPA -121620 MPO_SIMBIO-SYS_STC-L -121621 MPO_SIMBIO-SYS_STC-H -121622 MPO_SIMBIO-SYS_STC-L_F920 -121623 MPO_SIMBIO-SYS_STC-L_F550 -121624 MPO_SIMBIO-SYS_STC-L_P700 -121625 MPO_SIMBIO-SYS_STC-H_P700 -121626 MPO_SIMBIO-SYS_STC-H_F420 -121627 MPO_SIMBIO-SYS_STC-H_F750 -121628 MPO_SIMBIO-SYS_VIHI_FPA -121630 SIXS names/IDs: MPO_SIXS -121700 MPO_SIXS-X -121710 MPO_SIXS-X-1 -121711 MPO_SIXS-X-2 -121712 MPO_SIXS-X-3 -121713 MPO_SIXS-X-1_PLAN -121714 MPO_SIXS-X-2_PLAN -121715 MPO_SIXS-X-3_PLAN -121716 MPO_SIXS-P -121720 MPO_SIXS-P-0 -121721 MPO_SIXS-P-1 -121722 MPO_SIXS-P-2 -121723 MPO_SIXS-P-3 -121724 MPO_SIXS-P-4 -121725 ISA names/IDs: MPO_ISA -121800 MPO_ISA-VERTEX_FEE -121806 MPO_ISA-AM-X_FEE -121807 MPO_ISA-AM-Y_FEE -121808 MPO_ISA-AM-Z_FEE -121809 MORE names/IDs: MPO_MORE -121875 MPO_HGA_ARA_SC -121850 MPO_HGA_P1_ARA -121851 MPO_HGA_P21_ARA -121852 MPO_HGA_P1-IF-INT_ARA -121853 MPO_HGA_P21-IF-INT_ARA -121854 MPO_HGA_P1-IF_IFINT -121855 MPO_HGA_P1_IFINT -121857 MPO_HGA_S2_ARA -121804 MPO_HGA_S2_IF -121805 MPO_HGA_APM-DGN_ARA -121858 MPO_HGA_APM_SCHULTE -121859 MPO_HGA_OPT_EL -121864 MPO_HGA_PC-X_OPT -121865 MPO_HGA_PC-KA_OPT -121866 MPO_SCHULTE_X_BAND -121870 MPO_SCHULTE_KA_BAND -121871 MPO_SCHULTE_X_BAND_MET -121872 MPO_SCHULTE_KA_BAND_MET -121873 MPO_SCHULTE_ORIGIN -121874 MPO-MAG names/IDs: MPO_MPO-MAG -121890 MPO_MPO-MAG_IBS -121891 MPO_MPO-MAG_OBS -121892 MGNS names/IDs: MPO_MGNS -121895 BERM names/IDs: MPO_BERM -121896 BepiColombo MPO Mission Frames ----------------------------------------------------------------------------- The following MPO frames are defined in this kernel file: Name Relative to Type NAIF ID ====================== ======================== ========== ========= Spacecraft frames: ------------------ MPO_SPACECRAFT J2000 CK -121000 MPO_SPACECRAFT_PLAN J2000 CK -121001 MPO_SPIN_AXIS J2000 CK -121002 MPO_SA_GIMBAL MPO_SPACECRAFT FIXED -121010 MPO_SA_SADM MPO_SA_GIMBAL FIXED -121011 MPO_SA MPO_SA_SADM CK -121012 MPO_OB MPO_SPACECRAFT FIXED -121013 MPO_MAG_BOOM-H MPO_SPACECRAFT FIXED -121030 MPO_MAG_BOOM MPO_MAG_BOOM-H CK -121031 Antenna Frames: --------------- MPO_HGA_ARA MPO_SPACECRAFT FIXED -121020 MPO_HGA_IF_INT MPO_SPACECRAFT FIXED -121021 MPO_HGA_SCHULTE MPO_SPACECRAFT FIXED -121024 MPO_HGA_OPT_SWD MPO_HGA_SCHULTE FIXED -121027 MPO_HGA_APM_DGN MPO_HGA_IF_INT FIXED -121026 MPO_HGA_APM MPO_HGA_APM_DGN FIXED -121028 MPO_HGA_AZ MPO_HGA_APM CK -121035 MPO_HGA_EL_ZERO MPO_HGA_AZ FIXED -121039 MPO_HGA_EL MPO_HGA_EL_ZERO CK -121036 MPO_HGA_OPTICS MPO_HGA_EL FIXED -121037 MPO_HGA MPO_HGA_OPTICS FIXED -121038 MPO_MGA_BOOM-H MPO_SPACECRAFT FIXED -121040 MPO_MGA_BOOM MPO_MGA_BOOM-H CK -121041 MPO_MGA_ZERO MPO_MGA_BOOM FIXED -121042 MPO_MGA MPO_MGA_ZERO CK -121043 MPO_LGA+X MPO_SPACECRAFT FIXED -121050 MPO_LGA-X MPO_SPACECRAFT FIXED -121051 Star Trackers Frames: --------------------- MPO_STR-1 MPO_SPACECRAFT FIXED -121061 MPO_STR-2 MPO_SPACECRAFT FIXED -121062 MPO_STR-3 MPO_SPACECRAFT FIXED -121063 BELA Frames: ------------ MPO_BELA_BASE MPO_OB FIXED -121100 MPO_BELA_RECEIVER MPO_BELA_BASE FIXED -121101 MPO_BELA_TRANSMITTER MPO_BELA_BASE FIXED -121102 MERTIS Frames: ------------- MPO_MERTIS_BASE MPO_SPACECRAFT FIXED -121200 MPO_MERTIS_PLANET MPO_MERTIS_BASE FIXED -121201 MPO_MERTIS_SPACE MPO_MERTIS_BASE FIXED -121202 MPO_MERTIS_BB3 MPO_MERTIS_BASE FIXED -121203 MPO_MERTIS_BB7 MPO_MERTIS_BASE FIXED -121204 MPO_MERTIS MPO_MERTIS_BASE CK -121230 MIXS Frames: ------------ MPO_MIXS_OB MPO_SPACECRAFT FIXED -121300 MPO_MIXS-C MPO_MIXS_OB FIXED -121310 MPO_MIXS-T MPO_MIXS_OB FIXED -121320 PHEBUS Frames: -------------- MPO_PHEBUS_SM MPO_SPACECRAFT FIXED -121400 MPO_PHEBUS_PB_BASE MPO_SPACECRAFT FIXED -121410 MPO_PHEBUS_PB MPO_PHEBUS_PB_BASE FIXED -121411 MPO_PHEBUS_SCAN_ZERO MPO_PHEBUS_SM FIXED -121420 MPO_PHEBUS_SCAN MPO_PHEBUS_SCAN_ZERO CK -121421 MPO_PHEBUS MPO_PHEBUS_SM CK -121430 SERENA Frames: -------------- MPO_SERENA_ELENA MPO_SPACECRAFT FIXED -121510 MPO_SERENA_MIPA MPO_SPACECRAFT FIXED -121520 MPO_SERENA_PICAM MPO_SPACECRAFT FIXED -121530 MPO_SERENA_STROFIO_BASE MPO_SPACECRAFT FIXED -121540 MPO_SERENA_STROFIO+X MPO_SERENA_STROFIO_BASE FIXED -121541 MPO_SERENA_STROFIO-X MPO_SERENA_STROFIO_BASE FIXED -121542 MPO_SERENA_STROFIO MPO_SERENA_STROFIO_BASE CK -121543 SIMBIO-SYS Frames: ------------------ MPO_SIMBIO-SYS_MU MPO_OB FIXED -121600 MPO_SIMBIO-SYS_HRIC_URF MPO_OB FIXED -121601 MPO_SIMBIO-SYS_HRIC_UORF MPO_OB FIXED -121602 MPO_SIMBIO-SYS-VIHI_UORF MPO_OB FIXED -121603 MPO_SIMBIO-SYS_HRIC_FPA MPO_SIMBIO-SYS_HRIC_UORF FIXED -121610 MPO_SIMBIO-SYS_HRIC_F550 MPO_SIMBIO-SYS_HRIC_FPA FIXED -121611 MPO_SIMBIO-SYS_HRIC_FPAN MPO_SIMBIO-SYS_HRIC_FPA FIXED -121612 MPO_SIMBIO-SYS_HRIC_F750 MPO_SIMBIO-SYS_HRIC_FPA FIXED -121613 MPO_SIMBIO-SYS_HRIC_F880 MPO_SIMBIO-SYS_HRIC_FPA FIXED -121614 MPO_SIMBIO-SYS_STC_FPA MPO_SIMBIO-SYS-VIHI_UORF FIXED -121620 MPO_SIMBIO-SYS_STC_H MPO_SIMBIO-SYS_STC_FPA FIXED -121621 MPO_SIMBIO-SYS_STC_L MPO_SIMBIO-SYS_STC_FPA FIXED -121622 MPO_SIMBIO-SYS_STC-L_F920 MPO_SIMBIO-SYS_STC-L FIXED -121623 MPO_SIMBIO-SYS_STC-L_F550 MPO_SIMBIO-SYS_STC-L FIXED -121624 MPO_SIMBIO-SYS_STC-L_P700 MPO_SIMBIO-SYS_STC-L FIXED -121625 MPO_SIMBIO-SYS_STC-H_P700 MPO_SIMBIO-SYS_STC-H FIXED -121626 MPO_SIMBIO-SYS_STC-H_F420 MPO_SIMBIO-SYS_STC-H FIXED -121627 MPO_SIMBIO-SYS_STC-H_F750 MPO_SIMBIO-SYS_STC-H FIXED -121628 MPO_SIMBIO-SYS_VIHI_FPA MPO_SIMBIO-SYS-VIHI_UORF FIXED -121630 SIXS Frames: ----------------- MPO_SIXS_SU MPO_SPACECRAFT FIXED -121701 MPO_SIXS-X MPO_SIXS_SU FIXED -121710 MPO_SIXS-X-1 MPO_SIXS-X FIXED -121711 MPO_SIXS-X-2 MPO_SIXS-X FIXED -121712 MPO_SIXS-X-3 MPO_SIXS-X FIXED -121713 MPO_SIXS-P MPO_SIXS_SU FIXED -121720 MPO_SIXS-P-0 MPO_SIXS-P FIXED -121721 MPO_SIXS-P-1 MPO_SIXS-P FIXED -121722 MPO_SIXS-P-2 MPO_SIXS-P FIXED -121723 MPO_SIXS-P-3 MPO_SIXS-P FIXED -121724 MPO_SIXS-P-4 MPO_SIXS-P FIXED -121725 ISA Frames: ----------- MPO_ISA_URF MPO_SPACECRAFT FIXED -121800 MPO_ISA_UOAF MPO_ISA_URF FIXED -121801 MPO_ISA_FEE_BOX MPO_ISA_UOAF FIXED -121802 MPO_ISA_ILS MPO_ISA_UOAF FIXED -121803 MPO_ISA_AM_X MPO_ISA_ILS FIXED -121810 MPO_ISA_AM_Y MPO_ISA_ILS FIXED -121820 MPO_ISA_VERTEX MPO_ISA_ILS FIXED -121821 MPO_ISA_AM_Z MPO_ISA_ILS FIXED -121830 MPO-MAG Frames: --------------- MPO_MPO-MAG_IBS MPO_MAG_BOOM FIXED -121891 MPO_MPO-MAG_OBS MPO_MAG_BOOM FIXED -121892 MGNS Frames: ------------ MPO_MGNS MPO_SPACECRAFT FIXED -121985 In addition, the following frames, in use by the BepiColombo mission, are defined in other kernels or `built into' the SPICE system: Name Relative to Type NAIF ID ====================== ===================== ============ ========= BepiColombo mission science operations frames (1): -------------------------------------------------- MPO_MERCURY_NOA J2000 DYNAMIC -121911 MPO_MERCURY_NPO J2000 DYNAMIC -121912 (1) These frames are defined in the frame kernel file "bc_ops_vVV.tf" In order to use them with this frames kernel, additional fixed-offset frames kernel(s) need to be loaded. See the section ``Using these frames'' in the "bc_ops_vVV.tf" comment area for further details (VV is the version number). BepiColombo mission specific science frames (2): ------------------------------------------------ BC_MSO MERCURY DYNAMIC -121931 BC_MSO_AB MERCURY FIXED -121932 BC_MSM MERCURY DYNAMIC -121933 BC_MBF MERCURY FIXED -121934 BC_MME_IAU2006_OF_DATE MERCURY DYNAMIC -121941 BC_MME_IAU2006_J2000 MERCURY FIXED -121942 BC_MME_IAU2009_OF_DATE MERCURY DYNAMIC -121943 BC_MME_IAU2009_J2000 MERCURY FIXED -121944 BC_MPO_RTN SUN DYNAMIC -121951 BC_MMO_RTN SUN DYNAMIC -121952 BC_GSE EARTH DYNAMIC -121961 BC_GSM EARTH DYNAMIC -121962 BC_VSO VENUS DYNAMIC -121971 (2) These frames are defined in the frame kernel file "bc_sci_vVV.tf" (VV is the version number) SPICE 'Built-in' PCK frames in use by BepiColombo (3): ------------------------------------------------------ IAU_MERCURY J2000 PCK built-in IAU_EARTH J2000 PCK built-in IAU_VENUS J2000 PCK built-in (3) Data for these frames is loaded using either the PCK file "pckVVVVV.tpc" (VVVVV is the version number) BepiColombo MPO Frames Hierarchy ----------------------------------------------------------------------------- The diagram below shows the BepiColombo MPO spacecraft and its structures frame hierarchy (not including science instrument frames.) BC_MME_IAU2006_OF_DATE ---------------------- ^ | BC_MME_IAU2006_J2000 | -------------------- | ^ | | BC_MME_IAU2009_OF_DATE BC_MERCURY_BSM | | ---------------------- -------------- | | ^ ^ | | | BC_MME_IAU2009_J2000 MERCURY_SUN_ORB | | | | -------------------- --------------- | | | | ^ ^ | | | | | | | dyn->| fxd->| dyn->| fxd->| dyn->| dyn->| | | | | | | | | | | J2000" INERTIAL | | +-----------------------------------------------------------+ | | | | | | |<-pck |<-ck |<-ck |<-ck |<-pck |<-pck | | | | | | V V | | V V "IAU_MERCURY" "MPO_SPIN_AXIS" | | "IAU_EARTH" "IAU_VENUS" ------------- --------------- | | ----------- ---------- | | | |<-ck | | | | | V V | "MPO_SPACECRAFT_PLAN" | --------------------- | | | "MPO_LGA-X" | | ----------- | | ^ ck->| | | | | fixed->| | | | | | "MPO_LGA+X" | "MPO_STR-1" | | "MPO_STR-2" "MPO_STR-3" ----------- | ----------- | | ----------- ----------- ^ | ^ | | ^ ^ | | | | | | | |<-fixed | fixed->| V V |<-fixed |<-fixed | | | "MPO_SPACECRAFT" | | +----------------------------------------------------------------+ | | | . | . |<-fixed |<- fixed |<- fixed . fixed->| . | | | . | . V | V . V . "MPO_SA_GIMBAL" | "MPO_MAG_BOOM-H" . "MPO_MGA_BOOM-H" . -------------- | ---------------- . --------------- . | | | . | . |<-fixed v |<-ck . ck->| . | "MPO_OB" | . | . V -------- V . V . "MPO_SA_SADM" "MPO_MAG_BOOM" . "MPO_MGA_BOOM" . ------------- -------------- . ------------- . | . . | . |<-ck . . fixed->| . | . . | . V . . v . "MPO_SA" . . "MPO_MGA_ZERO" . -------- . . ------------- . . . | . . . ck->| . . . | . . . V . . . "MPO_MGA" . . . --------- . . . . . . . . . . . . . . . . . . . V V V Individual instrument frame trees are provided HGA frame tree provided in the corresponding sections of this file in the corresponding section of this file MPO Spacecraft and Spacecraft Structures Frames ------------------------------------------------------------------------ This section of the file contains the definitions of the spacecraft and spacecraft structures frames. DISCLAIMER: The origin of the frames specified in the following definitions are not implemented. The ``true'' origin of all frames is in the center of the MPO_SPACECRAFT frame, the center of which is defined by the position given by the SPK (ephemeris) kernel in use. MPO Spacecraft Bus Frame (CS9) ----------------------------------------------------------------------------- The MPO spacecraft frame -- MPO_SPACECRAFT --, is defined by the S/C design as follows [4]: - +Z axis is perpendicular to the launch vehicle interface plane and points toward the payload side; representing the spacecraft line of sight toward Mercury during science operation; - +X axis is perpendicular to the HGA mounting plane and points toward the HGA in stowed configuration; - +Y axis completes the right-handed frame. - the origin of this frame is the Mercury Transfer Module/MPO interface point on the separation plane. These diagram(s) illustrate the MPO_SPACECRAFT frame: +Z S/C side (Science Deck) view: -------------------------------- Steerable HGA -----> \__O__/ __ || ,---. Rotating | |-' ,' | Solar Panel ,-------,' | Radiator ,________, ,________, ,________, , +Xsc ^ ' | Panel |////////| |////////| |////////|\ | | | |////////|=|////////|=|////////|\\ | | | |////////| |////////| |////////| \\____| | | |////////| |////////| |/////// +Ysc <---------o | |////////|=|////////|=|////////|// | +Zsc | |////////| |////////| |////////|/ | | '--------' '--------' '--------' |________ | / '. | / '. | / '. | _ 0 '._; MGA --> -)[_] \ MPO \ Magnetometer ---> \ Boom \ InBoard --> 0 +Zsc/nadir is Sensor \ out of the \ page. OutBoard --> 0 Sensor -Z S/C side view: ----------------- MPO 0 Magnetometer ---> / Boom / 0 / _ / MGA --> -)[_] / 0 . .-/ Rotating \ . ' ,' 0| Solar Panel \ . ' ,' | ,________, ,________, ,_______, o----------' | |////////| |////////| |///////|\ | | |////////|=|////////|=|///////|\\ | | |////////| |////////| |///////| \\____| +Zsc | |////////| |////////| |/////// +Ysc <---------x | |////////|=|////////|=|///////|// | | | |////////| |////////| |///////|/ | | | '--------' '--------' '-------' '. | | '.____v +Xsc | | | '. \ | |__|\ '. \ | __||__ '-'--' +Zsc is into the / O \ t he page. +X S/C side view: ----------------- \ MPO Steerable / Magnetometer HGA ---> O/ Boom __/ | _ ______||___ V MGA --> -)[_]0==n/ '/ () \________n=====o==o ,| ' \__/ / \ .o | / ' \ Rotating . ' . `| ' / \ Solar Panel . ' '.|/ <---------o ' (*)\<---- LGA . ' 24 deg |+Ysc - - - -|- / \ . ' | | ' \ . ' | |/ \ . ' '----------- |---------\ ^ | | v | +Zsc/nadir Science +Xsc is out of Deck the page -Y S/C side (Radiator Panel) view: ---------------------------------- _____________ Rotating |/////////////| Solar Panel |///// +Zsc //| |///////^/////| __||___|_||__ |///////|/////| .-----------------|---------------. |O=======.----. ==|======= STR-1 O| |========| \\|===|= STR-3 ==( )==| Steerable |========|___\\===|===( )=========| HGA |========= Phebus |=======( )=STR-2 .-''-. |=================x---------------> / \ / \ |============================= +Xsc | O | |=================================|-\ | / |O===============================O| `-..-' 0====0=============|_|===|_|------------------------' ^ ^ | | MPO MGA +Ysc is into Magnetometer the page Boom Since the S/C bus attitude with respect to an inertial frame is provided by a C-kernel (see [3] for more information), this frame is defined as a CK-based frame. \begindata FRAME_MPO_SPACECRAFT = -121000 FRAME_-121000_NAME = 'MPO_SPACECRAFT' FRAME_-121000_CLASS = 3 FRAME_-121000_CLASS_ID = -121000 FRAME_-121000_CENTER = -121000 CK_-121000_SCLK = -121 CK_-121000_SPK = -121 \begintext An additional S/C bus reference frame is defined in order to accommodate the C-kernels that have been generated with a fictional SCLK kernel. These CK kernels contain predicted data and are used for long and mid term planning. The before-mentioned CKs are generated with a fictional SCLK kernel due to the fact that successive updates of the real SCLK kernel would lead to erroneous results for the predicted data provided by those kernels after the last Time Correlation Packet that the real SCLK contains. In order to be able to use the planning CKs with the measured CKs the planning CKs are generated with the fictional SCLK and are defined relative to the MPO spacecraft planning reference frame -- MPO_SPACECRAFT_PLAN --. Those planning CKs are then appended with a CK segment generated with the real SCLK that maps the MPO_SPACECRAFT_PLAN to the MPO_SPACECRAFT reference frame thus allowing to use both planning and measured CK files together with correct results. Note that when new SCLK are available the segment boundaries of the planning CKs will be affected. Due to this reason, the mapping segments boundaries are adjusted inwards by a minute on each side to get a better chance of them always being within the original CK segment boundaries. The MPO_SPACECRAFT_PLAN frame is defined as a CK-based frame. These sets of keywords define the MPO_SPACECRAFT_PLAN frame. \begindata FRAME_MPO_SPACECRAFT_PLAN = -121001 FRAME_-121001_NAME = 'MPO_SPACECRAFT_PLAN' FRAME_-121001_CLASS = 3 FRAME_-121001_CLASS_ID = -121001 FRAME_-121001_CENTER = -121000 CK_-121001_SCLK = -121999 CK_-121001_SPK = -121 \begintext MPO Spin Axis Frame ---------------------------------------------------------------------------- The MPO Spin Axis frame -- MPO_SPIN_AXIS -- is a special frame used in the cruise orientation CK files. In these files the MPO_SPACECRAFT frame orientation is not stored relative to the J2000 frame. Instead it is "decomposed" into two orientations: the nominal spin axis orientation captured in the segments providing the orientation of the MPO_SPIN_AXIS frame relative to the J2000 frame and the nominal rotation about the spin axis captured in the segments providing the orientation of the MPO_SPACECRAFT_PLAN frame relative to the MPO_SPIN_AXIS frame. MPO_SPIN_AXIS is defined as a CK-based frame. \begindata FRAME_MPO_SPIN_AXIS = -121002 FRAME_-121002_NAME = 'MPO_SPIN_AXIS' FRAME_-121002_CLASS = 3 FRAME_-121002_CLASS_ID = -121002 FRAME_-121002_CENTER = -121000 CK_-121002_SCLK = -121999 CK_-121002_SPK = -121 \begintext MPO Solar Array Frames -------------------------------------------------------------------------- The MPO solar array is articulated and can rotate 360 degrees with respect to its longitudinal axis (having one degree of freedom). The rotation axis is in the Y/Z plane and is tilted 24 degrees around the S/C X axis from +Y towards +Z [6]. The drive angle around the rotation axis is often abbreviated as SADM (Solar Array Drive Mechanishm) or as SADM rotation angle. If the SADM rotation angle is zero, the normal vector of the solar array cell face is in the Y/Z plane and pointing to the -Z hemisphere. The Solar Array frame (MPO_SA) is defined as a CK frame with its orientation given relative to the MPO Solar Array Drive Mechanism (MPO_SADM) -that assumes a SADM = 0 degrees-. which at the same time is tilted downward of 24 degrees with respect to the +X spacecraft axis [5]. The MPO solar array gimbal frame -- MPO_SA_GIMBAL -- is an auxiliary ``fixed-offset'' frame defined with respect to MPO_SPACECRAFT, as follows (from [6]): - +Y is parallel to the spacecraft bus +Yc, pointing to the direction of the deployed solar arrays; - +Z is anti-parallel to the spacecraft bus -Zsc, pointing to the opposite direction of the Nadir direction; - +X completes the right-handed frame; - the origin of the frame is located at the yoke geometric center. The MPO Solar Array Drive Mechanism -- MPO_SA_SADM -- frame is a ``fixed-offset'' frame defined with respect to MPO_SA_GIMBAL, as follows (from [6]): - +Z is tilted downward 24 degrees with respect to the +Zsa_gim axis; - +X is parallel to the +Xsa_gimbal axis; - +Y completes the right-handed frame; - the origin of the frame is located at the yoke geometric center. The MPO Solar Array -- MPO_SA -- frame is defined as follows (from [6]): - +Y is parallel to the longest side of the array, positively oriented from the yoke to the end of the wing; - +Z is normal to the solar array plane, the solar cells facing +Z; - +X completes the right-handed frame; - the origin of the frame is located at the yoke geometric center. The axis of rotation is parallel to the Y axis of the spacecraft and the solar array frames. These diagrams illustrate the MPO Solar Array Frames: +X S/C side view: ----------------- +Zsa_gim \ +Zsa_sadm ^ ^ / \ | O/ \ | __/ \ | ______||___ \ | / '/ () \________n=====o==o \|,| ' \__/ / \ +Ysa_gim <------------x +Xsa_gim,+Xsa_sadm ' \ . ' . `| ' +Xsc / \ +Ysa, . ' '.|/ <---------o ' (*)\` +Ysa_sadm < ' 66 deg |+Ysc - - - -|- / \ . ' | | ' \ . ' | |/ \ . ' '----------- |---------\ Rotating ^ | Solar Panel | v | +Zsc/nadir Science +Xsc is out of Deck the page +Ysa_0 is into page +Z SA side view: ---------------- 0 / / +Xsa 0 ^ / _ | / -)[_] | / 0 | . .-/ Rotating \| . ' ,' O| Solar Panel | . ' ,' | ,________, ,________, ,_______, |.----------' | |////////| |////////| |///////|\ || | |////////|=|////////|=|///////|\\ || | |////////| |////////| |///////| \\___|| | <--------------------------------------o| | +Ysa,+Ysa_sadm////////|=|///////|// | | |////////| |////////| |///////|/ | | '--------' '--------' '-------' '. | '._________ | | | '. \ | |__|\ '. \ | __||__ '-'--' +Zsa is out / O \ of the page +Y SA side view: ---------------- 0 +Xsa_sadm | ^ 0 +Zsa | | ^ +Xsa | | .' ^ | | .' '. .-------|-------. .' '. | | | .' '.| | .' < '.------|----- .' '. SADM rotation angle | '. | ,' | \ | '. | ,' | ' | '.|.' | | | o-------------------> +Zsa_sadm | +Ysa | | | | | |_______________| | .-''-. | | / \ | '---| +Zsa,+Zsa_sadm \ / +Zsa, +Zsa_gim are `-..-' out of the page Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_SA_GIMBAL = -121010 FRAME_-121010_NAME = 'MPO_SA_GIMBAL' FRAME_-121010_CLASS = 4 FRAME_-121010_CLASS_ID = -121010 FRAME_-121010_CENTER = -121010 TKFRAME_-121010_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121010_SPEC = 'ANGLES' TKFRAME_-121010_UNITS = 'DEGREES' TKFRAME_-121010_AXES = ( 2, 3, 1 ) TKFRAME_-121010_ANGLES = ( -180, 0.0, 0.0 ) FRAME_MPO_SA_SADM = -121011 FRAME_-121011_NAME = 'MPO_SA_SADM' FRAME_-121011_CLASS = 4 FRAME_-121011_CLASS_ID = -121011 FRAME_-121011_CENTER = -121010 TKFRAME_-121011_RELATIVE = 'MPO_SA_GIMBAL' TKFRAME_-121011_SPEC = 'ANGLES' TKFRAME_-121011_UNITS = 'DEGREES' TKFRAME_-121011_AXES = ( 1, 2, 1 ) TKFRAME_-121011_ANGLES = ( 24.0, 0.0, 0.0 ) FRAME_MPO_SA = -121012 FRAME_-121012_NAME = 'MPO_SA' FRAME_-121012_CLASS = 3 FRAME_-121012_CLASS_ID = -121012 FRAME_-121012_CENTER = -121010 CK_-121012_SCLK = -121 CK_-121012_SPK = -121 \begintext MPO High Gain Antenna Frames -------------------------------------------------------------------------- BepiColombo MPO has an adjustable high gain antenna (HGA). The HGA is used as the main antenna in all mission phases except during Safe and Survival Mode where it is only activated under ground control. Telecommunications are suited for the communication with the Earth during all mission phases. It uses a redundant X/Ka-band deep space transponder able to transmit data in X- and Ka-band and receive data in the X-band. An adjustable High Gain Antenna with 1.1 m diameter is used, which can be pointed in the directions of the MPO +X hemisphere and partially the -X hemisphere. The HGA is located on the +X side of the MPO top panel with an angle of -43 degrees relative to the MPO coordinate system. The HGA has two antenna pointing mechanisms (APM) for Azimuth and Elevation of the antenna. The HGA azimuth articulation range is +/-179.5 degrees limited by mechanical endstops. The HGA elevation articulation range is -5 degress to 145 degrees also limited by mechanical endstops. A 1 degree margin to the mechanical endstops is implemented in the AOCS S/W resulting in operational ranges of +/-178.5 degrees for HGA Azimuth and -4 degrees to +144 degrees for HGA Elevation. Further S/W limits are implemented to avoid mechanical clashes with the MOSIF structure during the Interplanetary Cruise phase and the Mercury Orbit Insertion Phase. Please note that some frames have in their sub-section title a three letter acronym as defined in reference [6]: "CSX" (where X is the "frame number"). This is just to help the user to identify the frames defined in the reference with the ones defined in this file. To incorporate rotations in the antenna pointing mechanisms gimbals with respect to the high gain antenna and the definition of the Schulte vector the HGA frame chain includes the following frames: MPO_HGA_IF_INT, MPO_HGA_APM_DGN, MPO_HGA_APM, MPO_HGA_AZ, MPO_HGA_EL, MPO_HGA_OPTICS and MPO_HGA. Additional frames incorporate most of the relations used to determine the Schulte Vector: MPO_HGA_SCHULTE, MPO_HGA_OPTICS_SWD and MPO_HGA_ARA. Some of the frames are defined using ``interface holes'' of the HGA with the S/C. The location of those points have been measured in different measurement campaigns. The origins of some of the reference frames and other frames are of interest to compute the so called Schulte Vector. Because of these this points are identified in the NAIF ID definition section of this file as Mercury Orbiter Radio-Science Experiment (MORE) IDs. The following Reference ``Points'' are defined as NAIF Ephemeris Bodies: Name Description Expressed in NAIF ID ====================== ============================== =============== ======= MPO_HGA_ARA_SC MPO_HGA_ARA origin MPO_SPACECRAFT -121850 MPO_HGA_P1_ARA Schulte Point as designed MPO_HGA_ARA -121851 MPO_HGA_P21_ARA PointB as designed MPO_HGA_ARA -121852 MPO_HGA_P1-IF-INT_ARA Schulte Point before HGA inst MPO_HGA_ARA -121853 MPO_HGA_P21-IF-INT_ARA PointB before HGA installation MPO_HGA_ARA -121854 MPO_HGA_P1-IF_IFINT Schulte Point after HGA inst MPO_HGA_IF_INT -121855 MPO_HGA_P1_IFINT MPO_HGA_SCHULTE origin MPO_HGA_IF_INT -121857 MPO_HGA_APM_SCHULTE Measured origin of MPO_HGA_APM MPO_HGA_SCHULTE -121859 MPO_HGA_OPT_EL MPO_HGA_OPTICAL origin MPO_HGA_EL -121864 MPO_HGA_PC-X_OPT X-Band Phase Center MPO_HGA_OPTICS -121865 MPO_HGA_PC-KA_OPT Ka-Band Phase Center MPO_HGA_OPTICS -121866 MPO_SCHULTE_X_BAND Duplicate of PC-X_OPT MPO_HGA_OPTICS -121870 MPO_SCHULTE_KA_BAND Duplicate of PC-KA_OPT MPO_HGA_OPTICS -121871 MPO_SCHULTE_X_BAND_MET X phase center from metrology MPO_HGA_OPTICS -121872 MPO_SCHULTE_KA_BAND_MET Ka phase center from metrology MPO_HGA_OPTICS -121873 Note that this points are implemented by the following SPK file: bc_mpo_struct_vNN.bc where NN version of the kernel The latest version of this kernel needs to be loaded in the kernel pool in order to obtain the position of the given centers. High Gain Antenna Frame Tree: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The diagram below shows the High Gain Antenna frame hierarchy. "J2000" INERTIAL ---------------- | |<-ck |<-Frames on the right are | used to validate/design V (CS9)* | the Schulte Vector. "MPO_SPACECRAFT" +----------------------------------|--------------+ | | | fxd->| fxd->| | fxd->| | | | V (CS2) V (CS4) | V (CS1) "MPO_HGA_IF_INT" "MPO_HGA_ARA" "MPO_HGA_SCHULTE" ---------------- ------------- | ----------------- | | fxd->| | fxd->| | | V (CS6nom) | V (CS5swd) "MPO_HGA_APM_DGN" "MPO_HGA_OPTICS_SWD" ----------------- | -------------------- | fxd->| | | V (CS6) "MPO_HGA_APM" ------------- | ck->| | V "MPO_HGA_AZ" ------------ | fxd->| | V "MPO_HGA_EL_ZERO" ----------------- | ck->| | V "MPO_HGA_EL" ------------ | fxd->| | V (CS5) "MPO_HGA_OPTICS" ---------------- | fxd->| | V "MPO_HGA" --------- (*) Please note that the origin of the reference frame is different to the one specified in [31]. HGA Reflector Assembly Frame (CS4): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The High Gain Antenna Reflector Assembly frame (CS4) -- MPO_HGA_ARA and defined as CS4 frame defined in [31] -- is defined as a fixed offset with respect to the MPO_SPACECRAFT frame as follows (from [31] Table 3-1): - +Z axis is quasi-parallel to the MPO spacecraft +Z axis; - +X is quasi-parallel to the MPO spacecraft +X axis; - +Y axis completes the right hand frame; - The origin of this frame is defined by center hole of Point projected on S/C mounting plane. This origin is implemented with the Structures SPK described in the HGA Frame Tree section. The measured coordinates in meters of the origin w.r.t to the MPO_SPACECRAFT reference frame center are [8]: ( x, y, z ) = ( 0.486, -0.402, -0.825 ) [m] MPO_HGA_ARA_SC This diagram illustrates the MPO_HGA_ARA Frames: +Y S/C side view: ----------------- / / \ '. Elevation Angle // '. .^ // .' _// .' |o/ .' // .' \ stowed // .' ' elevation = -64 deg __//.' ' 0''--.. | '. \'. +Xara '. \ '. ^ ''-- .' ^ +Xsc '. \ '| .' | '. \ | .' | '. \ | .' | 43 deg / '.\| .' | | '|' | ---------------o------------> +Zara o-----------> +Zsc +Yara +Ysc +Ysc and +Yara are out of the page. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_HGA_ARA = -121020 FRAME_-121020_NAME = 'MPO_HGA_ARA' FRAME_-121020_CLASS = 4 FRAME_-121020_CLASS_ID = -121020 FRAME_-121020_CENTER = -121850 TKFRAME_-121020_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121020_SPEC = 'ANGLES' TKFRAME_-121020_UNITS = 'DEGREES' TKFRAME_-121020_AXES = ( 1, 2, 3 ) TKFRAME_-121020_ANGLES = ( 0.0489468, -0.0475188, -0.069325 ) \begintext HGA Interface Intermediate Frame (CS2): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The HGA Interface Intermediate Frame (CS2) -- MPO_HGA_IF_INT -- has been used to measure the locations of the HGA interface inserts and the position of the ISA alignment spheres before the HGA installation. The MPO_HGA_IF_INT frame is defined as follows [32]: - +X axis is normal to the interface plane identified as average of P1 to P24 interface points; i. e. the surface of the metal plate on which HGAMA was mounted, representing the YZ plane in the frame; - +Y axis is defined as the vector that goes from P1 to P21; - +Z axis completes the right-handed frame; - the origin of this frame is defined by point P1, the center hole, also known as the ``Schulte ref point'' projected on the I/F plane. This origin is implemented with the Structures SPK described in the HGA Frame Tree section. The nominal coordinates in meters of the origin w.r.t to the MPO_HGA_ARA (CS4) reference frame center are [29]: ( x, y, z ) = ( 0.0, 0.0000207, 0.0000666 ) [m] MPO_HGA_P1-IF-INT_ARA The design location of P21 and P1 w.r.t to the MPO_HGA_ARA (CS4) frame is [29]: ( x, y, z) = ( 0.0, 0.0, 0.0 ) [m] MPO_HGA_P1_ARA ( x, y, z ) = ( 0.0, 0.8515, -0.153 ) [m] MPO_HGA_P21_ARA Whilst the measured location of P21 and P1 before the HGA integration in the MPO_HGA_ARA (CS4) reference frame is [20]: ( x, y, z ) = ( 0.0, 0.0000207, 0.0000666 ) [m] MPO_HGA_P1-IF-INT_ARA ( x, y, z ) = ( 0.0, 0.8514423, -0.1530874 ) [m] MPO_HGA_P21-IF-INT_ARA Note that this later ones have been used to define the MPO_HGA_IF_INT (CS2) frame. The P1 point is commonly known as ``PointB'' whilst P21 is known as ``Schulte Reference Point'' [29]. \begindata FRAME_MPO_HGA_IF_INT = -121021 FRAME_-121021_NAME = 'MPO_HGA_IF_INT' FRAME_-121021_CLASS = 4 FRAME_-121021_CLASS_ID = -121021 FRAME_-121021_CENTER = -121853 TKFRAME_-121021_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121021_SPEC = 'MATRIX' TKFRAME_-121021_MATRIX = ( 9.99998924E-01, 1.20931096E-03, -8.30067278E-04, -1.33799990E-03, 9.83955859E-01, -1.78407056E-01, 6.00999954E-04, 1.78407975E-01, 9.83956418E-01 ) \begintext HGA Schulte Reference System Frame (CS1): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The HGA Schulte Reference System -- MPO_HGA_SCHULTE --, is a frame defined on the support structure S/C interface for the HGA installation using the so called ``Schulte reference point'' and ``PointB'' as defined in [28]. The HGA Schulte Reference System -- MPO_HGA_SCHULTE -- is defined as: - +X axis is the direction out warding from S/C I/F mounting plane; it is namely parallel to the MPO_HGA_ARA (CS4) +X axis; - +Y axis is defined as the line that goes from the ''Schulte reference point'' (P1) to ``PointB'' (P21); - +Z axis completes the right-handed frame; - the origin of this frame is defined by center hole of “Schulte ref point” projected on S/C mounting plane. This origin is implemented with the Structures SPK. The coordinates in meters of the origin w.r.t to the MPO_HGA_IF_INT (CS2) reference frame center are [31]: ( x, y, z ) = ( 0.0 0.000014, -0.000029 ) [m] MPO_HGA_P1_IFINT \begindata FRAME_MPO_HGA_SCHULTE = -121024 FRAME_-121024_NAME = 'MPO_HGA_SCHULTE' FRAME_-121024_CLASS = 4 FRAME_-121024_CLASS_ID = -121024 FRAME_-121024_CENTER = -121857 TKFRAME_-121024_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121024_SPEC = 'MATRIX' TKFRAME_-121024_MATRIX = ( 9.99998849E-01, 1.20940761E-03, -8.29926125E-04, -1.33761125E-03, 9.83976413E-01, -1.78292077E-01, 6.01145820E-04, 1.78292914E-01, 9.83977532E-01 ) \begintext HGA Pointing Mechanism Design Frame: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The Nominal High Gain Antenna Pointing Mechanisms frame -- MPO_HGA_APM_DGN -- is defined as a fixed offset with respect to the MPO_HGA_ARA frame as follows (from [31]): - +Z axis is the azimuth rotation axis; - +X axis is rotated ~43 degrees about MPO spacecraft +Y axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the APM yoke geometric center. This origin is implemented with the Structures SPK described in the HGA Frame Tree section. The coordinates in meters of the origin w.r.t to the MPO_HGA_ARA reference frame center are [8]: ( x, y, z ) = ( 1.15740, 0.625, -1.12090 ) [m] MPO_HGA_APM-DGN_ARA \begindata FRAME_MPO_HGA_APM_DGN = -121026 FRAME_-121026_NAME = 'MPO_HGA_APM_DGN' FRAME_-121026_CLASS = 4 FRAME_-121026_CLASS_ID = -121026 FRAME_-121026_CENTER = -121858 TKFRAME_-121026_RELATIVE = 'MPO_HGA_ARA' TKFRAME_-121026_SPEC = 'ANGLES' TKFRAME_-121026_UNITS = 'DEGREES' TKFRAME_-121026_AXES = ( 3, 2, 1 ) TKFRAME_-121026_ANGLES = ( 0.0, 43.0, 0.0 ) \begintext HGA Pointing Mechanism Frame (CS6): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The High Gain Antenna Pointing Mechanism frame -- MPO_HGA_APM -- represents the rotation axis of the antenna as measured and is defined as a fixed offset with respect to the MPO_HGA_APM_DGN frame as follows (from [31] Table 3-4 alignment to CS4): - +Z Axis is the Azimuth axis direction axes defined by circle fit of azimuth measured points. Direction has been defined out warding from Support structure APM mounting I/F. - +X axis is the Elevation axis direction: axes defined by circle fit of elevation measured points with APM Azimuth angle set to 0 deg. Direction has been defined out warding from APM elevation I/F. - +Y completes the right handed frame; - The origin of the frame is defined as intersection of Azimuth and Elevation axes. This is incorporated by the Structures SPK and is defined w.r.t. the MPO_HGA_APM_DGN reference frame [31]: ( x, y, z ) = ( -0.000995, 0.00025, -0.000273 ) [m] MPO_HGA_APM_APM-DGN Note that an additional rotation of 180 degrees around the X-axis is required to have consistent sign criteria with the analytical expressions from [31] for the Azimuth angle. \begindata FRAME_MPO_HGA_APM = -121028 FRAME_-121028_NAME = 'MPO_HGA_APM' FRAME_-121028_CLASS = 4 FRAME_-121028_CLASS_ID = -121028 FRAME_-121028_CENTER = -121859 TKFRAME_-121028_RELATIVE = 'MPO_HGA_APM_DGN' TKFRAME_-121028_SPEC = 'ANGLES' TKFRAME_-121028_UNITS = 'DEGREES' TKFRAME_-121028_AXES = ( 3, 2, 1 ) TKFRAME_-121028_ANGLES = ( -0.186, -0.058, 179.945 ) \begintext HGA Pointing Mechanism Azimuth and Elevation Frames: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The MPO High Gain Antenna Azimuth frame -- MPO_HGA_AZ -- is a CK frame defined relative to the MPO_HGA_APM frame and is rotated an Azimuth Angle about the MPO_HGA_APM +Z axis. It is defined as follows: - +Z axis is parallel to the MPO_HGA_APM frame +Z axis; - +X axis is rotated an Azimuth Angle from the MPO_HGA_APM frame +X axis around the MPO_HGA_APM frame +Z axis; - +Y completes the right hand frame; - the origin of the frame is located at the APM yoke geometric center which is equivalent to the MPO_HGA_APM origin. The HGA Azimuth rotation axis is parallel to the +Z axis of the MPO_HGA_APM frame, nevertheless the Elevation rotation axis is equivalent to the -Y axis of the MPO_HGA_AZ frame (equivalent to MPO_HGA_APM for azimuth equal to zero). Therefore we need to define an intermediate frame to be able to have a positive elevation angle. In addition, an offset in the elevation of 0.145 degrees is applied as measured for elevation axis determination from Optical Measurements [31] (Table 2-29). If the user wants to use the Metrological measurements instead, this offset would be zero. The MPO High Gain Antenna Elevation Zero frame -- MPO_HGA_EL_ZERO -- is defined accordingly as follows: - +Y axis is anti-parallel to the MPO_HGA_AZ frame +Y axis; - +Z axis is parallel to the MPO_HGA_AZ frame +Z axis; - +X completes the right hand frame; - the origin of the frame is located at the APM yoke geometric center which is equivalent to the MPO_HGA_APM origin. The MPO High Gain Antenna Elevation frame -- MPO_HGA_EL -- is a CK frame based on the MPO_HGA_EL_ZERO frame and is rotated an Elevation Angle about the MPO_HGA_EL_ZERO +Y axis. It is defined as follows: - +X axis is rotated an Elevation Angle from the MPO_HGA_AZ frame +X axis around the MPO_HGA_APM frame +Y axis; - +Y axis is parallel to the MPO_HGA_EL_ZERO frame +Y axis; - +Z completes the right hand frame; - the origin of the frame is located at the APM yoke geometric center which is equivalent to the MPO_HGA_APM origin. The MPO_HGA_EL_ZERO frame is co-aligned with the MPO_HGA_EL frame when elevation is zero and the MPO_HGA_AZ frame is co-aligned with the MPO_HGA_APM frame in the zero position. In a non-zero position the MPO_HGA_AZ is rotated from the MPO_HGA_APM frame by an azimuth angle about +Z and the MPO_HGA_EL frame is rotated from the MPO_HGA_EL_ZERO frame by an elevation angle about +Y. These rotations are stored in separated segments in CK files. The HGA in nominal stowed position is at Elevation = -64 deg and Azimuth = 0 deg. After release, it is driven to a nominal position of Elevation = 10 deg and Azimuth = 0 deg. The movement range is the following: - HGA_Azimuth angle: [ -179.5, +179.5 ] deg; - HGA_Elevation angle: [ -5.0, +145.0 ] deg; These diagrams illustrate the MPO High Gain Antenna Frames: +Y S/C side view (AZ = 0 deg, EL = 10 deg): ------------------------------------------- +Zhga_apm +Zhga_el +Zhga_az ^ ^ / '. \/'. Elevation Angle '. // '. .^ '. // .' +Xhga_apm '. _// .' +Xhga_az (Az=0) +Xhga_el <.. '. | o .' ''--.. '. // .' \ stowed ''-'// .' ' elevation = -64 deg __//.' ' +Yhga_az,+Yhga_apm 0''--.. | +Yhga_el (Az=0)'. \ ''--.. .' '. \ '' .' ^ +Xsc '. \ .' | '. \ .' | '. \ .' | 43 deg / '.\ .' | | 'o' | ---------------O------------ o-----------> +Zsc +Ysc +Zhga_az = Azimuth Axis +Yhga_el = Elevation Axis +Ysc and +Xhga_el (for Azimuth = 0) are out of the page. +Yhga_apm and +Yhga_az are in the page. +Z HGA side (Azimuthal plane) view (AZ = 175 deg, EL = 0 deg): -------------------------------------------------------------- +Yhga_apm ^ \ _ . < - .. _ _ ' _ ' \ / steering around +Yhga_az \ azimuth axis / ^. \ '. \ ..> +Xhga_apm / '. .-''-. ..--'' \ '.\ _..--'' | __ __ . o +Zhga_az | .' '..^+Zhga_op ; /`. '\._.. .' ; . `. .' . \ | `o' | / . .'| . . \ .' | / ' .`. | .' ' .' < ` --- ' _ ' v ' - . ._ _. - +Zhga_az is +Xhga_az out of the page. \begindata FRAME_MPO_HGA_AZ = -121035 FRAME_-121035_NAME = 'MPO_HGA_AZ' FRAME_-121035_CLASS = 3 FRAME_-121035_CLASS_ID = -121035 FRAME_-121035_CENTER = -121859 CK_-121035_SCLK = -121 CK_-121035_SPK = -121 FRAME_MPO_HGA_EL_ZERO = -121039 FRAME_-121039_NAME = 'MPO_HGA_EL_ZERO' FRAME_-121039_CLASS = 4 FRAME_-121039_CLASS_ID = -121039 FRAME_-121039_CENTER = -121859 TKFRAME_-121039_RELATIVE = 'MPO_HGA_AZ' TKFRAME_-121039_SPEC = 'ANGLES' TKFRAME_-121039_UNITS = 'DEGREES' TKFRAME_-121039_AXES = ( 3, 2, 1 ) TKFRAME_-121039_ANGLES = ( 179.855, 0.0, 0.0 ) FRAME_MPO_HGA_EL = -121036 FRAME_-121036_NAME = 'MPO_HGA_EL' FRAME_-121036_CLASS = 3 FRAME_-121036_CLASS_ID = -121036 FRAME_-121036_CENTER = -121859 CK_-121036_SCLK = -121 CK_-121036_SPK = -121 \begintext HGA Optics Frame: ~~~~~~~~~~~~~~~~~ The MPO High Gain Antenna Optics -- MPO_HGA_OPTICS, MPO_HGA -- frame is defined a fixed offset frame relative to the MPO_HGA_EL as follows: - +Z axis is in the antenna boresight direction; - +X axis points from the gimbal toward the antenna dish symmetry axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the geometric center of the HGA dish outer rim circle. This origin is implemented with the Structures SPK described in the HGA Frame Tree section. The coordinates in meters of the origin w.r.t to the MPO_HGA_EL reference frame center are [28]: ( x, y, z ) = ( 0.01517, -0.12420, 0.62212 ) [m] MPO_HGA_OPT_EL These diagrams illustrate the MPO High Gain Antenna Frames: +Y S/C side view (AZ = 0 deg, EL = 10 deg): ------------------------------------------- +Zhga_az0 +Zhga_op +Zhga_az +Zhga_el ^ ^ '. +Xhga_op \/'. Elevation Angle '. <. // '. .^ '. ' . // .' +Xhga_apm '. ' . _// .' +Xhga_az0 +Xhga_el <.. '. | o .' ''--.. '. //+Yhga_op stowed ''-'// .' ' elevation = -64 deg __//.' ' +Yhga_az0,+Yhga_apm 0 ''--.. | +Yhga_el (Az=0)'. \ ''--.. .' '. \ '' .' ^ +Xsc '. \ .' | '. \ .' | '. \ .' | '.\ .' | 'o' | ---------------O------------ o-----------> +Zsc +Ysc +Zhga_az = +Zga_az0 = Azimuth Axis +Xhga_apm = +Xhga_az0 = Elevation Axis +Ysc, +Yhga_el and +Yhga_op are out of the page +Yhga_apm and +Yhga_az are in the page. +Z HGA side (Azimuthal plane) view (AZ = 175 deg, EL = 0 deg): -------------------------------------------------------------- +Yhga_az (Az=0) +Yhga_apm ^ \ _ . < - .. _ _ ' _ ' \ / steering around +Yhga_az \ azimuth axis / ^. \+Xhga_az (Az=0) '. \ ..> +Xhga_apm / '. .-''-. ..--'' \ '.\ _..--'' |+Yhga_op__ __ . o +Zhga_az | ^.' '..^+Xhga_op ; /`.+Zhga_op'\.-Zhga_el ; . `. .' . '. \ | `o' | '. / . .'| . '> +Yhga_el . \ .' | / ' .`. | .' ' .' < ` --- ' _ ' v ' - . ._ _. - +Xhga_az +Zhga_az and +Zhga_op +Xhga_el are out of the page. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. Note that MPO_HGA_OPTICS and MPO_HGA frames are equivalent: MPO_HGA is a synonym of MPO_HGA_OPTICS. \begindata FRAME_MPO_HGA_OPTICS = -121037 FRAME_-121037_NAME = 'MPO_HGA_OPTICS' FRAME_-121037_CLASS = 4 FRAME_-121037_CLASS_ID = -121037 FRAME_-121037_CENTER = -121864 TKFRAME_-121037_RELATIVE = 'MPO_HGA_EL' TKFRAME_-121037_SPEC = 'ANGLES' TKFRAME_-121037_UNITS = 'DEGREES' TKFRAME_-121037_AXES = ( 2, 3, 1 ) TKFRAME_-121037_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_MPO_HGA = -121038 FRAME_-121038_NAME = 'MPO_HGA' FRAME_-121038_CLASS = 4 FRAME_-121038_CLASS_ID = -121038 FRAME_-121038_CENTER = -121864 TKFRAME_-121038_RELATIVE = 'MPO_HGA_OPTICS' TKFRAME_-121038_SPEC = 'ANGLES' TKFRAME_-121038_UNITS = 'DEGREES' TKFRAME_-121038_AXES = ( 2, 3, 1 ) TKFRAME_-121038_ANGLES = ( 0.0, 0.0, 0.0 ) \begintext HGA Optics Frame in Stowed Position (CS5): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The HGA Optics Frame in Stowed Position is used to determine employed the antenna phase centre in its stowed position. The HGA Optics Frame in Stowed Position (CS5) -- MPO_HGA_OPTICS_SWD -- is defined as a fixed offset with respect to the MPO_SPACECRAFT (CS9) frame as follows (from [8]): - +Z axis is in the antenna boresight direction; - +X axis points from the gimbal towards the antenna dish symmetry axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the geometric center of the HGA dish outer rim circle. - the origin of the frame is located normal of the geometric center of the HGA dish. This origin is implemented with the HGA SPK described in the HGA Frame Tree section. The coordinates in meters of the origin w.r.t to the MPO_HGA_SCHULTE (CS1) reference frame center are [8]: ( x, y, z ) = ( 1.172063, 0.581724, -0.402742 ) [m] MPO_HGA_OPT-SWD_P1_IFINT \begindata FRAME_MPO_HGA_OPTICS_SWD = -121027 FRAME_-121027_NAME = 'MPO_HGA_OPTICS_SWD' FRAME_-121027_CLASS = 4 FRAME_-121027_CLASS_ID = -121027 FRAME_-121027_CENTER = -121864 TKFRAME_-121027_RELATIVE = 'MPO_HGA_SCHULTE' TKFRAME_-121027_SPEC = 'MATRIX' TKFRAME_-121027_MATRIX = ( -2.92696932e-01, -1.69519207e-01, 9.41058842e-01, 9.62999856e-04, -9.84211624e-01, -1.76993084e-01, 9.56204779e-01, -5.08990932e-02, 2.88238970e-01 ) \begintext MPO Medium Gain Antenna Frames -------------------------------------------------------------------------- MPO has a Medium Gain Antenna (MGA) that serves as backup for the HGA. Whilst the HGA can be used for X/Ka-band up- and down-link the MGA supports only X-band. During the interplanetary cruise phase ground may alternate between HGA and MGA. The X-Band MGA is used primarily during the cruise phase and in Safe and Survival Modes. The MGA is mounted on a boom with 2 axes Antenna Pointing Mechanism. The MGA will be released after separation and will operate during the Interplanetary Cruise Phase and in safe mode. The MGA provides nearly complete spherical coverage with the aid of the 2-axes APM. The MGA operates in X-band. The MGA Antenna Pointing Mechanism (MGA APM) is a beam over boom two degrees of freedom gimbal which points the boom and horn structure. The boom actuator in linked to the support structure and provides coverage between 30 degrees and 240 degrees (Boom Angle). A boom degree of freedom steers the antenna along an axis resulting from tilting 18 degrees around X axis the Z axis. The other degree of freedom rotates the boom along the boom axis (Beam Angle) to point the horn antenna mounted perpendicular to the boom (360 deg. rotation), to complete the spherical coverage. The MGA boom is mounted on the corner between the MPO +Y, -Z and -X panels. The MGA boom in its stowed configuration will be attached to the +Y panel of the MPO. The MGA is "manually" released during LEOP via ground command. The length of the MGA boom is 2.007 m. The MGA Boom Hinge frame (MPO_MGA_BOOM-H) is a ``fixed-offset'', defined with respect to the MPO_SPACECRAFT frame as follows (from [5]): - +X axis is aligned with the S/C +X axis; - +Y axis is rotated 72 degrees on the S/C +X axis from the S/C -Y axis; - +Z completes the right hand frame; - the origin of the frame is located on the corner between the MPO +Y, -Z and -X panels, which corresponds to the root of the boom: ( x, y, z ) = ( -0.895, 1.117, -1.8675 ) [m] MPO_MGA_BOOM-H The MGA Boom frame (MPO_MGA_BOOM) is a CK frame based on the MPO_MGA_BOOM-H, is rotated a Boom Angle about the MPO_MGA_BOOM-H +Z axis and is defined as follows: - +Z axis is parallel to the MGA boom's hinge rotation axis; - +X axis is parallel to the boom and points from the boom deployment hinge toward its tip; and in stowed configuration is nominally co-aligned with the S/C +X axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the boom's hinge geometrical center. The MGA Zero (MPO_MGA_ZERO) frame is a ``fixed-offset'', defined with respect to the MPO_MGA_BOOM frame as follows: - +Y axis is in the direction of the MPO_MGA_BOOM +X axis; - +Z axis is in the initial antenna boresight direction (nominally anti-parallel to the MPO_MGA_BOOM Z axis); - +X completes the right hand frame; - the origin of the frame is located at the geometric center of the MGA dish outer rim circle. The MGA frame (MPO_MGA) is a CK frame based on the MPO_MGA_ZERO frame and is rotated a Beam Angle about the MPO_MGA_ZERO +Y axis, it is defined as follows: - +Z axis is in the antenna boresight direction; - +Y axis is in the direction of the MPO_MGA_BOOM +Y axis; - +X completes the right hand frame; - the origin of the frame is located at the geometric center of the MGA dish outer rim circle. The MGA stowed position is at Boom Angle = 0 deg and Beam Angle = 95 deg (from [12]). After release, it is driven to a nominal position of Boom Angle = 50 deg; and Beam Angle = 95 deg. The movement range is the following: - Boom angle: [ 0.0 +240.5 ] deg; - Beam angle: [ -180.0, +180.0 ] deg; These diagrams illustrate the MPO Medium Gain Antenna Frames: -Z S/C side view (with MGA Boom in stowed configuration): --------------------------------------------------------- /\/ / . .-/ . ' ,' 0| . ' ,' | /___, ,_______, o.----------' | \///| |///////|\ || | ////|=|///////|\\ || | \///| |///////| \\___|| | ////| |///////| /,---|| | \///|=|///////|// _|| | ////| |///////|/ |_|| | +Ysc \---' '-------' /|\'. | <-------------o '._________ | | | | | '. \ | | | |__|\ '. \ | | | __||__ '-'--' | +Zsc is into v / O \ | tha page. +Xmga_boom-h v +Xsc +X S/C side view (with MGA Boom in stowed configuration): -------------------------------------------------------- +Ymga_boom-h ^ | \ '. 72 deg / '. ,.-| O/ '.' __/ '. |+Xmga_boom-h_ '(o)/ '/ () \________n=====o==o / | ' \__/ / \ /'.| / ' \ Rotating . '/ | ' / \ Solar Panel . ' / 18deg <---------o ' (*)\ . ' / |+Ysc - - - -|- / \ . ' / | | ' \ . ' / | |/ \ . ' v '------------|---------\ +Zmga_boom-h, | +Zmga_boom v +Zsc/nadir +Xsc and +Xmha_boom-h are out of the page -Z MGA Boom side view (S/C for reference): ----------------------------------------- +Xmga_boom, ^ +Ymga_zero \ .> +Xmga_zero \ . ' \ . ' +Ymga_boom +Zmga_boom, (o). ' .> +Zmga_boom-h, \ Boom Angle . ' /\/ -Zmga_zero \ . - . . ' .-/ . \ '. ' ,' 0| +Ymga_boom-h | \ . ' ,' | /___, ,_____<--------x.----------' | \///| |///////|\ || | ////|=|///////|\\ || | \///| |///////| \\___|| | ////| |///////| /,---|| | \///|=|///////|// v| | ////| |///////|/ +Xmga_boom-h | \---' '-------' '. | '._________ | | | \ | |__|\ \ | __||__ '--' / O \ +Zmga_boom-h, +Zmga_boom are into the page +Zmga_zero is out of the page -Y MGA side view: ----------------- MGA Beam direction ^ / / +Zmga_zero +Zmga ^ ^ | / | / ....|.... / .' | /`. .' | / `. ' | / ' . | / . . +Ymga, |/ . +Ymga_zero, x--------------> +Xmga_zero +Xmga_boom |'. . . | '. . '. | '. ' Beam . | '. ' Angle `. | .'. ` ....|.... ' '> +Xmga v +Zmga_boom +Ymga, +Ymga_zero and +Xmga_boom are into the page Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_MGA_BOOM-H = -121040 FRAME_-121040_NAME = 'MPO_MGA_BOOM-H' FRAME_-121040_CLASS = 4 FRAME_-121040_CLASS_ID = -121040 FRAME_-121040_CENTER = -121 TKFRAME_-121040_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121040_SPEC = 'ANGLES' TKFRAME_-121040_UNITS = 'DEGREES' TKFRAME_-121040_AXES = ( 2, 3, 1 ) TKFRAME_-121040_ANGLES = ( 0.0, 0.0, 18.0 ) FRAME_MPO_MGA_BOOM = -121041 FRAME_-121041_NAME = 'MPO_MGA_BOOM' FRAME_-121041_CLASS = 3 FRAME_-121041_CLASS_ID = -121041 FRAME_-121041_CENTER = -121 CK_-121041_SCLK = -121 CK_-121041_SPK = -121 FRAME_MPO_MGA_ZERO = -121042 FRAME_-121042_NAME = 'MPO_MGA_ZERO' FRAME_-121042_CLASS = 4 FRAME_-121042_CLASS_ID = -121042 FRAME_-121042_CENTER = -121 TKFRAME_-121042_RELATIVE = 'MPO_MGA_BOOM' TKFRAME_-121042_SPEC = 'ANGLES' TKFRAME_-121042_UNITS = 'DEGREES' TKFRAME_-121042_AXES = ( 3, 2, 1 ) TKFRAME_-121042_ANGLES = ( -90.0, 180.0, 0.0 ) FRAME_MPO_MGA = -121043 FRAME_-121043_NAME = 'MPO_MGA' FRAME_-121043_CLASS = 3 FRAME_-121043_CLASS_ID = -121043 FRAME_-121043_CENTER = -121043 CK_-121043_SCLK = -121 CK_-121043_SPK = -121 \begintext MPO Low Gain Antenna Frames -------------------------------------------------------------------------- In addition to the HGA and the MGA, MPO has 2 X-band low gain antennas (LGAs) providing omni-directional coverage for up-link during all mission phases and hemispherical coverage for down-link, depending on the attitude of the spacecraft. They serve for emergency commanding an during the LEOP phase. The LGA installed in the +X panel of MPO frame -- MPO_LGA+X -- is a ``fixed-offset'', defined with respect to the MPO_SPACECRAFT frame as follows: - +Z axis is in the antenna boresight direction (nominally co-aligned to the spacecraft +X axis); - +Y axis is in the direction of the spacecraft +X axis; - +X completes the right hand frame; - the origin of the frame is located at the geometric center of the HGA dish outer rim circle. The LGA installed in the -X panel of MPO frame -- MPO_LGA-X -- is a ``fixed-offset'', defined with respect to the MPO_SPACECRAFT frame as follows: - +Z axis is in the antenna boresight direction (nominally co-aligned to the spacecraft -X axis); - +Y axis is in the direction of the spacecraft Z axis; - +X completes the right hand frame; - the origin of the frame is located at the geometric center of the HGA dish outer rim circle. These diagrams illustrate the MPO Low Gain Antennas frames: +X S/C side view: ----------------- \ MPO Steerable / Magnetometer HGA ---> O/ Boom __/ | _ ______||___ V MGA --> -)[_]0==n/ '/ () \________n=====o==o ,| ' \__/ / \ .o | / ' \ Rotating . ' . `| ' +Xlga_px \ Solar Panel . ' '.|/ <------o <--------o)\<---- LGA . ' 24 deg |+Ysc- - -| - - / | \ . ' | | ' | \ . ' | | / | \ . ' '---------|----------|-\ | | v v +Zsc/nadir +Ylga_px +Xsc and +Zlga_px are out of the page -X S/C side view: ----------------- / \ \O ||\__ .---------. o==o======n________/ \_ +Zlga_mp |\ <--------o) | o. +Xlga_mx / | |/ ' . Rotating / | x-------> | ' . Solar Panel / | | +Ysc | ' . / | | | ' . / | | | ' . /-v------|-------------' +Ylga_mx | v +Zsc/nadir Xsc is into the page +Zlga_mx is out of the page Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_LGA+X = -121050 FRAME_-121050_NAME = 'MPO_LGA+X' FRAME_-121050_CLASS = 4 FRAME_-121050_CLASS_ID = -121050 FRAME_-121050_CENTER = -121 TKFRAME_-121050_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121050_SPEC = 'ANGLES' TKFRAME_-121050_UNITS = 'DEGREES' TKFRAME_-121050_AXES = ( 3, 1, 2 ) TKFRAME_-121050_ANGLES = ( 0.0, -90.0, -90.0 ) FRAME_MPO_LGA-X = -121051 FRAME_-121051_NAME = 'MPO_LGA-X' FRAME_-121051_CLASS = 4 FRAME_-121051_CLASS_ID = -121051 FRAME_-121051_CENTER = -121 TKFRAME_-121051_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121051_SPEC = 'ANGLES' TKFRAME_-121051_UNITS = 'DEGREES' TKFRAME_-121051_AXES = ( 3, 1, 2 ) TKFRAME_-121051_ANGLES = ( 00.0, -90.0, 90.0 ) \begintext MPO Star Trackers Frames -------------------------------------------------------------------------- There are three Star Trackers (STRs) mounted in the Radiator Panel of MPO (-Y S/C side). The STRs are nominally oriented with their boresights on a cone with half-cone-angle of 47 degrees in the direction of the S/C -Y axis The boresight of each STR, -- the STR Z axis -- is at a position beta in the cone plane itself. The beta angle for each star tracker is: STR-1 = -74 degrees; STR-2 = 0 degrees; STR-3 = 74 degrees. The X and Y axis of the STR frames, which are aligned with the sensors Active Pixel Sensor (APS) rows and columns respectively, are oriented such that the starts cros both columns and rows of the STR APS matrix at the same time in Mercury orbit nadir pointing. This requires a 45 degrees rotation of the STR frame (from [5]). The Star Tracker STR-1, STR-2 and STR-3 frames -- MPO_STR-1, MPO_STR-2 and MPO-STR-3 -- are defined as follows: - +Z axis points along the Star Tracker boresight; - +X axis is nominally parallel to the APS sensor rows; - +Y axis completes the right handed frame; - the origin of the frame is located at the Star Tracker focal point. These diagrams illustrate the Star Trackers frames: +X S/C side view: ----------------- \ MPO Steerable / Magnetometer HGA ---> O/ Boom __/ | ^ Zstr-2 _ ______||___ V / MGA --> -)[_]0==n/ '/ () \________n=====/==o ,| ' \__/ / \ / .o | / ' \ / Rotating . ' . `| ' / \ / Solar Panel . ' '.|/ <---------o ' (*)\/ . ' 24 deg |+Ysc - - - -|- / \' . . ' | | ' \ ' . . ' | |/ \ ' . . ' '----------- |---------\ ' XY str-2 ^ | plane | v | +Zsc/nadir Science +Xsc is out of Deck the page The rotation matrices from the Star Tracker frames to the S/C frame is the inverse of the matrices that result of the following relationship: Vector = [45 deg] [47 deg] [-beta] [90 deg] Vector STR-* frame Z axis X axis Z axis X axis MPO_SPACECRAFT \___________________________________/ | M str-* M = ( -0.2687, -0.6585, 0.7030, str-1 -0.5171, -0.5171, -0.6820, 0.8126, -0.5468, -0.2016 ) M = ( 0.7071, -0.7071, 0.0, str-2 -0.5171, -0.5171, -0.6820, 0.4822, 0.4822, -0.7314 ) M = ( 0.6585, 0.2687, -0.7030, str-3 -0.5171, -0.5171, -0.6820, -0.5468, 0.8126, -0.2016 ) These rotation matrices where updated after the alignment report [36]. In order to incorporate the matrices from the report, which are expressed in the STR Unit Alignment Reference frame (UROA), they need to be multiplied by the rotation matrix that transforms the STR-* frame to the UROA frame as defined in [42]. Vector = [-90 deg] [137 deg] Vector STR-1 frame Y axis Z axis STR-1 UROA frame \_________________/ | M str-1->uroa The rotation composition is as follows: M = M * M str-*->mpo str-*->uroa(*) uroa_test(*)->mpo (see [36]) So far the only one incorporated is STR-1 due to incongruences in the alignment report [26] and the STR-* UROA definitions frames. STR-2 and STR-3 are incorporated with their default values. \begindata FRAME_MPO_STR-1 = -121061 FRAME_-121061_NAME = 'MPO_STR-1' FRAME_-121061_CLASS = 4 FRAME_-121061_CLASS_ID = -121061 FRAME_-121061_CENTER = -121 TKFRAME_-121061_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121061_SPEC = 'MATRIX' TKFRAME_-121061_MATRIX = ( -0.27309175, -0.51986777, 0.80941455 -0.65608019, -0.51470797, -0.55194291, 0.7035404, -0.68178347, -0.20050486 ) FRAME_MPO_STR-2 = -121062 FRAME_-121062_NAME = 'MPO_STR-2' FRAME_-121062_CLASS = 4 FRAME_-121062_CLASS_ID = -121062 FRAME_-121062_CENTER = -121 TKFRAME_-121062_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121062_SPEC = 'MATRIX' TKFRAME_-121062_MATRIX = ( 0.70711356, -0.51720675, 0.48227373, -0.70711356, -0.51720675, 0.48227373, 0.0, -0.68197182, -0.7313306 ) FRAME_MPO_STR-3 = -121063 FRAME_-121063_NAME = 'MPO_STR-3' FRAME_-121063_CLASS = 4 FRAME_-121063_CLASS_ID = -121063 FRAME_-121063_CENTER = -121 TKFRAME_-121063_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121063_SPEC = 'MATRIX' TKFRAME_-121063_MATRIX = ( 0.65846933, -0.51714516, -0.54678974, 0.26865924, -0.51714516, 0.81263958, -0.70302230, -0.68199836, -0.2015884 ) \begintext MPO Magnetometer Boom Frames -------------------------------------------------------------------------- The Magnetometer Boom (MAG Boom) is one of the Instrument Supporting structures of the MPO spacecraft. The MAG Boom is attached to the -X/-Z corner of the spacecraft main body and supports toward its outer end the MERMAG Inboard and Outboard sensors. The Magnetometer Boom is a one segment hinge boom with a deployed length of 2.8 m. The outboard MERMAG sensor is located at the tip of the boom, and the inboard MERMAG sensor at 0.8 m inwards. The magnetometer boom (MAG_BOOM) will be operated only in two conditions, i.e. stowed and deployed. MAG Boom Hinge frame ~~~~~~~~~~~~~~~~~~~~ The Magnetometer's boom hinge -- MPO_MAG_BOOM-H is defined as follows (from [5]): - +X axis is nominally co-aligned with the S/C +X axis; and co-aligned with the boom such that this axis points from the inboard magnetometer sensor towards the outboard magnetometer. - +X axis is rotated 180 degrees on the S/C +X axis from the S/C -Y axis; - +Z axis completes the right hand frame; and its nominally co-aligned with the Magnetometer boom's hinge rotation axis; - the origin of the frame is located at the boom's hinge geometrical center. These diagram illustrates the MPO MAG Boom Hinge frame: -Z S/C side view: ----------------- _ MGA --> -)[_] -Xsc +Zmag_boom_h 0 ^ . .-.0 o-------> +Ymag_boom_h \ | . ' ,' || | \ . '| ,' || | /___, ,_______, o-------|--' || | \///| |///////|\ | | || v ////|=|///////|\\ | | ||+Xmag_boom_h \///| |///////| \\____| | || ////| |///////| /,----| x-------------> -Ysc \///|=|///////|// | -Zsc || ////| |///////|/ | || \---' '-------' '. |0 '._________ || | | '. \ || |__|\ '. \ |0 __||__ '-'--' -Zsc and +Zmag_boom_h / O \ are out of the page. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_MAG_BOOM-H = -121030 FRAME_-121030_NAME = 'MPO_MAG_BOOM-H' FRAME_-121030_CLASS = 4 FRAME_-121030_CLASS_ID = -121030 FRAME_-121030_CENTER = -121 TKFRAME_-121030_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121030_SPEC = 'ANGLES' TKFRAME_-121030_UNITS = 'DEGREES' TKFRAME_-121030_AXES = ( 2, 3, 1 ) TKFRAME_-121030_ANGLES = ( 0.0, 0.0, 180.0 ) \begintext MAG Boom frame ~~~~~~~~~~~~~~ Since both, pre- and post- deployment orientation of the Magnetometer Boom could be required for MERMAG data analysis, the boom's frame is defined as a CK-based frame with its orientation provided in CK files. This frame is describing the time dependent relationship between the Magnetometer Boom hinge and MPO spacecraft fixed frames. Nominally the Magnetometer Boom only has two positions: stowed -- Boom Angle = 0 degrees -- and deployed -- Boom Angle = 180 degrees --. The Magnetometer Boom frame is defined as follows (from [5]): - +Z axis is parallel to the Magnetometer boom's hinge rotation axis; - +X axis is parallel to the boom and points from the boom deployment hinge toward its tip; and in stowed configuration is nominally co-aligned with the S/C +X axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the boom's hinge geometrical center. The following diagram illustrates the MPO MAG Boom frame: -Z S/C side view: ----------------- ^ Xmga_boom / / / MPO 0 Magnetometer ---> / Boom / Ymga_boom 0 <--.. / _ ''--.. / MGA --> -)[_] ''--.. / 0 -Xsc ^ ''--.. ./+Zmag_boom_h,+Zmag_boom \ | . ' ,'''0o-------> \ . '| ,' || Ymag_boom_h /___, ,_______, o-------|--' || \///| |///////|\ | | || ////|=|///////|\\ | | |v \///| |///////| \\____| | |Xmag_boom_h ////| |///////| /,----| o-------------> -Ysc \///|=|///////|// | -Zsc | ////| |///////|/ | | \---' '-------' '. | '._________ | | | '. \ | |__|\ '. \ | __||__ '-'--' / O \ -Zsc, +Zmag_boom_h and +Zmag_boom are out of the page. -Y S/C side (Radiator Panel) view: ---------------------------------- ~~~~~~~~~~~~~~ |_____||__ //////////| .---------------------------------. |O=======.----. ================ O| |========| o | ==================| Steerable +Xmag_boom |========|___\\=======( )=========| HGA < |= Phebus ================( )=====| .-''-. ' . -Xsc <---------------------o===== STR-2 ===|-/ \ / \ 0 . |=================|===============| | O | / 0 . |=================|===============|-\ | / 10 deg ' . |O======= =======|==============O| `-..-' _ _ | _ _ _ _ _'_.||_|===|_|--------|---------------' ^ ^ | | | | MPO MGA V -Ysc, -Ymag_boom are MAG BOOM -Zsc into the page These sets of keywords define the Magnetometer's boom frame as a CK frame: \begindata FRAME_MPO_MAG_BOOM = -121031 FRAME_-121031_NAME = 'MPO_MAG_BOOM' FRAME_-121031_CLASS = 3 FRAME_-121031_CLASS_ID = -121031 FRAME_-121031_CENTER = -121030 CK_-1211031_SCLK = -121 CK_-1211031_SPK = -121 \begintext MPO Optical Bench Frame ----------------------- This section of the file contains the definitions of the MPO Optical Bench frame. Optical Bench Frame Tree: ~~~~~~~~~~~~~~~~~~~~~~~~~ The diagram below shows the Optical Bench frame hierarchy. "J2000" INERTIAL --------------- | |<-ck | V "MPO_SPACECRAFT" ---------------- | |<-fixed | V "MPO_OB" -------- Optical Bench Frame: ~~~~~~~~~~~~~~~~~~~~ The Carbon fiber reinforced polymer (CFRP) Optical Bench (OB) provides stable accommodation for instruments with high pointing/alignment requirements (BELA, SIMBIO-SYS) plus the Star Trackers and the gyros. The OB is placed in the Science Deck of MPO. The nominal Optical Bench frame is defined as follows: - +Z axis co-aligned with the MPO_SPACECRAFT +Z axis representing the spacecraft line of sight toward Mercury during nominal operations; - +X axis is co-aligned with the MPO_SPACECRAFT +X axis; - +Y axis completes the right-handed frame. - the origin of this frame is the geometrical center of the Optical Bench. This diagram illustrates the nominal Optical Bench frame: +Z S/C side (Science Deck) view: -------------------------------- Steerable HGA -----> \__O__/ __ || ,---. Rotating | |-' ,' | Solar Panel ,-------,' | Radiator ,________, ,________, ,________, ,--------' | Panel |////////| |////////| |////////|\ | | |////////|=|////////|=|////////|\\ | | |////////| |////////| |////////| \\____| -Zsc | |////////| |////////| |////////| /,----| x-------------> -Ysc, |////////|=|////////|=|////////|// | | | -Yob |////////| |////////| |////////|/ | | | '--------' '--------' '--------' |______|_ | / | '. | / | '. | / v '. | _ 0 -Xsc, '._; MGA --> -)[_] -Xob, \ MPO \ Magnetometer ---> \ Boom \ InBoard --> 0 +Zsc/nadir and Sensor \ +Zob are out of \ the page. OutBoard --> 0 Sensor The nominal Optical Bench frame is co-aligned with the S/C frame. \begindata FRAME_MPO_OB = -121013 FRAME_-121013_NAME = 'MPO_OB' FRAME_-121013_CLASS = 4 FRAME_-121013_CLASS_ID = -121013 FRAME_-121013_CENTER = -121 TKFRAME_-121013_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121013_SPEC = 'ANGLES' TKFRAME_-121013_UNITS = 'DEGREES' TKFRAME_-121013_AXES = ( 1, 2, 3 ) TKFRAME_-121013_ANGLES = ( 0.0, 0.0, 0.0 ) \begintext BELA (BepiColombo Laser Altimeter) Frames: ------------------------------------------ This section of the file contains the definitions of the BELA frames. BELA Frame Tree: ~~~~~~~~~~~~~~~~ The diagram below shows the BELA frame hierarchy. "J2000" INERTIAL --------------- | |<-ck | V "MPO_SPACECRAFT" ---------------- | |<-fixed | V "MPO_OB" -------- | |<-fixed | V "MPO_BELA_BASE" +---------------------------------------+ | | |<-fixed |<-fixed | | V V "MPO_BELA_TRANSMITTER" "MPO_BELA_RECEIVER" ---------------------- ------------------- BELA Frames: ~~~~~~~~~~~~ The BELA Laser Altimeter is rigidly mounted on a Baseplate Unit (BPU) attached to the spacecraft Optical Bench. Therefore, the frame associated with it -- the MPO_BELA_BASE frame -- is specified as a fixed offset frame with its orientation given relative to the MPO_OB frame and is defined as follows: - +Z axis is nominally co-aligned with the S/C +X axis; - +X axis is nominally co-aligned with the S/C +Z axis; - +Y axis completes the right-hand frame; - the origin of the frame is located at the center of the Base Plate Unit. The BELA Transmitter laser frame -- MPO_BELA_TRANSMITTER (TBU) -- is co-aligned with the MPO_BELA_BASE frames and are defined as follows: - +X axis points along the boresight of the BELA_TRANSMITTER; - +Y axis is anti-parallel to the S/C +X axis; - +Z axis completes the right-hand frame; - the origin of the frame is located at the center of the Buffer Unit of the transmitter and the receiver respectively. The BELA Receiver Telescope -- and MPO_BELA_RECEIVER (RBU) -- is rotated 90 degrees around the +Y axis of the MPO_BELA_BASE frames and is defined as follows: - +Y axis is anti-parallel to the S/C +X axis; - -Z axis is anti-parallel to the boresight of the BELA_RECEIVER; - +X axis completes the right-hand frame and is co-aligned with the S/C +Y axis; - the origin of the frame is located at the center of the Buffer Unit of the transmitter and the receiver respectively. This diagram illustrates the BELA frames: +Z S/C side (science deck side) view: ------------------------------------- Steerable HGA -----> \__O__/ __ || ,---. Rotating | |-' ,' | Solar Panel ,-------,' | Radiator ,________, ,________, ,________, ,--------' | Panel |////////| |////////| |////////|\ | | |////////|=|////////|=|////////|\\ | | |////////| |////////| |////////| \\____| -Zsc | |////////| |////////| |////////| /,----| x-------------> -Ysc, |////////|=|////////|=|////////|// | | |+Ybela_receiver |////////| |////////| |////////|/ | | |+Ybela_transmitter '--------' '--------' '--------' |______|_ |+Ybela_base / | '. | / | '. | / v '. | _ 0 -Xsc, '._; MGA --> -)[_] +Xbela_receiver \ -Zbela_transmitter \ -Zbela_base \ /\/ +Zsc, -Xbela_transmitter, +Xbela_base and -Zbela_receiver are out of the page. Nominally the MPO_BELA_BASE frame is rotated 90 degrees around the S/C +Y axis and then 180 degrees around the resulting +Z axis. The incorporated roation is derived from the latest measurements performed before launch (from [36]). The rotation is provided by the following matrices product: M = M * M * M urf->mpo urf->mpo' mpo'->uora uroa_test->mpo (1) (2) (3) where: (1) provides the rotation in between the BPU Unit Reference Frame and the MPO_SPACECRAFT frame (as defined in [37]). It consists on a 90 degree rotation around the +Y axis and a 180 degree rotation around the resulting +Z Axis: M = ( 0, 0, 1, urf->mpo' 0, -1, 0, 1, 0, 0 ) (2) provides the rotation in between MPO and the BPU Unit Optic Alignment Reference frame (UORA) (as defined in [38]). It consists on the inverted matrix resultant of -30 degree rotation around the +Z axis. The matrix is the inversion of: M = ( 0.8660254, -0.5, 0.0, uora->mpo' 0.5, 0.8660254, 0.0, 0.0, 0.0, 1.0 ) (3) provides the rotation in betweeen the BPU Unit Reference Frame and MPO_SPACECRAFT as measured in the Alignment test (from [36]) M = ( 0.866342008, -0.499451167, 0.000238584, bpu_uroa_test->mpo 0.499434283, 0.866351698, -0.000363344, -2.51335E-05, 0.000433843, 0.999999906 ) Nominally the MPO_BELA_RECEIVER frame is rotated 180 degrees around the MPO_BELA_BASE +X axis. The incorporated rotation is derived from the latest measurements performed before launch (from [36]). The rotation is provided by the following matrices product: M = M * M * M * M urf->base urf->mpo' mpo'->uora uroa_test->mpo mpo->base (1) (2) (3) (4) where: (1) provides the rotation in between the RBU Unit Reference Frame and the MPO_SPACECRAFT frame (as defined in [37]). It consists on a 180 degree rotation around the +X axis: M = ( 1, 0, 0, urf->mpo' 0, -1, 0, 1, 0, -1 ) (2) provides the rotation in between MPO and the RBU Unit Optic Alignment Reference frame (UORA) (as defined in [38]). It consists on the inverted matrix resultant of a -45 degree rotation around the +Z axis. The matrix is the inversion of: M = ( 0.70710678, 0.70710678, 0.0, uora->mpo' -0.70710678, 0.70710678, 0.0, 0.0, 0.0, 1.0 ) (3) provides the rotation in between the RBU Unit Reference Frame and MPO_SPACECRAFT as measured in the Alignment test (from [36]) M = ( -2.51335000E-05, 4.33843000E-04, 9.99999906E-01, bpu_uroa_test->mpo 6.48229295E-04,-1.00000817E+00, 4.33957136E-04, 9.99991332E-01, 6.38452323E-04, 2.49478042E-05 ) (4) provides the rotation between the MPO_SPACECRAFT and the BPU Unit reference frame, it is derived from the current FK. Nominally the MPO_BELA_TRANSMITTER frame is rotated 180 degrees around the MPO_BELA_BASE +X axis. The incorporated rotation is derived from the latest measurements performed before launch (from [36]). The rotation is provided by the following matrices product: M = M * M * M * M urf->base urf->mpo' mpo'->uora uroa_test->mpo mpo->base (1) (2) (3) (4) where: (1) provides the rotation in between the TBU Unit Reference Frame and the MPO_SPACECRAFT frame (as defined in [37]). It consists on a 90 degree rotation around the +X axis: M = ( 0.0, 0.0, 1.0, urf->mpo' 0.0, -1.0, 0.0, 1.0, 0.0, 0.0 ) (2) provides the rotation in between MPO and the TBU Unit Optic Alignment Reference frame (UORA) (as defined in [38]). It consists on the inverted matrix resultant of a 35 degree rotation around the +Z axis. The matrix is the inversion of: M = ( 0.81915204, -0.57357644, 0.0, uora->mpo' 0.57357644, 0.81915204, 0.0, 0.0 0.0 1.0 ) (3) provides the rotation in betweeen the TBU Unit Reference Frame and MPO_SPACECRAFT as measured in the Alignment test (from [36]) M = ( 0.829357815, -0.558717832, 6.51886E-06, bpu_uroa_test->mpo 0.558714991, 0.829359671, 0.000307884, -0.00017746, -0.000251803, 0.999999953 ) (4) provides the rotation between the MPO_SPACECRAFT and the BPU Unit reference frame, it is derived from the current FK. The rotation matrices defined above are incorporated as follows: \begindata FRAME_MPO_BELA_BASE = -121100 FRAME_-121100_NAME = 'MPO_BELA_BASE' FRAME_-121100_CLASS = 4 FRAME_-121100_CLASS_ID = -121100 FRAME_-121100_CENTER = -121101 TKFRAME_-121100_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121100_SPEC = 'MATRIX' TKFRAME_-121100_MATRIX = ( -2.51335000E-05, 4.33843000E-04, 9.99999906E-01, 6.48229295E-04, -1.00000817E+00, 4.33957136E-04, 9.99991332E-01, 6.38452323E-04, 2.49478042E-05 ) FRAME_MPO_BELA_RECEIVER = -121101 FRAME_-121101_NAME = 'MPO_BELA_RECEIVER' FRAME_-121101_CLASS = 4 FRAME_-121101_CLASS_ID = -121101 FRAME_-121101_CENTER = -121101 TKFRAME_-121101_RELATIVE = 'MPO_BELA_BASE' TKFRAME_-121101_SPEC = 'MATRIX' TKFRAME_-121101_MATRIX = ( -1.55660247E-03, 9.99993586E-01, 4.99306568E-03, -8.52394019E-04, 4.99190758E-03, -9.99988398E-01, -9.99989967E-01, -1.55118724E-03, 8.44515382E-04 ) FRAME_MPO_BELA_TRANSMITTER = -121102 FRAME_-121102_NAME = 'MPO_BELA_TRANSMITTER' FRAME_-121102_CLASS = 4 FRAME_-121102_CLASS_ID = -121102 FRAME_-121102_CENTER = -121102 TKFRAME_-121102_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121102_SPEC = 'MATRIX' TKFRAME_-121102_MATRIX = ( -1.77460000E-04, -2.51803000E-04, 9.99999953e-01, 1.80275729E-02, -9.99839053E-01, -2.48464744e-04, 9.99835903E-01, 1.80263103E-02, 1.81934945e-04 ) \begintext MERTIS (MErcury Radiometer and Thermal Infrared Spectrometer) Frames: --------------------------------------------------------------------- This section of the file contains the definitions of the MERTIS frames. MERTIS has a flip mirror that provides the possibility of both planet and space observations, also can target two black bodies BB3 and BB7 (emitting at 300K and 700K respectively) as calibration targets (from [16]). Since this flip mirror rotates with respect to the MERTIS base, the MPO_MERTIS frame is defined as a CK frame with its orientation provided in a CK file relative to the MPO_MERTIS_BASE frame. Note that since the flip mirror only has four positions, the auxiliary frames -- MPO_MERTIS_PLANET, MPO_MERTIS_SPACE, MPO_MERTIS_BB3 and MPO_MERTIS_BB7 -- are provided in order to avoid the CK dependency for certain uses of the MERTIS frames. MERTIS Frame Tree: ~~~~~~~~~~~~~~~~~~ The diagram below shows the MERTIS frame hierarchy. "J2000" INERTIAL ---------------- | |<-ck | V "MPO_SPACECRAFT" ---------------- | |<-fixed | V "MPO_MERTIS_BASE +------------------------------------------+ | | | | | |<-fixed |<-fixed |<-ck |<-fixed |<-fixed | | | | | | V | V | | "MPO_MERTIS_BB3" | "MPO_MERTIS_BB7" | | ---------------- | ---------------- | | | | V V V "MPO_MERTIS_PLANET" "MPO_MERTIS" "MPO_MERTIS_SPACE" ------------------- ------------ ------------------ MERTIS Base Frame: ~~~~~~~~~~~~~~~~~~ The MERTIS_BASE frame is defined as follows: - +Z axis is co-aligned with the S/C +Z axis (nadir); - +Y axis is nominally co-aligned with the S/C +Y axis; - +X axis completes the right hand frame; - the origin of this frame is located at the intersection of the spectrometer flip mirror rotation axis and mirror central axis. MERTIS Planet Frame: ~~~~~~~~~~~~~~~~~~~~ The MERTIS_PLANET frame is defined as follows: - +X axis is parallel to the apparent spatial resolution direction (i.e. along the slit); it is nominally co-aligned with the S/C +X axis; - +Z axis points along the planet port boresight, it is co-aligned with the S/C +Z axis (nadir); - +Y axis completes the right hand frame; - the origin of this frame is located at the intersection of the spectrometer flip mirror rotation axis and mirror central axis. This diagram illustrates the MERTIS_PLANET frame: +Z S/C side (science deck side) view: ------------------------------------- Steerable HGA -----> \__O__/ __ || ,---. Rotating | |-' ,' | Solar Panel ,-------,' | Radiator ,________, ,________, ,________, ,--------' | Panel |////////| |////////| |////////|\ | | |////////|=|////////|=|////////|\\ | | |////////| |////////| |////////| \\____| -Zsc | |////////| |////////| |////////| /,----| x-------------> -Ysc, |////////|=|////////|=|////////|// | | | -Ymertis_base |////////| |////////| |////////|/ | | | -Ymertis_planet '--------' '--------' '--------' |______|_ | / | '. | / | '. | / v '. | _ 0 -Xsc, '._; MGA --> -)[_] -Xmertis_base \ -Xmertis_planet \ Magnetometer ---> \ Boom \ InBoard --> 0 +Zsc, +Zmertis_planet, Sensor \ +Zmertis_base are out of \ the page. OutBoard --> 0 Sensor MERTIS Space Frame: ~~~~~~~~~~~~~~~~~~~ The MERTIS_SPACE frame is defined as follows: - +Z axis points along the space port boresight, it is co-aligned with the S/C -Y axis (radiator); - +X axis is parallel to the apparent spatial resolution direction (i.e. along the slit); it is nominally co-aligned with the S/C +X axis; - +Y axis completes the right hand frame; it is co-aligned with the S/C +X axis; - the origin of the frame is located at the center of the rotation mirror of the Pointing Unit. This diagram illustrates the MERTIS_SPACE frame: +X S/C side view: ----------------- \ MPO Steerable / Magnetometer HGA ---> O/ Boom __/ | _ ______||___ V MGA --> -)[_]0==n/ '/ () \________n========o ,| ' \__/ / \ .o | / ' \ Rotating . ' . `| ' / \ Solar Panel . ' '.|/ <---------o ' (*)\ . ' 24 deg |+Ysc - - - -|- / \ . ' | | ' o-----------> +Zmertis-space . ' | |/ | \ . ' '----------- |-----|---\ ^ | | | v | | +Zsc/nadir | Science | Deck v +Ymertis-space +Xmertis-space, and +Xsc are out of the page To go to the MERTIS_SPACE frame from the MERTIS_PLANET or MERTIS_BASE a positive rotaion of 90 degress around the MERTIS_PLANET or MERTIS_BASE +X axis is performed. To go to the MERTIS_BB3 and MERTIS_BB7 frames from the MERTIS_PLANET or MERTIS_BASE a positive rotaion of 180 and 270 degress respectively around the MERTIS_PLANET or MERTIS_BASE +X axis is performed. According to the on-ground alignment tests [26], the MPO_MERTIS_BASE (in the literature referred as MERTIS alignment cube) is oriented - in degrees - with respect to the defined MERTIS center pixel 70/channel 81 (lambda = 7.86 micro meters) on the spectrometer detector. The offset is as three rotation angles. The following measured values of ROLL, PITCH and YAW are provided in [26]: ROLL = 0.4646 (degrees) PITCH = -0.1686 (degrees) YAW = 0.0282 (degrees) Following the last on-ground alignment tests in [36], the following values are obtained: ROLL = 0.45964 (degrees) PITCH = 0.03270 (degrees) YAW = 0.14780 (degrees) These angles are incorporated as a TKFRAME as follows: \begindata FRAME_MPO_MERTIS_BASE = -121200 FRAME_-121200_NAME = 'MPO_MERTIS_BASE' FRAME_-121200_CLASS = 4 FRAME_-121200_CLASS_ID = -121200 FRAME_-121200_CENTER = -121230 TKFRAME_-121200_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121200_SPEC = 'ANGLES' TKFRAME_-121200_UNITS = 'DEGREES' TKFRAME_-121200_ANGLES = ( -0.459634 -0.0327051 -0.147798 ) TKFRAME_-121200_AXES = ( 3, 1, 2 ) FRAME_MPO_MERTIS_PLANET = -121201 FRAME_-121201_NAME = 'MPO_MERTIS_PLANET' FRAME_-121201_CLASS = 4 FRAME_-121201_CLASS_ID = -121201 FRAME_-121201_CENTER = -121230 TKFRAME_-121201_RELATIVE = 'MPO_MERTIS_BASE' TKFRAME_-121201_SPEC = 'ANGLES' TKFRAME_-121201_UNITS = 'DEGREES' TKFRAME_-121201_ANGLES = ( 0.0, 0.0, 0.0 ) TKFRAME_-121201_AXES = ( 1, 2, 3 ) FRAME_MPO_MERTIS_SPACE = -121202 FRAME_-121202_NAME = 'MPO_MERTIS_SPACE' FRAME_-121202_CLASS = 4 FRAME_-121202_CLASS_ID = -121202 FRAME_-121202_CENTER = -121230 TKFRAME_-121202_RELATIVE = 'MPO_MERTIS_BASE' TKFRAME_-121202_SPEC = 'ANGLES' TKFRAME_-121202_UNITS = 'DEGREES' TKFRAME_-121202_ANGLES = ( -90.0, 0.0, 0.0 ) TKFRAME_-121202_AXES = ( 1, 2, 3 ) FRAME_MPO_MERTIS_BB3 = -121203 FRAME_-121203_NAME = 'MPO_MERTIS_BB3' FRAME_-121203_CLASS = 4 FRAME_-121203_CLASS_ID = -121203 FRAME_-121203_CENTER = -121230 TKFRAME_-121203_RELATIVE = 'MPO_MERTIS_BASE' TKFRAME_-121203_SPEC = 'ANGLES' TKFRAME_-121203_UNITS = 'DEGREES' TKFRAME_-121203_ANGLES = ( -180.0, 0.0, 0.0 ) TKFRAME_-121203_AXES = ( 1, 2, 3 ) FRAME_MPO_MERTIS_BB7 = -121204 FRAME_-121204_NAME = 'MPO_MERTIS_BB7' FRAME_-121204_CLASS = 4 FRAME_-121204_CLASS_ID = -121204 FRAME_-121204_CENTER = -121230 TKFRAME_-121204_RELATIVE = 'MPO_MERTIS_BASE' TKFRAME_-121204_SPEC = 'ANGLES' TKFRAME_-121204_UNITS = 'DEGREES' TKFRAME_-121204_ANGLES = ( -270.0, 0.0, 0.0 ) TKFRAME_-121204_AXES = ( 1, 2, 3 ) FRAME_MPO_MERTIS = -121230 FRAME_-121230_NAME = 'MPO_MERTIS' FRAME_-121230_CLASS = 3 FRAME_-121230_CLASS_ID = -121230 FRAME_-121230_CENTER = -121230 CK_-121230_SCLK = -121 CK_-121230_SPK = -121 \begintext MIXS (Mercury Imaging X-Ray Spectrometer) Frames: ------------------------------------------------- This section of the file contains the definitions of the MIXS frames. MIXS consists of two instruments: the narrow-field, high resolution, telescope (MIXS-T) and the wide-field collimator (MIXS-C). The optical bench (OB) carries MIXS-T and MIXS-C on a base plate assembly (from [15]). MIXS Frame Tree: ~~~~~~~~~~~~~~~~ The diagram below shows the MIXS frame hierarchy. "J2000" INERTIAL --------------- | |<-ck | V "MPO_SPACECRAFT" ---------------- | |<-fixed | V "MPO_MIXS_OB" +----------------------------------+ | | |<-fixed |<-fixed | | V V "MPO_MIXS-C" "MPO_MIXS-T" ------------ ------------ MIXS Frames: ~~~~~~~~~~~~ The MIXS Optical Bench frame -- MPO_MIXS_OB -- is defined as follows: - +Z axis is the outward normal to the instrument mounting plane; it is nominally co-aligned with the S/C +Y axis; - +X axis points along to the nominal MIXS-T line-of-sight; it is nominally co-aligned with the S/C +Z axis; - +Y axis completes the right hand frame; it is co-aligned with the S/C +X axis; - The origin of the frame is in the centre of the MIXS reference hole, in the plane of the mounting surface. The MIXS-C camera frame -- MPO_MIXS-C -- is defined as follows: - +Z axis is nominally co-aligned with the MIXS Optical Bench +Z axis; - +X axis points along the nominal line-of-sight; - +Y axis completes the right hand frame; - the origin of the frame is located at the camera focal point. The MIXS-T camera frame -- MPO_MIXS-T -- is nominally equivalent to the MIXS Optical Bench frame and is defined as follows: - +X points along the MIXS-T line-of-sight and is parallel to the MIXS Optical Bench +X axis; - +Y axis is nominally co-aligned with the MIXS Optical Bench +Y axis; - +Z axis completes the right hand frame; - the origin of the frame is located at the camera focal point. This diagram illustrates the MIXS camera frames: +Z S/C side (science deck side) view: ------------------------------------- Steerable HGA -----> \__O__/ __ || ,---. Rotating | |-' ,' | Solar Panel ,-------,' | Radiator ,________, ,________, ,________, ,--------' | Panel |////////| |////////| |////////|\ | | |////////|=|////////|=|////////|\\ | | |////////| |////////| |////////| \\____| -Zsc | |////////| |////////| |////////| /,----| x-------------> -Ysc, |////////|=|////////|=|////////|// | | | -Zmisx_ob, |////////| |////////| |////////|/ | | | -Zmixs_c, '--------' '--------' '--------' |______|_ | -Zmixs_t / | '. | / | '. | / v '. | _ 0 -Xsc, '._; MGA --> -)[_] -Ymixs_ob, \ -Ymixs_c, \ -Ymixs_t /\/ +Zsc, +Xmixs_ob, +Xmixs_t and +Xmixs-c are out of the page. The rotation matrix from the MIXS Optical Bench frame to the MPO_SPACECRAFT frame is the following rotation matrix (from [34], [44]): M = ( -0.0002521720, 0.0014112370, 0.9999989813, mixs-ob 0.9999996778, 0.0007890201, 0.0001700318, -0.0007887825, 0.9999986705, -0.0014114294 ) This matrix is not directly incorporated since it is not a rotational matrix at the Double Precision (DP) round-off level. Since SPICE does not store/use matrices provided in the fixed offset frame definitions 'as is'. It adjusts them -- "sharpens" them -- using SPICELIB SHARPR routine to ensure that they are true rotational matrices to the DP round-off level. In this particular case a large shift is present in element (2,3) which is coming from the non-orthogonality of columns 1 and 2 (SPICE reads the values in column-major order) of the matrix. The rotation matrix from the MIXS-C frames to the MIXS Optical Bench frame is the inverse of the following rotation matrix (from [23]): M = ( 0.99999878, 0.00013381, -0.00155630, mixs-c -0.00013381, 0.99999999, 0.00000021, 0.00155625, 0.00000000, 0.99999879 ) This matrix is incorporated by the MIXS-C frame definition below. \begindata FRAME_MPO_MIXS_OB = -121300 FRAME_-121300_NAME = 'MPO_MIXS_OB' FRAME_-121300_CLASS = 4 FRAME_-121300_CLASS_ID = -121300 FRAME_-121300_CENTER = -121350 TKFRAME_-121300_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121300_SPEC = 'MATRIX' TKFRAME_-121300_MATRIX = ( -0.0002521720, 0.0014112370, 0.9999989813, 0.9999996778, 0.0007890201, 0.0002510590, -0.0007887825, 0.9999986705, -0.0014114294 ) FRAME_MPO_MIXS-C = -121310 FRAME_-121310_NAME = 'MPO_MIXS-C' FRAME_-121310_CLASS = 4 FRAME_-121310_CLASS_ID = -121310 FRAME_-121310_CENTER = -121350 TKFRAME_-121310_RELATIVE = 'MPO_MIXS_OB' TKFRAME_-121310_SPEC = 'MATRIX' TKFRAME_-121310_MATRIX = ( 0.99999875000, -0.00013380984000, 0.0015563000000000, 0.00013381016, 1.00000000000000, -0.0000000017512411, -0.00155625000, 0.00000020824180, 0.9999988100000000 ) FRAME_MPO_MIXS-T = -121320 FRAME_-121320_NAME = 'MPO_MIXS-T' FRAME_-121320_CLASS = 4 FRAME_-121320_CLASS_ID = -121320 FRAME_-121320_CENTER = -121355 TKFRAME_-121320_RELATIVE = 'MPO_MIXS_OB' TKFRAME_-121320_SPEC = 'MATRIX' TKFRAME_-121320_MATRIX = ( 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 ) \begintext PHEBUS (Probing of Hermean Exosphere By Ultraviolet Spectroscopy) Frames: ------------------------------------------------------------------------- This section of the file contains the definitions of the PHEBUS frames. The PHEBUS instrument is sitting behind the MPO radiator on the S/C -Y side with a rotating baffle extending through the radiator. The baffle allows 360 degree rotation and as it is angled at 10 degrees from the radiator. During instrument non-operational phases, the baffle is parked in front of a bracket so that the baffle aperture is protected from the space outer light environment. PHEBUS Frame Tree: ~~~~~~~~~~~~~~~~~~ The diagram below shows the PHEBUS frame hierarchy. "J2000" INERTIAL --------------- | |<-ck | V "MPO_SPACECRAFT" +----------------------------------+ | | |<-fixed |<-fixed | | V V "MPO_PHEBUS_PB_BASE" "MPO_PHEBUS_SM" -------------------- +-----------------------------------+ | | | | |<-fixed |<-ck |<-ck fixed->| | | | | V V v V "MPO_PHEBUS_PB" "MPO_PHEBUS" "MPO_PHEBUS_SCAN" "MPO_PHEBUS_SCAN_ZERO" --------------- ------------ ----------------- ---------------------- PHEBUS Scanner Mechanism and Parking Braket Base frame definitions: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The PHEBUS Scanner Mechanism (SM) is rigidly mounted on the S/C Radiator Deck. Therefore, the frame associated with it -- MPO_PHEBUS_SM -- is specified as a fixed offset frame relative to the MPO_SPACECRAFT frame. Note that in [39] and [40] this frame is called Unit Reference Frame (URF) The PHEBUS Scanner Mechanism -- MPO_PHEBUS_SM -- frame is defined as follows (from [19]): - +X axis is parallel to the Scanner Attachment Plate and the Interface Mounting Plane of the Instrument, directed towards the FUV detector and is nominally co-aligned with the S/C -Z axis; - +Y axis is perpendicular to the Scanner Attachment Plate and parallel to the Interface Mounting Plane of the Instrument and directed towards the grating assembly and is nominally co-aligned with the S/C +Y axis; it is also co-aligned with the PHEBUS Scanner rotation axis; - +Z axis completes the right hand frame; - the origin of the frame is located at the on the attachment point near the scanner attachment plate on the EUV detector side. The PHEBUS Parking Bracket base -- MPO_PHEBUS_PB_BASE -- frame is defined as follows (from [19]): - +Y axis is Parallel to the Parking Bracket disc and is nominally antiparallel to the S/C +Y axis; - +Z axis is rotated 45 degrees with respect to the nominal S/C +Y axis towards the S/C +X axis; - +X axis completes the right hand frame; - the origin of the frame is located at the on the attachment point of the Parking Braket with the S/C bus. These diagrams illustrate the PHEBUS Scanner Mechanism and Parking Bracket Base frames: +X S/C side view: ----------------- \ MPO Steerable / Magnetometer HGA ---> O/ Boom __/ | _ ______||___ V MGA --> -)[_]0==n/ '/ () \________n=====o==o ,| ' \__/ / \ .o | / ' \ . ' . `|+Ysc / \ . ' '.|/ <---------o ' (*)\<---- LGA . ' | - - - -|- / \ ' | | / o---------> +Yphebus_pb_base, | |/ | -Yphebus_sm '----------- |---------| | | v | +Zsc/nadir v -Xphebus_sm +Xsc is out of the page and +Zphebus_sm is into the page -Y S/C side (Radiator Panel) view: ---------------------------------- ___ -Zphebus_sm ////| ^ ////| | /////////| | |_____||__ | //////////| .---------- | --------------------. |O=======.--|-. ================ O| |========| o----------> -Xphebus_sm Steerable |========|___\\=======( )=========| HGA |= Phebus === o ========( )=====| .-''-. -Xsc <---------------. '-\-o===== STR-2 ===|-/ \ / \ |====== . ' =====\|===============| | O | +Xphebus_pb_base <' ==========\===============|-\ | / |O======= =======|\=============O| `-..-' 0====0=============|_|===|_|--------|-v-------------' ^ ^ | -Zphebus_pb_base | | | MPO MGA | -Ysc, +Yphebus_pb_base Magnetometer v and +Yphebus_sm are into -Zsc the page Nominally, a single rotation of 90 degrees about +Y axis is required to co-align the MPO_PHEBUS_SM and the MPO_SPACECRAFT frames. Nominally, a rotation of 90 degrees about +X axis and a rotation about the +Y axis of 45 degrees is required to co-align the MPO_PHEBUS_PB_BASE and the MPO_SPACECRAFT frames. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_PHEBUS_SM = -121400 FRAME_-121400_NAME = 'MPO_PHEBUS_SM' FRAME_-121400_CLASS = 4 FRAME_-121400_CLASS_ID = -121400 FRAME_-121400_CENTER = -121430 TKFRAME_-121400_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121400_SPEC = 'ANGLES' TKFRAME_-121400_UNITS = 'DEGREES' TKFRAME_-121400_AXES = ( 1, 3, 2 ) TKFRAME_-121400_ANGLES = ( 0.49276806, -0.25998526, -90.61000628 ) FRAME_MPO_PHEBUS_PB_BASE = -121410 FRAME_-121410_NAME = 'MPO_PHEBUS_PB_BASE' FRAME_-121410_CLASS = 4 FRAME_-121410_CLASS_ID = -121410 FRAME_-121410_CENTER = -121430 TKFRAME_-121410_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121410_SPEC = 'ANGLES' TKFRAME_-121410_UNITS = 'DEGREES' TKFRAME_-121410_AXES = ( 1, 2, 1 ) TKFRAME_-121410_ANGLES = ( 0.0, 45.0, 180.0 ) \begintext PHEBUS Scanner Zero Rotation and Scanner frame definitions: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The PHEBUS Scanner Mechanism allows the baffle and the mirror to rotate 360 degrees around the instrument. The assembly composed of the baffle and the mirror can be moved to a parking position in front of the Parking Bracket which occludes the baffle entrance. The PHEBUS Scanner Zero Position frame accounts for the default position of the baffle and mirror rotation. This default rotation angle corresponds to an azimuth angle (rotation angle, S) of 45 degrees about the MPO_PHEBUS_SM +Y axis. Therefore, the frame associated with it -- MPO_PHEBUS_SCAN_ZERO -- is specified as a fixed offset frame relative with its orientation given relative to the MPO_PHEBUS_SM frame. The PHEBUS Scanner Zero Position -- MPO_PHEBUS_SCAN_ZERO -- frame is defined as follows (from [19]): - +Y axis is perpendicular to the Scanner Attachment Plate and parallel to the Interface Mounting Plane of the Instrument and directed towards the grating assembly and is nominally co-aligned with the MPO_PHEBUS_RM +Y axis; it is also co-aligned with the PHEBUS Scanner rotation axis; - +Z axis is parallel to the projection of the PHEBUS baffle into the +XZ plane of the Phebus Scanner Mechanism frame (the S/C radiator deck) when the baffle is in parking position; - +X axis completes the right hand frame; - the origin of the frame is located at the on the intersection of the Scanner Roation Axis with the S/C deck. The PHEBUS Scanner frame accounts for the position of the baffle and mirror rotation. This rotation angle (S) corresponds to an angle commanded from ground which ranges from 0 to 360 degrees. Therefore, the frame associated with it -- MPO_PHEBUS_SCAN -- is specified as a C-Kernel frame with its orientation given relative to the MPO_PHEBUS_SM frame. The PHEBUS Scanner frame -- MPO_PHEBUS_SCAN -- is defined by the Scanner Rotation as follows (from [19]): - +Y axis is perpendicular to the Scanner Attachment Plate and parallel to the Interface Mounting Plane of the Instrument and directed towards the grating assembly and is nominally co-aligned with the MPO_PHEBUS_RM +Y axis; it is also co-aligned with the PHEBUS Scanner rotation axis; - +Z axis is co-aligned with the MPO_PHEBUS_SCAN_ZERO +Z axis, when the motor is in its 'zero' position that corresponds to S = 45 degrees; - +Z axis is parallel to the projection of the PHEBUS baffle into the +XZ plane of the Phebus Scanner Mechanism frame (the S/C radiator deck); - +X axis completes the right hand frame; - the origin of the frame is located at the on the intersection of the Scanner Roation Axis with the S/C deck. These diagrams illustrate the PHEBUS Scanner Zero Rotation and PHEBUS Scanner frames: -X PHEBUS Scanner Mechanism side view: -------------------------------------- +Yphebus_sm, +Yphebus_scan_zero (PHEBUS Baffle and Mirror rotation axis) ^ | | | +Xphebus_sm ------------- o-------> ------- | | ^ +Ysc | | | \ Scanner / | \ Mechanism / | _ _ _ _\_______________/_ _ _ _ _ | | | | .---------. <-----------o \ \ / | +Zsc +Xsc \ \/__| \ / '. - - - - - - - - - - - - - \ / ' . ' . ' \\ ' . ' . ' ' . ' . ' . . ' . ' . '--. 10 deg. ' . '/ _ \ ' ' . | (_)| ' ' .\ / ' . / +Zphebus_sm and +Xsc ''--' ' . ' are out of the page ' . ' > +Zphebus, +Zphebus_zero, (if azimuth = 0 deg) -Y PHEBUS Scanner Mechanism side view (with Baffle in Parking position): ------------------------------------------------------------------------ | / | / 45 deg. |- . +Zphebus_scan_zero ' . ^ | ' /- . '/ ' . azimuth | ___/ \ . > +Zphebus_scan /\ (_)\ ' . ' | / '---/ . ' / / / . ' | / / / . ' ____________ / / /______ | .-----_/ / /. | +Xsc | | .' /\ / / | | ^ | | / / / __/ | | | | | | | /x-----------------> +Xphebus_sm | | | \ \_| '. ' .| | | | | `.__|_ .'. |' . | | | |______|_____'.| ' . | |____________|_______'._____| ' . <------------x | '. ' . +Zsc +Ysc | '. ' > v v +Xphebus_scan_zero -Zphebus_sm +Xphebus_scan +Yphebus_sm, +Yphebus_scan_zero +Yphebus_scan and +Ysc are into the page Nominally, a single rotation of 45 degrees about +Y axis is required to co-align the MPO_PHEBUS_SM and the MPO_SPACECRAFT frames. For an arbitrary scanner angle, the MPO_PHEBUS_SCAN frame is rotated by an azimuth angle about the +Y axis with respect to the MPO_PHEBUS_SCAN_ZERO frame. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. This set of keywords define the Scanner Zero Rotation and Scanner frames: \begindata FRAME_MPO_PHEBUS_SCAN_ZERO = -121420 FRAME_-121420_NAME = 'MPO_PHEBUS_SCAN_ZERO' FRAME_-121420_CLASS = 4 FRAME_-121420_CLASS_ID = -121420 FRAME_-121420_CENTER = -121430 TKFRAME_-121420_RELATIVE = 'MPO_PHEBUS_SM' TKFRAME_-121420_SPEC = 'ANGLES' TKFRAME_-121420_UNITS = 'DEGREES' TKFRAME_-121420_AXES = ( 2, 1, 3 ) TKFRAME_-121420_ANGLES = (-45.0, -10.0, 0.0 ) FRAME_MPO_PHEBUS_SCAN = -121421 FRAME_-121421_NAME = 'MPO_PHEBUS_SCAN' FRAME_-121421_CLASS = 3 FRAME_-121421_CLASS_ID = -121421 FRAME_-121421_CENTER = -121430 CK_-121421_SCLK = -121 CK_-121421_SPK = -121 \begintext PHEBUS frame definition: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The PHEBUS baffle boresight nominally points 10 degrees off from the PHEBUS rotation axis normal plane -- MPO_PHEBUS_SCAN +X axis, towards the -Y MPO_PHEBUS_SCAN axis. This angle is necessary to guarantee the Unobstructed Field-of-View to be free from any spacecraft surface and has been defined as an angle from the Nadir-Velocity vector plane. In addition inside the instrument, the slit is located in a plane parallel to the +XY plane of the MPO_PHEBUS_SM frame and it ``rotates'' according to a given analytical expression function of the angle of the scanner (S). This analytical expression also includes the deviation angle of the parabolic mirror (D) with a theoretical value of 100 degrees. The PHEBUS frame -- MPO_PHEBUS -- is defined as follows (from [41]): - +Y axis is ideally defined by: [ sin^2(D/2) * cos(2*S), -1 * sin(D) * sin (S - 45), -1 * sin^2(D/2) * sin (2*S) - cos^2(D/2) ] - +Z axis is co-aligned with PHEBUS baffle entrance tube which is equivalent to the spectrometer optical boresight axis. It is ideally defined by: [ sin(D) * cos(S - 45), cos(D), -1 * sin(D) * sin (S - 45) ] - +X axis completes the right handed frame; - the origin of the frame is located at the geometrical center of the Entrance Mirror. where - D is is the deviation angle of the parabolic mirror, D = 100 deg - S is the scan angle of the scanner in degrees. It ranges from 0 to 360 deg and at 45 deg is at the Zero position, aligned with the parking bracket. An analytical expression provides the definition of the MPO_PHEBUS frame and is incorporated as a CK based frame. \begindata FRAME_MPO_PHEBUS = -121430 FRAME_-121430_NAME = 'MPO_PHEBUS' FRAME_-121430_CLASS = 3 FRAME_-121430_CLASS_ID = -121430 FRAME_-121430_CENTER = -121430 CK_-121430_SCLK = -121 CK_-121430_SPK = -121 \begintext PHEBUS Parking Braket frame definition: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The PHEBUS Parking Bracket -- MPO_PHEBUS_PB -- frame is defined as follows (from [19]): - +Y axis is Parallel to the Parking Bracket disc and is nominally co-aligned to the MPO_PHEBUS_PB_BASE +Y axis; - +Z axis is perpendicular to the Parking Bracket disc which is parallel to the baffle in zero position and nominally is rotated 10 degrees with respect to the MPO_PHEBUS_PB_BASE +X axis towards the MPO_PHEBUS_PB_BASE +Y axis; - +X axis completes the right hand frame; - the origin of the frame is located at the on the attachment point of the Parking Braket with the S/C bus. These diagrams illustrate the PHEBUS Base frames: -X PHEBUS Parking Braket side view: ------------------------------------ +Yphebus_pb ^ \ \ __\ .> -Zphebus_pb \ \\ . ' . \ \\ . ' . 10 deg \ \o' . \ \ . \ \ - - - - - \ '._ \ '. \ '. \ '. \ | --------------x---------> ----- | +Zphebus_pb_base | +Xphebus_pb and | +Xphebus are out of | the page v -Yphebus_pb_base -Y PHEBUS Scanner Mechanism side view (with Baffle in Parking position): ------------------------------------------------------------------------ +Yphebus_scan, +Yphebus_scan_zero ^ | | | +Yphebus, | +Yphebus_zero | ^ +Zphebus_scan, | \ +Zphebus_scan_zero | _______________\________ <-----------------o | \\ . ' / . ' . ' PHEBUS '. \\ . ' 10deg \ . ' . ' Parking '. \\ . ' . ' . ' Braket '._ \\ . ' . ' . ' '. \\. ' . ' . ' \ \\ . ' . ' \ \\ . ' . ' \ .o . ' . '\ \\ . ' Phebus Baffle . ' \_\\. ' < ' +Zphebus +Z PHEBUS Parking Braket side view: ----------------------------------- +Yphebus_pb ^ | __|__ .' | '. / | \ . | . | o--------> +Xphebus_pb . . \ / `. .' \ / ) ( | | | | +Zphebus_pb is outside | | the page | | -----------o---------> -- +Xphebus_pb_base Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_PHEBUS_PB = -121411 FRAME_-121411_NAME = 'MPO_PHEBUS_PB_BASE' FRAME_-121411_CLASS = 4 FRAME_-121411_CLASS_ID = -121411 FRAME_-121411_CENTER = -121430 TKFRAME_-121411_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121411_SPEC = 'ANGLES' TKFRAME_-121411_UNITS = 'DEGREES' TKFRAME_-121411_AXES = ( 1, 2, 1 ) TKFRAME_-121411_ANGLES = ( 0.0, 0.0, -10.0 ) \begintext SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) Frames: ------------------------------------------------------------------------------- This section of the file contains the definitions of the SERENA frames. SERENA is a suite of instrumentation that includes four units: ELENA, STROFIO, MIPA and PICAM. SERENA Frame Tree: ~~~~~~~~~~~~~~~~~~ The diagram below shows the SERENA frame hierarchy. "J2000" INERTIAL --------------- | |<-ck | V "MPO_SPACECRAFT" +----------------------------------------------------+ | | | | |<-fixed |<-fixed |<-fixed |<-fixed | | | | V | V V "MPO_SERENA_ELENA" | "MPO_SERENA_PICAM" "MPO_SERENA_STROFIO_BASE" ------------------ | ------------------ +----------------------+ V | | | "MPO_SERENA_MIPA" |<-fixed | fixed->| ----------------- | | | V |<-ck | "MPO_SERENA_STROFIO-X" | | ---------------------- | | | | v | "MPO_SERENA_STROFIO" | -------------------- | | V "MPO_SERENA_STROFIO+X" ---------------------- SERENA ELENA Unit frame definition: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The SERENA ELENA unit is located on the S/C -X panel and its baffle is pointing along the Nadir direction. The SERENA ELENA Unit -- MPO_SERENA_ELENA -- frame is defined as follows (from [16]): - +Z axis points along the nominal spacecraft nadir direction; and it is co-aligned with the S/C +Z axis; - +X axis is nominally co-aligned with the S/C +X axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the geometrical center of the internal chardged particle deflectors. This diagram illustrates the SERENA ELENA Unit frame: -X S/C side view: ----------------- / \ \O ||\__ .---------. o==o======n________/ \_ / |\ / | o. / |/ ' . Rotating / x-------> | ' . Solar Panel / | +Ysc | ' . / | | ' . / | o-----------> ' . /--------|----|--------' +Yelena | | v | +Zsc/nadir | | V +Zelena Xsc is into the page +Zelena is out of the page Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_SERENA_ELENA = -121510 FRAME_-121510_NAME = 'MPO_SERENA_ELENA' FRAME_-121510_CLASS = 4 FRAME_-121510_CLASS_ID = -121510 FRAME_-121510_CENTER = -121510 TKFRAME_-121510_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121510_SPEC = 'ANGLES' TKFRAME_-121510_UNITS = 'DEGREES' TKFRAME_-121510_AXES = ( 1, 3, 1 ) TKFRAME_-121510_ANGLES = ( 0.0, 0.0, 0.0 ) \begintext SERENA MIPA Unit frame definition: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The SERENA MIPA unit is located on the S/C -X panel behind the radiator below the SERENA PICAM unit. Its boresight is poinitng along the S/C -X axis. The SERENA MIPA Unit -- MPO_SERENA_MIPA -- frame is defined as follows (from [16]): - +Z axis is co-aligned with the S/C -X axis; - +X axis is nominally co-aligned with the S/C +Z axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the geometrical center of of the deflection plates. This diagram illustrates the SERENA MIPA Unit frame: -Y S/C side (Radiator Panel) view: ---------------------------------- _____________ +Xmipa |/////////////| ^ |/////////////| | |/////////////| | __||_____||__ | |/////////////| |---------------------------------. |O=======.----. ========== STR-1 O| +Zmipa <------------x========| \\|===== STR-3 ==( )==| Steerable |========|___\\=======( )=========| HGA |========= Phebus ========( )=====| .-''-. -Xsc <---------------------o===== STR-2 ===|-/ \ / \ |=================|===============| | O | |=================|===============|-\ | / |O================|==============O| `-..-' 0====0=============|_|===|_|--------|---------------' ^ ^ | | | | MPO MGA | -Ysc is out of Magnetometer v the page. Boom -Zsc +Ymipa is into the page Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_SERENA_MIPA = -121520 FRAME_-121520_NAME = 'MPO_SERENA_MIPA' FRAME_-121520_CLASS = 4 FRAME_-121520_CLASS_ID = -121520 FRAME_-121520_CENTER = -121520 TKFRAME_-121520_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121520_SPEC = 'ANGLES' TKFRAME_-121520_UNITS = 'DEGREES' TKFRAME_-121520_AXES = ( 1, 3, 2 ) TKFRAME_-121520_ANGLES = ( 0.0, 0.0, 90.0 ) \begintext SERENA PICAM Unit frame definition: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The SERENA PICAM unit is located on the S/C -X panel. Its boresight is poinitng along the S/C -X axis. The SERENA PICAM Unit -- MPO_SERENA_PICAM -- frame is defined as follows (from [16]): - +Z axis is co-aligned with the S/C -X axis; - +X axis is nominally co-aligned with the S/C +Z axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the geometrical center of of the deflection plates. This diagram illustrates the SERENA PICAM Unit frame: -Y S/C side (Radiator Panel) view: ---------------------------------- _____________ |/////////////| +Xpicam |/////////////| ^ |/////////////| | __||_____||__ | |/////////////| |---------------------------------. |O=======.----. ========== STR-1 O| |========| \\|===== STR-3 ==( )==| Steerable +Zpicam <------------x========|___\\=======( )=========| HGA |========= Phebus ========( )=====| .-''-. -Xsc <---------------------o===== STR-2 ===|-/ \ / \ |=================|===============| | O | |=================|===============|-\ | / |O================|==============O| `-..-' 0====0=============|_|===|_|--------|---------------' ^ ^ | | | | MPO MGA | -Ysc is out of Magnetometer v the page. Boom -Zsc +Ypicam is into the page Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_SERENA_PICAM = -121530 FRAME_-121530_NAME = 'MPO_SERENA_PICAM' FRAME_-121530_CLASS = 4 FRAME_-121530_CLASS_ID = -121530 FRAME_-121530_CENTER = -121530 TKFRAME_-121530_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121530_SPEC = 'ANGLES' TKFRAME_-121530_UNITS = 'DEGREES' TKFRAME_-121530_AXES = ( 1, 3, 2 ) TKFRAME_-121530_ANGLES = ( 0.0, 0.0, 90.0 ) \begintext SERENA STROFIO Unit frames definitions: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The SERENA STROFIO unit is located in the S/C +X panel. STROFIO has two baffles, one pointing along the S/C +X axis and another along the S/C -X axis. The SERENA STROFIO Unit -- MPO_SERENA_STRFIO_BASE -- frame is defined as follows (from [16]): - +Z axis points along the nominal spacecraft nadir direction; and it is co-aligned with the S/C +Z axis; - +X axis is nominally co-aligned with the S/C +X axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the geometrical center of the cylindrical detector head. The SERENA STROFIO +X Baffle -- MPO_SERENA_STRFIO+X -- frame is defined as follows (from [16]): - +Z axis points along the nominal spacecraft +X direction; and it is co-aligned with the S/C +X axis; - +X axis is nominally co-aligned with the S/C +Z axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the geometrical center of the spectrometer detector. The SERENA STROFIO -X Baffle -- MPO_SERENA_STRFIO-X -- frame is defined as follows (from [16]): - +Z axis points along the nominal spacecraft -X direction; and it is co-aligned with the S/C -X axis; - +X axis is nominally co-aligned with the S/C +Z axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the geometrical center of the spectrometer detector. The SERENA STROFIO Baffle -- MPO_SERENA_STRFIO -- frame is defined as a CK frame as follows (from [16]): - +Z axis is the projection of the MPO inertially referenced velocity vector relative to the target body (Mercury) into the plane defined by the MPO_SERENA_STROFIO_BASE +Y and +X axis; - +X axis is the primary vector and is nominally co-aligned with the S/C +Z axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the geometrical center of the spectrometer detector. This diagram illustrates the SERENA ELENA Unit frame: +X S/C side view: ----------------- \ MPO Steerable / Magnetometer HGA ---> O/ Boom __/ | _ ______||___ V MGA --> -)[_]0==n/ '/ () \________n=====o==o ,| ' \__/ / \ .o | / ' \ Rotating . ' . `| ' / \ Solar Panel . ' '.|/ <---------o ' (*)\<---- LGA . ' 24 deg |+Ysc - - - -|- / \ . ' | | ' \ . ' | |/ \ . ' '----------- |---------\ +Ystrofio <---------o| | '|' v | +Zsc/nadir | | v +Zstrofio, +Xstrofio-x, +Xsc, +Xstrofio and +Xstrofio+x +Zstrofio+x are out of the page. +Zstrofio-x is into the page. -Y S/C side (Radiator Panel) view: ---------------------------------- +Zstrofio ^ +Xstrofio-x | +Xstrofio+x _____________ ^ | ^ Rotating |///////////// | | | Solar Panel |///////////// | | | |///////////// | | | +Xstrofio | x--|------> +Zstrofio-x <--------x=| |=o---------> +Zstrofio+x .---------------------------------. |O=======.----. ========== STR-1 O| |========| \\|===== STR-3 ==( )==| Steerable |========|___\\=======( )=========| HGA |========= Phebus ========( )=====| .-''-. -Xsc <---------------------o===== STR-2 ===|-/ \ / \ |=================|===============| | O | |=================|===============|-\ | / |O================|==============O| `-..-' 0====0=============|_|===|_|--------|---------------' ^ ^ | | | | MPO MGA | -Ysc and +Ystrofio+x are Magnetometer v out of the page. Boom -Zsc +Ystrofio-x and +Ystrofio are into the page. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_SERENA_STROFIO_BASE = -121540 FRAME_-121540_NAME = 'MPO_SERENA_STROFIO_BASE' FRAME_-121540_CLASS = 4 FRAME_-121540_CLASS_ID = -121540 FRAME_-121540_CENTER = -121540 TKFRAME_-121540_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121540_SPEC = 'ANGLES' TKFRAME_-121540_UNITS = 'DEGREES' TKFRAME_-121540_AXES = ( 1, 3, 1 ) TKFRAME_-121540_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_MPO_SERENA_STROFIO+X = -121541 FRAME_-121541_NAME = 'MPO_SERENA_STROFIO+X' FRAME_-121541_CLASS = 4 FRAME_-121541_CLASS_ID = -121541 FRAME_-121541_CENTER = -121540 TKFRAME_-121541_RELATIVE = 'MPO_SERENA_STROFIO_BASE' TKFRAME_-121541_SPEC = 'ANGLES' TKFRAME_-121541_UNITS = 'DEGREES' TKFRAME_-121541_AXES = ( 1, 3, 2 ) TKFRAME_-121541_ANGLES = ( 0.0, 0.0, -90.0 ) FRAME_MPO_SERENA_STROFIO-X = -121542 FRAME_-121542_NAME = 'MPO_SERENA_STROFIO-X' FRAME_-121542_CLASS = 4 FRAME_-121542_CLASS_ID = -121542 FRAME_-121542_CENTER = -121540 TKFRAME_-121542_RELATIVE = 'MPO_SERENA_STROFIO_BASE' TKFRAME_-121542_SPEC = 'ANGLES' TKFRAME_-121542_UNITS = 'DEGREES' TKFRAME_-121542_AXES = ( 1, 3, 2 ) TKFRAME_-121542_ANGLES = ( 0.0, -12.0, 90.0 ) FRAME_MPO_SERENA_STROFIO = -121543 FRAME_-121543_NAME = 'MPO_SERENA_STROFIO' FRAME_-121543_CLASS = 3 FRAME_-121543_CLASS_ID = -121543 FRAME_-121543_CENTER = -121540 CK_-121543_SCLK = -121 CK_-121543_SPK = -121 \begintext SIMBIO-SYS (Spectrometers and Imagers Integrated Observatory SYStem) Frames: ---------------------------------------------------------------------------- This section of the file contains the definitions of the SIMBIO-SYS frames. SIMBIO-SYS is a suite of instrumentation that includes two distinct mechanical units: one common to STC and VIHI and one separated for HRIC SIMBIO-SYS Frame Tree: ~~~~~~~~~~~~~~~~~~~~~~ The diagram below shows the SIMBIO-SYS frame hierarchy. "J2000" INERTIAL --------------- | |<-ck | V "MPO_SPACECRAFT" +--------------------------------------------------+ | | | | |<-fixed | | | | | V | | "MPO_OB" | | +----------------------+ | | | | | fixed->| fixed->| |<-fixed |<-fixed | | | | | V V | | "MPO_SIMBIO-SYS_HRIC_URF" "MPO_SIMBIO-SYS_MU" | | ------------------------- ------------------- | V V "MPO_SIMBIO-SYS_HRIC_UORF" "MPO_SIMBIO-SYS-VIHI-UORF" -------------------------- +--------------------------+ | | | fixed->| |<-fixed fixed->| | | | V | V "MPO_SIMBIO-SYS_HRIC_FPA" | "MPO_SIMBIO-SYS_VIHI_FPA" +--------------------------+ | ------------------------- | | | | | |<-fixed fixed->| | |<-fixed V | | | | "MPO_SIMBIO-SYS_STC_FPA" V | | | +---------------------------+ "MPO_SIMBIO-SYS_HRIC_F550" | | | | | -------------------------- | | | fixed->| fixed->| | | | V | V | | "MPO_SIMBIO-SYS_STC-H" | "MPO_SIMBIO-SYS_HRIC_FPAN" | | +--------------------+ | -------------------------- | | | | | V | | | | |<-fixed "MPO_SIMBIO-SYS_STC-L" fixed->| | | | | +--------------------+ | | | | | | | | V | | | | fixed->| | | "MPO_SIMBIO-SYS_HRIC_F880" | | | | V | | -------------------------- | | | | "MPO_SIMBIO-SYS_STC-L_F920" | | V | | | --------------------------- | | "MPO_SIMBIO-SYS_HRIC_F750" | | | | | -------------------------- | | | fixed->| | | | | V | fixed->| | | "MPO_SIMBIO-SYS_STC-L_F550" | | | | --------------------------- | V | | | "MPO_SIMBIO-SYS_STC-H_P700" | | fixed-> | --------------------------- | | | | | V fixed->| | "MPO_SIMBIO-SYS_STC-L_P700" V | --------------------------- "MPO_SIMBIO-SYS_STC-H_F420" | --------------------------- | | fixed->| | V "MPO_SIMBIO-SYS_STC-H_F750" --------------------------- SIMBIO-SYS Frames: ~~~~~~~~~~~~~~~~~~ SIMBIO-SYS is composed by two main Mechanical Unit frames attached to the S/C Optical Bench for both the Stereo Imaging System (STC) and Visible and Infrared Hyperspectral Imager (VIHI). -- MPO_SIMBIO-SYS_HRIC_URF, MPO_SIMBIO-SYS_HRIC_UORF, MPO_SIMBIO-SYS-VIHI-UORF and MPO_SIMBIO-SYS_MU -- The two frames are defined as follows: - +Z is nominally co-aligned with the S/C +X axis; - +X axis is nominally co-aligned with the S/C +Y axis; - +Y axis completes the right hand frame; it is nominally co-aligned with the S/C +Z axis; - the origin of the frame is located at the geometrical center of the Mechanical Unit. The MPO_SIMBIO-SYS_HRIC_UORF and MPO_SIMBIO-SYS-VIHI-UORF are used to define the SIMBIO-SYS channel frames and incorporated the misalignments reported in [36]. The SIMBIO-SYS channel frames -- MPO_SIMBIO-SYS_HRIC_FPA, MPO_SIMBIO-SYS_STC_FPA-- and --MPO_SIMBIO-SYS_VIHI_FPA are fixed on the channel focal planes and defined as follows: - +Z axis points along the HRIC_FPA and VIHI sensor boresights respectively; for STC_FPA points at the center of the STC focal plane (detector); they are all co-aligned with the S/C +Z axis; - +X axis is nominally co-aligned with the S/C +X axis; - +Y axis completes the right hand frame; it is nominally co-aligned with the S/C +Y axis; - the origin of the frame is located at the camera focal point. The SIMBIO-SYS Stereo Imaging Channel Sub-channel L and Sub-channel H frames -- MPO_SIMBIO-SYS_STC-L and MPO_SIMBIO-SYS_STC-H -- are defined as follows: - +X axis is nominally co-aligned with the S/C +X axis; - +Z axis is nominally rotated of 20 degrees around the +Y axis of the MPO_SIMBIO-SYS_STC_FPA frame for MPO_SIMBIO-SYS_STC-L and -20 degrees for MPO_SIMBIO-SYS_STC-H; - +Y axis completes the right hand frame; - the origin of the frame is located at the camera focal point. These diagrams illustrate the SIMBIO-SYS imager frames: +Z S/C side (science deck side) view: ------------------------------------- Steerable HGA -----> \__O__/ __ || ,---. Rotating | |-' ,' | Solar Panel ,-------,' | Radiator ,________, ,________, ,________, ,--------' | Panel |////////| |////////| |////////|\ | | |////////|=|////////|=|////////|\\ | | |////////| |////////| |////////| \\____| -Zsc | -Ysc |////////| |////////| |////////| /,----| x-------------> -Xsimbio_mu |////////|=|////////|=|////////|// | | -Xsimbio_hric_urf |////////| |////////| |////////|/ | | -Ysimbio_hric_fpa '--------' '--------' '--------' |______|_ -Ysimbio_stc_fpa / | '. -Ysimbio_vihi_fpa / | '. | / v '. | _ 0 -Xsc '._; MGA --> -)[_] -Zsimbio_mu \ -Zsimbio_hric_urf \ -Xsimbio_hric_fpa /\/ -Xsimbio_stc_fpa -Xsimbio_vihi_fpa +Zsc, +Ysimbio_mu, +Ysimbio_hric_urf, +Zsimbio_hric_fpa, +Zsimbio_stc_fpa and +Zsimbio_vihi_fpa are out of the page. -Y S/C side view: ----------------- 0 | 0 | | | .---------------. | | | | |---------------| .> +Ysimbio_stc-l | | , ' | | , ' | |. ' -Zsc <---------x x- - - - - - - - | | /|' . | | / | \ ' . | | / | \ ' . |_______|___/___| \ '> +Ysimbio_stc-h | .-v-./ | \ | +Xsc / \ | \ '---| / |--' \ +Ysc, +Zsimbio_stc-l \ v / v and Zsimbio_stc-h +Xsimbio-stc-h +Xsimbio-stc-l are into the page Nominally, the MPO_SIMBIO-SYS_MU frame and MPO_SIMBIO-SYS_HRIC_URF are rotated -90 degrees around the S/C +X axis and then -90 degrees around the resulting +Y axis. In addition a rotation of about 35 degrees around the MPO_SIMBIO-SYS_HRIC_URF +Y axis and around MPO_SIMBIO-SYS_MU +Y axis are required to align the MPO_SIMBIO-SYS_HRIC_UORF and MPO_SIMBIO-SYS-VIHI_UORF frames to the MPO_SIMBIO-SYS_HRIC_URF frame and to the MPO_SIMBIO-SYS_MU frames respectively. After the incorporation of the Alignment report before launch and as stated in [36], the matrix to be implemented for the rotation from the UOAF reference frame to the MPO_SPACECRAFT reference frame is as follows: M = ( 0.8285391231, -0.5599308533, 0.0006007874 hric-uorf->mpo 0.5600030558, 0.8284902925, -0.0006424621 -0.0001353334, 0.0008713011, 0.9999996113 ) M = ( 0.940688987, -0.339250154, -0.003682796 stc-vihi-uorf->mpo 0.339308786, 0.940668755, 0.003441135 0.002299783, -0.004483605, 0.999987304 ) Since the SPICE frames subsystem calls for specifying the reverse transformation -- going from the instrument or structure frame to the base frame -- as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_SIMBIO-SYS_MU = -121600 FRAME_-121600_NAME = 'MPO_SIMBIO-SYS_MU' FRAME_-121600_CLASS = 4 FRAME_-121600_CLASS_ID = -121600 FRAME_-121600_CENTER = -121600 TKFRAME_-121600_RELATIVE = 'MPO_OB' TKFRAME_-121600_SPEC = 'ANGLES' TKFRAME_-121600_UNITS = 'DEGREES' TKFRAME_-121600_ANGLES = ( 0.0, -90.0, -90.0 ) TKFRAME_-121600_AXES = ( 3, 2, 3 ) FRAME_MPO_SIMBIO-SYS_HRIC_URF = -121601 FRAME_-121601_NAME = 'MPO_SIMBIO-SYS_HRIC_URF' FRAME_-121601_CLASS = 4 FRAME_-121601_CLASS_ID = -121601 FRAME_-121601_CENTER = -121600 TKFRAME_-121601_RELATIVE = 'MPO_OB' TKFRAME_-121601_SPEC = 'ANGLES' TKFRAME_-121601_UNITS = 'DEGREES' TKFRAME_-121601_ANGLES = ( 0.0, -90.0, -90.0 ) TKFRAME_-121601_AXES = ( 3, 2, 3 ) FRAME_MPO_SIMBIO-SYS_HRIC_UORF = -121602 FRAME_-121602_NAME = 'MPO_SIMBIO-SYS_HRIC_UORF' FRAME_-121602_CLASS = 4 FRAME_-121602_CLASS_ID = -121602 FRAME_-121602_CENTER = -121600 TKFRAME_-121602_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121602_SPEC = 'MATRIX' TKFRAME_-121602_MATRIX = ( -0.000600787, -0.828539123, -0.559930853, 0.000642462, -0.560003056, 0.828490293, -0.999999611, 0.000135333, 0.000871301 ) FRAME_MPO_SIMBIO-SYS_VIHI_UORF = -121603 FRAME_-121603_NAME = 'MPO_SIMBIO-SYS_VIHI_UORF' FRAME_-121603_CLASS = 4 FRAME_-121603_CLASS_ID = -121603 FRAME_-121603_CENTER = -121600 TKFRAME_-121603_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121603_SPEC = 'MATRIX' TKFRAME_-121603_MATRIX = ( 0.003682796, -0.940688987, -0.339250154, -0.003441135, -0.339308786, 0.940668755, -0.999987304, -0.002299783, -0.004483605 ) FRAME_MPO_SIMBIO-SYS_HRIC_FPA = -121610 FRAME_-121610_NAME = 'MPO_SIMBIO-SYS_HRIC_FPA' FRAME_-121610_CLASS = 4 FRAME_-121610_CLASS_ID = -121610 FRAME_-121610_CENTER = -121600 TKFRAME_-121610_RELATIVE = 'MPO_SIMBIO-SYS_HRIC_UORF' TKFRAME_-121610_SPEC = 'MATRIX' TKFRAME_-121610_MATRIX = ( -0.000600054, 0.00064613, -0.999999613, -0.828490533, -0.559931161, 0.000138012, -0.560002753, 0.828538885, 0.000868748 ) FRAME_MPO_SIMBIO-SYS_STC_FPA = -121620 FRAME_-121620_NAME = 'MPO_SIMBIO-SYS_STC_FPA' FRAME_-121620_CLASS = 4 FRAME_-121620_CLASS_ID = -121620 FRAME_-121620_CENTER = -121600 TKFRAME_-121620_RELATIVE = 'MPO_SIMBIO-SYS_VIHI_UORF' TKFRAME_-121620_SPEC = 'MATRIX' TKFRAME_-121620_MATRIX = ( 0.003684661, -0.003437476, -0.999987297, -0.940672242, -0.339262359, -0.002296886, -0.339296565, 0.940685515, -0.004486643 ) FRAME_MPO_SIMBIO-SYS_STC-L = -121621 FRAME_-121621_NAME = 'MPO_SIMBIO-SYS_STC-L' FRAME_-121621_CLASS = 4 FRAME_-121621_CLASS_ID = -121621 FRAME_-121621_CENTER = -121600 TKFRAME_-121621_RELATIVE = 'MPO_SIMBIO-SYS_STC_FPA' TKFRAME_-121621_SPEC = 'ANGLES' TKFRAME_-121621_UNITS = 'DEGREES' TKFRAME_-121621_ANGLES = ( 0.0, 20, 0.0 ) TKFRAME_-121621_AXES = ( 3, 2, 3 ) FRAME_MPO_SIMBIO-SYS_STC-H = -121622 FRAME_-121622_NAME = 'MPO_SIMBIO-SYS_STC-H' FRAME_-121622_CLASS = 4 FRAME_-121622_CLASS_ID = -121622 FRAME_-121622_CENTER = -121600 TKFRAME_-121622_RELATIVE = 'MPO_SIMBIO-SYS_STC_FPA' TKFRAME_-121622_SPEC = 'ANGLES' TKFRAME_-121622_UNITS = 'DEGREES' TKFRAME_-121622_ANGLES = ( 0.0, -20.0, 0.0 ) TKFRAME_-121622_AXES = ( 3, 2, 3 ) FRAME_MPO_SIMBIO-SYS_VIHI_FPA = -121630 FRAME_-121630_NAME = 'MPO_SIMBIO-SYS_VIHI_FPA' FRAME_-121630_CLASS = 4 FRAME_-121630_CLASS_ID = -121630 FRAME_-121630_CENTER = -121600 TKFRAME_-121630_RELATIVE = 'MPO_SIMBIO-SYS_VIHI_UORF' TKFRAME_-121630_SPEC = 'MATRIX' TKFRAME_-121630_MATRIX = ( 0.003684661, -0.003437476, -0.999987297, -0.940672242, -0.339262359, -0.002296886, -0.339296565, 0.940685515, -0.004486643 ) \begintext SIMBIO-SYS Detectors Frames: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The frames defined hereafter incorporate the definitions necessary to define the boresights of the filters of the different SIMBIO-SYS detectors. More information concerning the definitions of those boresights is available at the SIMBIO-SYS Instrument Kernel [45]. \begindata FRAME_MPO_SIMBIO-SYS_HRIC_F550 = -121611 FRAME_-121611_NAME = 'MPO_SIMBIO-SYS_HRIC_F550' FRAME_-121611_CLASS = 4 FRAME_-121611_CLASS_ID = -121611 FRAME_-121611_CENTER = -121600 TKFRAME_-121611_RELATIVE = 'MPO_SIMBIO-SYS_HRIC_FPA' TKFRAME_-121611_SPEC = 'ANGLES' TKFRAME_-121611_UNITS = 'DEGREES' TKFRAME_-121611_ANGLES = ( 0.0, -0.594444, 0.0 ) TKFRAME_-121611_AXES = ( 3, 2, 3 ) FRAME_MPO_SIMBIO-SYS_HRIC_FPAN = -121612 FRAME_-121612_NAME = 'MPO_SIMBIO-SYS_HRIC_FPAN' FRAME_-121612_CLASS = 4 FRAME_-121612_CLASS_ID = -121612 FRAME_-121612_CENTER = -121600 TKFRAME_-121612_RELATIVE = 'MPO_SIMBIO-SYS_HRIC_FPA' TKFRAME_-121612_SPEC = 'ANGLES' TKFRAME_-121612_UNITS = 'DEGREES' TKFRAME_-121612_ANGLES = ( 0.0, -0.167590, 0.0 ) TKFRAME_-121612_AXES = ( 3, 2, 3 ) FRAME_MPO_SIMBIO-SYS_HRIC_F750 = -121613 FRAME_-121613_NAME = 'MPO_SIMBIO-SYS_HRIC_F750' FRAME_-121613_CLASS = 4 FRAME_-121613_CLASS_ID = -121613 FRAME_-121613_CENTER = -121600 TKFRAME_-121613_RELATIVE = 'MPO_SIMBIO-SYS_HRIC_FPA' TKFRAME_-121613_SPEC = 'ANGLES' TKFRAME_-121613_UNITS = 'DEGREES' TKFRAME_-121613_ANGLES = ( 0.0, 0.594444, 0.0 ) TKFRAME_-121613_AXES = ( 3, 2, 3 ) FRAME_MPO_SIMBIO-SYS_HRIC_F880 = -121614 FRAME_-121614_NAME = 'MPO_SIMBIO-SYS_HRIC_F880' FRAME_-121614_CLASS = 4 FRAME_-121614_CLASS_ID = -121614 FRAME_-121614_CENTER = -121600 TKFRAME_-121614_RELATIVE = 'MPO_SIMBIO-SYS_HRIC_FPA' TKFRAME_-121614_SPEC = 'ANGLES' TKFRAME_-121614_UNITS = 'DEGREES' TKFRAME_-121614_ANGLES = ( 0.0, 0.259263, 0.0 ) TKFRAME_-121614_AXES = ( 3, 2, 3 ) FRAME_MPO_SIMBIO-SYS_STC-L_F920 = -121623 FRAME_-121623_NAME = 'MPO_SIMBIO-SYS_STC-L_F920' FRAME_-121623_CLASS = 4 FRAME_-121623_CLASS_ID = -121623 FRAME_-121623_CENTER = -121600 TKFRAME_-121623_RELATIVE = 'MPO_SIMBIO-SYS_STC-L' TKFRAME_-121623_SPEC = 'ANGLES' TKFRAME_-121623_UNITS = 'DEGREES' TKFRAME_-121623_ANGLES = ( 0.0, -2.05, 0.0 ) TKFRAME_-121623_AXES = ( 3, 2, 3 ) FRAME_MPO_SIMBIO-SYS_STC-L_F550 = -121624 FRAME_-121624_NAME = 'MPO_SIMBIO-SYS_STC-L_F550' FRAME_-121624_CLASS = 4 FRAME_-121624_CLASS_ID = -121624 FRAME_-121624_CENTER = -121600 TKFRAME_-121624_RELATIVE = 'MPO_SIMBIO-SYS_STC-L' TKFRAME_-121624_SPEC = 'ANGLES' TKFRAME_-121624_UNITS = 'DEGREES' TKFRAME_-121624_ANGLES = ( 0.0, -0.78, 0.0 ) TKFRAME_-121624_AXES = ( 3, 2, 3 ) FRAME_MPO_SIMBIO-SYS_STC-L_P700 = -121625 FRAME_-121625_NAME = 'MPO_SIMBIO-SYS_STC-L_P700' FRAME_-121625_CLASS = 4 FRAME_-121625_CLASS_ID = -121625 FRAME_-121625_CENTER = -121600 TKFRAME_-121625_RELATIVE = 'MPO_SIMBIO-SYS_STC-L' TKFRAME_-121625_SPEC = 'ANGLES' TKFRAME_-121625_UNITS = 'DEGREES' TKFRAME_-121625_ANGLES = ( 0.0, 1.375, 0.0 ) TKFRAME_-121625_AXES = ( 3, 2, 3 ) FRAME_MPO_SIMBIO-SYS_STC-H_P700 = -121626 FRAME_-121626_NAME = 'MPO_SIMBIO-SYS_STC-H_P700' FRAME_-121626_CLASS = 4 FRAME_-121626_CLASS_ID = -121626 FRAME_-121626_CENTER = -121600 TKFRAME_-121626_RELATIVE = 'MPO_SIMBIO-SYS_STC-H' TKFRAME_-121626_SPEC = 'ANGLES' TKFRAME_-121626_UNITS = 'DEGREES' TKFRAME_-121626_ANGLES = ( 0.0, -1.375, 0.0 ) TKFRAME_-121626_AXES = ( 3, 2, 3 ) FRAME_MPO_SIMBIO-SYS_STC-H_F420 = -121627 FRAME_-121627_NAME = 'MPO_SIMBIO-SYS_STC-H_F420' FRAME_-121627_CLASS = 4 FRAME_-121627_CLASS_ID = -121627 FRAME_-121627_CENTER = -121600 TKFRAME_-121627_RELATIVE = 'MPO_SIMBIO-SYS_STC-H' TKFRAME_-121627_SPEC = 'ANGLES' TKFRAME_-121627_UNITS = 'DEGREES' TKFRAME_-121627_ANGLES = ( 0.0, 0.78, 0.0 ) TKFRAME_-121627_AXES = ( 3, 2, 3 ) FRAME_MPO_SIMBIO-SYS_STC-H_F750 = -121628 FRAME_-121628_NAME = 'MPO_SIMBIO-SYS_STC-H_F750' FRAME_-121628_CLASS = 4 FRAME_-121628_CLASS_ID = -121628 FRAME_-121628_CENTER = -121600 TKFRAME_-121628_RELATIVE = 'MPO_SIMBIO-SYS_STC-H' TKFRAME_-121628_SPEC = 'ANGLES' TKFRAME_-121628_UNITS = 'DEGREES' TKFRAME_-121628_ANGLES = ( 0.0, 2.05, 0.0 ) TKFRAME_-121628_AXES = ( 3, 2, 3 ) \begintext SIXS (Solar Intensity X-Ray Spectrometer) Frames: ------------------------------------------------------------------------------ This section of the file contains the definitions of the SIXS frames. SIXS Frame Tree: ~~~~~~~~~~~~~~~~ The diagram below shows the SIXS frame hierarchy. "J2000" INERTIAL --------------- | |<-ck | V "MPO_SPACECRAFT" ---------------- | |<-fixed | V "MPO_SIXS_SU" +--------------------------------+ | | | "MPO_SIXS-P-0" | "MPO_SIXS-P-3" | -------------- | -------------- |<-fixed ^ | ^ | | fixed->| | | fixed->| | fixed->| V | V | "MPO_SIXS-X" | "MPO_SIXS-P" | +-------------------+ +-------------------+ | | | | | | fixed->| fixed->| fixed->| fixed->| fixed->| fixed->| | | | | | | | v | | v | | "MPO_SIXS-X-2" | | "MPO_SIXS-P-2" | | -------------- | | -------------- | v v v v "MPO_SIXS-X-1" "MPO_SIXS-X-3" "MPO_SIXS-P-1" "MPO_SIXS-X-4" -------------- -------------- -------------- -------------- SIXS Sensor Unit Frame: ~~~~~~~~~~~~~~~~~~~~~~~ The SIXS Sensor Unit (SU) is acommodated on the S/C -Z panel, which guarantees the SIXS X-ray detectors an unobstructed view to the Sun. The location on the BepiColombo MPO S/C -Z panel, as close as possible to the radiator, is mainly based on the possibility of achieving a proper thermal environment. The temporary blockage from S/C body and from HGA is acceptable for SIXS (from [17]). Therefore, the frame associated with it -- the SIXS Sensor Unit frame, MPO_SIXS_SU -- is specified as a fixed offset frame relative with its orientation given relative to the MPO_SPACECRAFT frame. The SIXS Sensor Unit frame -- MPO_SIXS_SU -- is defined as (from [17]): - +Y axis is nominally co-aligned with the S/C +X axis; - +Z axis is antiparallel to the S/C +Z axis; - +X axis completes the right-handed frame; and it is parallel to the detector array lines and the wide side of the slit; - the origin of this frame is located at the geometrical center of the interface in between SIXS and the S/C body. These diagrams illustrate the nominal MPO_SIXS_SU frame with respect to the spacecraft frame. -Y S/C side (Radiator Panel) view: ---------------------------------- _____________ Rotating |/////////////| Solar Panel |/////////////| |/////////////| __||_____||__ |/////////////| .---------------------------------. |O=======.----. ========== STR-1 O| |========| \\|===== STR-3 ==( )==| Steerable -Zsixs_su '---\\=======( )=========| HGA |=== ^ == Phebus ========( )=====| .-''-. -Xsc <--------|------------o===== STR-2 ===|-/ \ / \ |=== | ===========|===============| | O | |=== | ===========|===============|-\ | / |O== | +Ysixs_su =|==============O| `-..-' 0====0=============|_|=x-------> ---|---------------' ^ .---. | | '---' | MPO O | -Ysc is out of Magnetometer ^ v the page Boom | -Zsc SIXS radiator and particle detector +X SIXS Sensor Unit (SU) side view: ----------------------------------- P-0 Particle protecting ---> .-==-. dome and sensors P-3 |O O| P-4 .---------------------------------. | /'. () .'\ | | / 'X-2.' \ | <--- X-ray detectors | / '' \ | | / () () \ | | / X-1 X-3 \ | +Ysc | / \ | o----------> '---------------------------------' | +Xsc || || | .---------------. | | ^ +Zsixs_su | | | | v | | | +Zsc | | | +Ysixs_su -------------- o----------> ------ MPO S/C +Xsixs_su +Xsixs_su and +Ysc are out of the page -X SIXS Sensor Unit (SU) side view: ----------------------------------- P-0 Particle protecting ---> .-==-. dome and sensors P-1 |O O| P-2 .---------------------------------. | ================================| | ================================| <--- Radiator | ================================| | ================================| | ================================| +Ysc | ================================| <------------o '---------------------------------' +Xsc | || || | .---------------. | | ^ +Zsixs_su | | | | v | | | +Zsc +Ysixs_su | | | --- <---------o----------------- MPO S/C +Xsixs_su +Xsixs_su and +Ysc are out of the page Nominally, a single rotation of 90 degrees about +Z spacecraft axis and a rotation of 180 degrees around the resulting +X axis is required to align the MPO_SPACECRAFT to the MPO_SIXS_SU frame. Since the SPICE frames subsystem calls for specifying the reverse transformation -- going from the instrument or structure frame to the base frame -- as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_SIXS_SU = -121701 FRAME_-121701_NAME = 'MPO_SIXS_SU' FRAME_-121701_CLASS = 4 FRAME_-121701_CLASS_ID = -121701 FRAME_-121701_CENTER = -121700 TKFRAME_-121701_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121701_SPEC = 'ANGLES' TKFRAME_-121701_UNITS = 'DEGREES' TKFRAME_-121701_ANGLES = ( 180.0, 90.0, 0.0 ) TKFRAME_-121701_AXES = ( 1, 3, 1 ) \begintext SIXS X-Ray detector Frames: ~~~~~~~~~~~~~~~~~~~~~~~~~~~ The X-Ray detectors are placed in the X-Ray detector cover and the axis of their boresights have the following orientation: X-Ray detector Azimuth [degrees] Elevation [degrees] -------------- ----------------- ------------------- X-1 -45.00 25.00 X-2 0.00 65.00 X-3 45.00 25.00 An auxiliary base frame for the X-Ray detector -- MPO_SIXS-X -- is used as a reference for the frame of each individial X-Ray Detector. The MPO_SIXS-X frame is coaligned with the SIXS System Unit frame. The SIXS X-ray detectors frames -- MPO_SIXS-X-1, MPO_SIXS-X-2 and MPO_SIXS-X-3 -- are defined as (from [17]): - +Z is parallel to the boresight of the given X-Ray detector; - +X axis is parallel to the sixs_su XY-plane; - +Y axis completes the right hand frame; - the origin of the frame is located at the instrument focal point. This diagrams partially illustrates the nominal SIXS X-Ray detectors frames with respect to the spacecraft and SIXS System Unit frames. +Y SIXS Sensor Unit (SU) side view: ----------------------------------- +Zsixs_p0 ^ \ \ > +Zsixs_p3* \ . ' P-0 \ . ' .-==-.' Particle protecting --> P-2 |O O| P-3 .> +Zsixs_x2 dome and sensors .--.--. . ' | | '. ' | | '. | | \ | | \ | | O \ <--- X-ray detectors | | X-1 \ '--'----------- || +Xsc .--. x----------> +Xsixs_su, | ^|+Zsixs_su | +Ysc and +Ysc are out | || | of the page | || | | || | *is a projection ---- x------> --- MPO S/C v +Ysixs_su +Xsixs_su +Zsc Here we use the rotation matrices from the SIXS X-Ray detectors frames to the SIXS X-Ray detectors base frame. This is incorporated by the frame definitions below. \begindata FRAME_MPO_SIXS-X = -121710 FRAME_-121710_NAME = 'MPO_SIXS-X' FRAME_-121710_CLASS = 4 FRAME_-121710_CLASS_ID = -121710 FRAME_-121710_CENTER = -121700 TKFRAME_-121710_RELATIVE = 'MPO_SIXS_SU' TKFRAME_-121710_SPEC = 'ANGLES' TKFRAME_-121710_UNITS = 'DEGREES' TKFRAME_-121710_ANGLES = ( 0.0, 0.0, 0.0 ) TKFRAME_-121710_AXES = ( 1, 2, 3 ) FRAME_MPO_SIXS-X-1 = -121711 FRAME_-121711_NAME = 'MPO_SIXS-X-1' FRAME_-121711_CLASS = 4 FRAME_-121711_CLASS_ID = -121711 FRAME_-121711_CENTER = -121700 TKFRAME_-121711_RELATIVE = 'MPO_SIXS-X' TKFRAME_-121711_SPEC = 'MATRIX' TKFRAME_-121711_MATRIX = ( 0.70710678, 0.70710678, 0.0, -0.29883624, 0.29883624, 0.90630779, 0.64085638, -0.64085638, 0.42261826 ) FRAME_MPO_SIXS-X-2 = -121712 FRAME_-121712_NAME = 'MPO_SIXS-X-2' FRAME_-121712_CLASS = 4 FRAME_-121712_CLASS_ID = -121712 FRAME_-121712_CENTER = -121700 TKFRAME_-121712_RELATIVE = 'MPO_SIXS-X' TKFRAME_-121712_SPEC = 'MATRIX' TKFRAME_-121712_MATRIX = ( 0.0, 1.0, 0.0, -0.90630779, 0.0, 0.42261826, 0.42261826, 0.0, 0.90630779 ) FRAME_MPO_SIXS-X-3 = -121713 FRAME_-121713_NAME = 'MPO_SIXS-X-3' FRAME_-121713_CLASS = 4 FRAME_-121713_CLASS_ID = -121713 FRAME_-121713_CENTER = -121700 TKFRAME_-121713_RELATIVE = 'MPO_SIXS-X' TKFRAME_-121713_SPEC = 'MATRIX' TKFRAME_-121713_MATRIX = ( -0.70710678, 0.70710678, 0.0, -0.29883624, -0.29883624, 0.90630779, 0.64085638, 0.64085638, 0.42261826 ) \begintext SIXS Particle detector Frames: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The Particle detectors are placed in the Particle detector cover and the axis of their boresights have the following orientation: Particle detector Azimuth [degrees] Elevation [degrees] ----------------- ----------------- ------------------- P-0 180.00 83.00 P-1 134.79 -4.94 P-2 -134.79 -4.94 P-3 -45.21 4.94 P-4 45.21 4.94 An auxiliary base frame for the Particle detector -- MPO_SIXS-P -- is used as a reference for the frame of each individial Particle Detector. The MPO_SIXS-P frame is coaligned with the SIXS System Unit frame. The SIXS Particle detector frame -- MPO_SIXS-P-0 -- is defined as (from [17]): - +Z is parallel to the boresight of the Particle detector; - +Y axis is parallel to the boresight of the MPO_SIXS-P-2 Particle detector; - +X axis is parallel to the boresight of the MPO_SIXS-P-1 Particle detector; - the origin of this frame is located at the intersection of the detector boresight with the core detector scintillator. The SIXS Particle detectors frames -- MPO_SIXS-P-1, MPO_SIXS-P-2, MPO_SIXS-P-4, MPO_SIXS-P-4 -- are defined as (from [17]): - +Z is parallel to the boresight of the given Particle detector; - +Y axis is parallel to the boresight of the MPO_SIXS-P-0 Particle detector; - +X axis completes the right-handed frame; - the origin of this frame is located at the intersection of the detector boresight with the core detector scintillator. This diagrams partially illustrates the nominal SIXS Particle detectors frames with respect to the spacecraft and SIXS System Unit frames. +Y SIXS Sensor Unit (SU) side view: ----------------------------------- +Zsixs_p0 ^ \ \ > +Zsixs_p3* \ . ' P-0 \ . ' .-==-.' Particle protecting --> P-2 |O O| P-3 .> +Zsixs_x2 dome and sensors .--.--. . ' | | '. ' | | '. | | \ | | \ | | O \ <--- X-ray detectors | | X-1 \ '--'----------- || +Xsc .--. x----------> +Xsixs_su, | ^|+Zsixs_su | +Ysc and +Ysc are out | || | of the page | || | | || | *is a projection ---- x------> --- MPO S/C v +Ysixs_su +Xsixs_su +Zsc Here we use the rotation matrices from the SIXS Particle detectors frames to the SIXS Particle detectors base frame. This is incorporated by the frame definitions below. \begindata FRAME_MPO_SIXS-P = -121720 FRAME_-121720_NAME = 'MPO_SIXS-P' FRAME_-121720_CLASS = 4 FRAME_-121720_CLASS_ID = -121720 FRAME_-121720_CENTER = -121700 TKFRAME_-121720_RELATIVE = 'MPO_SIXS_SU' TKFRAME_-121720_SPEC = 'ANGLES' TKFRAME_-121720_UNITS = 'DEGREES' TKFRAME_-121720_ANGLES = ( 0.0, 0.0, 0.0 ) TKFRAME_-121720_AXES = ( 1, 3, 1 ) FRAME_MPO_SIXS-P-0 = -121721 FRAME_-121721_NAME = 'MPO_SIXS-P-0' FRAME_-121721_CLASS = 4 FRAME_-121721_CLASS_ID = -121721 FRAME_-121721_CENTER = -121700 TKFRAME_-121721_RELATIVE = 'MPO_SIXS-P' TKFRAME_-121721_SPEC = 'MATRIX' TKFRAME_-121721_MATRIX = ( -0.70183611, 0.70710678, -0.08617464, -0.70183611, -0.70710678, -0.08617464, -0.12186934, 0.0, 0.99254615 ) FRAME_MPO_SIXS-P-1 = -121722 FRAME_-121722_NAME = 'MPO_SIXS-P-1' FRAME_-121722_CLASS = 4 FRAME_-121722_CLASS_ID = -121722 FRAME_-121722_CENTER = -121700 TKFRAME_-121722_RELATIVE = 'MPO_SIXS-P' TKFRAME_-121722_SPEC = 'MATRIX' TKFRAME_-121722_MATRIX = ( -0.70183611, -0.70710678, -0.08617464, -0.12186934, 0.0, 0.99254615, -0.70183611, 0.70710678, -0.08617464 ) FRAME_MPO_SIXS-P-2 = -121723 FRAME_-121723_NAME = 'MPO_SIXS-P-2' FRAME_-121723_CLASS = 4 FRAME_-121723_CLASS_ID = -121723 FRAME_-121723_CENTER = -121700 TKFRAME_-121723_RELATIVE = 'MPO_SIXS-P' TKFRAME_-121723_SPEC = 'MATRIX' TKFRAME_-121723_MATRIX = ( 0.70183611, -0.70710678, 0.08617464, -0.12186934, 0.0, 0.99254615, -0.70183611, -0.70710678, -0.08617464 ) FRAME_MPO_SIXS-P-3 = -121724 FRAME_-121724_NAME = 'MPO_SIXS-P-3' FRAME_-121724_CLASS = 4 FRAME_-121724_CLASS_ID = -121724 FRAME_-121724_CENTER = -121700 TKFRAME_-121724_RELATIVE = 'MPO_SIXS-P' TKFRAME_-121724_SPEC = 'MATRIX' TKFRAME_-121724_MATRIX = ( 0.70183611, 0.70710678, 0.08617464, -0.12186934, 0.0, 0.99254615, 0.70183611, -0.70710678, 0.08617464 ) FRAME_MPO_SIXS-P-4 = -121725 FRAME_-121725_NAME = 'MPO_SIXS-P-4' FRAME_-121725_CLASS = 4 FRAME_-121725_CLASS_ID = -121725 FRAME_-121725_CENTER = -121700 TKFRAME_-121725_RELATIVE = 'MPO_SIXS-P' TKFRAME_-121725_SPEC = 'MATRIX' TKFRAME_-121725_MATRIX = ( -0.70183611, 0.70710678, -0.08617464, -0.12186934, 0.0, 0.99254615, 0.70183611, 0.70710678, 0.08617464 ) \begintext ISA (Italian Spring Accelerometer) Frames: ------------------------------------------------------------------------------ This section of the file contains the definitions of the ISA frames. In addition it contains the description of several points as ephemeris objects: Name Description Expressed in NAIF ID ================== ============================== =============== ======= MPO_HGA_S2_ARA S2 Sphere pos. before HGA int. MPO_HGA_ARA -121804 MPO_HGA_S2_IF S2 Sphere pos. after HGA int. MPO_HGA_IF -121805 MPO_ISA-VERTEX_FEE ISA Vertex Point (AM-Y CG) MPO_ISA_FEE_BOX -121806 MPO_ISA-AM-X_FEE X Accel. Center of Gravity MPO_ISA_FEE_BOX -121807 MPO_ISA-AM-Y_FEE Y Accel. Center of Gravity MPO_ISA_FEE_BOX -121808 MPO_ISA-AM-Z_FEE Y Accel. Center of Gravity MPO_ISA_FEE_BOX -121809 MPO_SCHULTE_ORIGIN Duplicate of ISA-VERTEX_FEE MPO_ISA_FEE_BOX -121869 Note that this points are implemented by the following SPK file: bc_mpo_struct_vNN.bsp where NN version of the kernel The latest version of this kernel needs to be loaded in the kernel pool in order to obtain the position of the given centers. ISA Frame Tree: ~~~~~~~~~~~~~~~ The diagram below shows the ISA frame hierarchy. "J2000" INERTIAL --------------- | |<-ck | V . - - - - - - - - - - - "MPO_SPACECRAFT" ' ---------------- ' | ' |<-fixed '<-spk(*) | ' V ' "MPO_ISA_URF" ' ------------- ' | ' |<-fixed ' | ' V ' "MPO_ISA_UOAF" ' +---------------------------------------+ ' | | ' |<-fixed |<-fixed ' | | V V (CS7) | "MPO_ISA_FEE_BOX" | ----------------- | ' | ' V ` - - - - - - - - - - - - - - - - > MPO_ISA_ILS ^ +---------------------------------+ | | | | spk(*) |<-fixed |<-fixed |<-fixed | | | V V V "MPO_ISA_AM_X" "MPO_ISA_AM_Y" "MPO_ISA_AM_Z" -------------- -------------- -------------- | |<-fixed | V "MPO_ISA_VERTEX" ---------------- (*) Note that the origins of the MPO_ISA_FEE_BOX w.r.t to the MPO_SPACECRAFT and the origin of the MPO_ISA_AM_X, MPO_ISA_AM_Y and MPO_ISA_AM_Z reference frames w.r.t to the MPO_ISA_FEE_BOX frame (the origin of MPO_ISA_ILS and MPO_ISA_VERTEX is coincident to MPO_ISA_AM_Y) is implemented with the following SPK file: bc_mpo_schulte_vector_vNN.bsp where NN version of the kernel The latest version of this kernel needs to be loaded in the kernel pool in order to obtain the position of the given centers. ISA URF Frame: ~~~~~~~~~~~~~~ The ISA accelerometers are accommodated on the S/C +X panel the S/C bus. Therefore, the frame associated with it -- the ISA Unit Reference Frame, MPO_ISA_URF -- is specified as a fixed offset frame relative with its orientation given relative to the MPO_SPACECRAFT frame. The ISA URF frame -- MPO_ISA_URF -- is defined as (from [17]): - +Y axis is in the interface plane of MPO with ISA and is nominally parallel to the S/C +Y axis; - +Z axis is normal to the MPO-ISA interface plane and is nominally parallel to the S/C +X axis; - +X axis completes the right-handed frame; - the origin is located in the centre of a reference hole on the interface plane between the IDA FEE and the satellite platform (i.e. the plane defined by the accelerometer mounting lugs aka datum plane). This diagram illustrates the nominal MPO_ISA_URF frame with respect to the spacecraft frame. -X S/C side view: ----------------- / \ \O ||\__ .---------. o==o======n________/ \_ / ^ +Xurf |\ / | | o. / | |/ ' . Rotating / x----|--> | ' . Solar Panel / | | +Ysc | ' . / | | | ' . / | x------------> +Yurf ' . /--------|-------------' | v +Zsc/nadir +Xsc and +Zurf are into the page Nominally, simple rotations of 90 degrees about different MPO_SPACECRAFT axis are required to align the MPO_ISA_URF to the MPO_SPACECRAFT frame. Since the SPICE frames subsystem calls for specifying the reverse transformation -- going from the instrument or structure frame to the base frame -- as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_ISA_URF = -121800 FRAME_-121800_NAME = 'MPO_ISA_URF' FRAME_-121800_CLASS = 4 FRAME_-121800_CLASS_ID = -121800 FRAME_-121800_CENTER = -121804 TKFRAME_-121800_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121800_SPEC = 'ANGLES' TKFRAME_-121800_UNITS = 'DEGREES' TKFRAME_-121800_ANGLES = ( 0.0, 0.0, -90.0 ) TKFRAME_-121800_AXES = ( 3, 1, 2 ) \begintext ISA Unit Optical Alignment Frame: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ISA Unit Optical Alignment Frame -- MPO_ISA_UOAF --, is introduced to identify the ISA attitude with respect to the MPO_SPACECRAFT frame and is defined as follows: - +X axis is co-aligned with the MPO_ISA_URF +X axis; - +Y axis is normal to the mirror face of the optical alignment cube and is nominally rotated 35 degrees around the MPO_ISA_URF +X axis towards the MPO_ISA_URF +Z axis (positive rotation); - +Z axis completes the right-handed frame; - the origin is located in the centre of the cube. These diagrams illustrate the nominal MPO_ISA-* frames with respect to the spacecraft frame (where * is X, Y and Z). +X ISA side view: ----------------- VERTEX ACCEL-X (ACCEL-Y) ACCEL-Z .-------. .---------. | | | | | | | | | | | | .--------------------. | | | | | | +Zuoaf | | | | | | ^ +Zurf | | | | | _| \ ^ |_ | | | | | \ | | | +Yuoaf | | '------\---|-------'_ . > ----'__'--------------------' |====\==|======= . ' ======================| |==| \ | . ' \ 35 deg =| |==| |==| \|. ' | =| |==| ------------o---------------> ------------------------------- +Yurf ^ +Xsc | | | +Xurf and +Xuoaf | are out of the page. x---------> +Ysc +Zsc is into the page Nominally a simple rotation of 35 degrees about around the MPO_ISA_URF +X axis towards the MPO_ISA_URF +Z axis is required to align the MPO_ISA_UOAF frame to the MPO_ISA-URF frame. After the incorporation of the Alignment report before launch and as stated in [35], the matrix to be implemented for the rotation from the UOAF reference frame to the MPO_SPACECRAFT reference frame is as follows: M = ( 0.000794865741262, 0.574360657737445, 0.818586991555449, uoaf->mpo 0.000134721642081, 0.818607305178316, -0.574374965133784 -0.999999675047821, 0.000566833305893, 0.000573292095414 ) Since the SPICE frames subsystem calls for specifying the reverse transformation -- going from the instrument or structure frame to the base frame -- as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_ISA_UOAF = -121801 FRAME_-121801_NAME = 'MPO_ISA_UOAF' FRAME_-121801_CLASS = 4 FRAME_-121801_CLASS_ID = -121801 FRAME_-121801_CENTER = -121804 TKFRAME_-121801_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121801_SPEC = 'MATRIX' TKFRAME_-121801_MATRIX = ( 0.000794865741262, 0.000134721642081, -0.999999675047821, 0.574360657737445, 0.818607305178316, 0.000566833305893, 0.818586991555449, -0.574374965133784, 0.000573292095414 ) \begintext ISA Front End Electronics Frame (CS7): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ISA Front End Electronics Box frame -- MPO_ISA_FEE_BOX --, is represented by the position of three spheres (S1, S2, S3) mounted upon the IDA FEE box and is defined as follows: - +X axis is defined by the line joining the centres of spheres S2 and S3 with direction S2 -> S3; - +Y axis is the line joining S1 and S2 with direction S1 -> S2; - +Z axis is orthogonal to the plane identified by S1, S2 and S3 and such to obtain a right-handed reference frame; - the origin is located in the centre of the S2 sphere. This origin is implemented with the ISA SPK described in the ISA Frame Tree section. There are different measurements of the origin of the S2 sphere according to [29] which are described hereafter in meters: - Before HGA integration in MPO w.r.t MPO_HGA_ARA: (x, y, z) = ( 0.034236, 0.6084106, 0.0591564 ) S2_ARA - After HGA integration in MPO w.r.t MPO_HGA_IF: (x, y, z) = ( 0.034175468, 0.58840368, 0.16559369 ) S2_IF The later definition (S2_IF) is used. These diagrams illustrate the nominal MPO_ISA_FEE_BOX frame with respect to the S/C frame: +Z ISA side view: ----------------- S1 +Yurf S2 (O)-------- o----------> -----------------------------------(O)----------> | | | +Yfee | | .---------. .--------------------. | | +Xurf| | | | | | | .--------v---------. | VERTEX | | | | | |ACCEL-X | |(ACCEL-Y)| | ACCEL-Z | | | | | | | | | v | | | | | | +Xfee | | | | | | | | '------------------' | | | | | | | | | | | | '---------' '--------------------' | |___________________________________________________________(O) S3 ^ +Zsc/nadir | | +Zurf, +Zfee and +Xsc | are out of the page | o-----------> +Ysc2 By using a CMM (Coordinate Measuring Machine) the attitude of UOAF frame with respect to FEE BOX reference frame was measured. The matrix constituted by UOAF versors in the FEE BOX reference frame is defined as follows: | 9.9999E-1 -9.1746E-4 -4.8020E-4 | M = | 4.4830E-4 8.1858E-1 -5.7439E-1 | UOAF -> FEE | 9.5840E-4 5.7439E-1 8.1858E-1 | We use this rotation matrix in the fixed-offset frame definition below: \begindata FRAME_MPO_ISA_FEE_BOX = -121802 FRAME_-121802_NAME = 'MPO_ISA_FEE_BOX' FRAME_-121802_CLASS = 4 FRAME_-121802_CLASS_ID = -121802 FRAME_-121802_CENTER = -121804 TKFRAME_-121802_RELATIVE = 'MPO_ISA_UOAF' TKFRAME_-121802_SPEC = 'MATRIX' TKFRAME_-121802_MATRIX = ( 0.99999, -0.00091746, -0.0004802, 0.0004483, 0.81858, -0.57439, 0.0009584, 0.57439, 0.81858 ) \begintext ISA Instrument Line of Sight Frame: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ISA Instrument Line of Sight frame -- MPO_ISA_ILS --, is the representative reference frame to exchange data with other systems involved in the Radio Science Experiment (RSE). It is defined to minimise the angular separation with respect to the measured ISA sensing axes. The frame is defined as follows: - +X axis is "close" to the +X ISA sensing axis; - +Y axis is "close" to the +Y ISA sensing axis; - +Z axis is "close" to the +Z ISA sensing axis and completes the right-handed frame; - the origin is located in the Center of Mass of the +Y Accelerometer Structures SPK described in the ISA Frame Tree section. This origin is coincident with the origin of the MPO_ISA_AM_Y and MPO_ISA_VERTEX reference frames. The nominal coordinates in meters of the origin w.r.t to the MPO_ISA_FEE_BOX reference frame center are: ( x, y, z ) = ( 0.094483, -0.155179, 0.087331 ) ISA-VERTEX_FEE To evaluate how "close" the ILS axes are from the ISA sensing axes the nominal rotation matrix defined below is used. These following diagram illustrates the nominal MPO_ISA_ILS frame with respect to the S/C frame: +X ISA side view: ----------------- VERTEX ACCEL-X (ACCEL-Y) ACCEL-Z +Zils ^ .-------. .----|----. | | | | | | | | | | | | | | | .--------------------. | | | | | | | | | | o------>| | | +Zurf | | Over | +Yils | _| ^ |_ | | | | | | | | | | | '----------|-------'__'---------'__'--------------------' |=======|================================| |==| | |=====| |==| |==| | |=====| |==| ------------ o---------------> ------------------------------- +Yurf +Xurf and +Xils are out of the page A transformation matrix from the MPO_ISA_UOAF to the MPO_ISA_ILS frame is obtained by the symmetric orthogonalisation or Lowdin orthogonalisation method SVD (Singular Value Decomposition) from measuring the sensing axes in the UOAF reference frame. The Nominal Rotation Matrix specified in [24] is: | 9.9999E-1 5.8847E-4 -1.5641E-3 | M = | -1.3802E-3 8.1852E-1 -5.7447E-1 | UOAF -> ILS | 9.4223E-4 5.7447E-1 8.1852E-1 | We use this rotation matrix in the fixed-offset frame definition below: \begindata FRAME_MPO_ISA_ILS = -121803 FRAME_-121803_NAME = 'MPO_ISA_ILS' FRAME_-121803_CLASS = 4 FRAME_-121803_CLASS_ID = -121803 FRAME_-121803_CENTER = -121806 TKFRAME_-121803_RELATIVE = 'MPO_ISA_UOAF' TKFRAME_-121803_SPEC = 'MATRIX' TKFRAME_-121803_MATRIX = ( 0.999998603569237, 0.000588472384105, -0.001564148275894, -0.001380237259485, 0.818524459347176, -0.574470020449736, 0.000942233879334, 0.574471377137857, 0.818524128565951 ) \begintext ISA Accelerometers Modules Frames: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The position and attitude of ISA with respect to the S/C is known when the position of the spheres -- hence the MPO_ISA_FEE_BOX frame center -- is known and the attitude of the accelerometers with respect to the S/C -- hence the MPO_ISA_ILS frame definition -- is known. The ISA Accelerometers Modules frames are defined in order to represent the coordinates of the Center of Gravity (COG) of the three Accelerometer Modules (AM) evaluated and represented in the MPO_ISA_FEE_BOX reference frame. Nevertheless they are defined w.r.t. the MPO_ISA_ILS reference frame because their axes are co-aligned with the MPO_ISA_ILS axes as defined below. DISCLAIMER: Please note that the orientation information of these frames is not relevant nor should be used to derive geometrical quantities. The orientation is simply inherited from the MPO_ISA_ILS. The ISA Accelerometer X frame -- MPO_ISA_AM_X -- is defined as: - +Z axis is nominally co-aligned with the MPO_ISA_ILS +X axis; - +X axis is nominally co-aligned with the MPO_ISA_ILS +Y axis; - +Y axis completes the right-handed frame; - the origin of this frame is located at Center of Gravity of the accelerometer. This origin is implemented with the ISA SPK described in the ISA Frame Tree section. The nominal coordinates in meters of the origin w.r.t to the MPO_ISA_FEE_BOX reference frame center are: ( x, y, z ) = ( 0.094476, -0.239084, 0.087319 ) ISA-AM-X_FEE The ISA Accelerometer Y frame -- MPO_ISA_AM_Y -- is defined as: - +Z axis is nominally co-aligned with the MPO_ISA_ILS +Y axis; - +X axis is nominally co-aligned with the MPO_ISA_ILS +Z axis; - +Y axis completes the right-handed frame; - the origin of this frame is located at Center of Gravity of the accelerometer. This origin is implemented with the ISA SPK described in the ISA Frame Tree section. The nominal coordinates in meters of the origin w.r.t to the MPO_ISA_FEE_BOX reference frame center are: ( x, y, z ) = ( 0.094483, -0.155179, 0.087331 ) MPO_ISA-AM-Y_FEE The ISA Vertex reference frame -- MPO_ISA_VERTEX -- is defined as a copy of the MPO_ISA_AM_Y frame. The ISA Accelerometer Z frame -- MPO_ISA_AM_Z -- is defined as: - +Z axis is nominally co-aligned with the MPO_ISA_ILS +Z axis; - +X axis is nominally co-aligned with the MPO_ISA_ILS +X axis; - +Y axis completes the right-handed frame; - the origin of this frame is located at Center of Gravity of the accelerometer. This origin is implemented with the ISA SPK described in the ISA Frame Tree section. The nominal coordinates in meters of the origin w.r.t to the MPO_ISA_FEE_BOX reference frame center are: ( x, y, z ) = ( 0.094334, -0.064293, 0.063895 ) MPO_ISA-AM-Z_FEE These diagrams illustrate the nominal MPO_ISA_AM_* frames with respect to the S/C frame (where * is X, Y and Z): +Z ISA side view: ----------------- +Yurf .---------- o----------> ------------------------------------. | | | | | .---------. .--------------------. | | +Xurf| | | | | | | .--------v---------. | VERTEX | | | | | |ACCEL-X | |(ACCEL-Y)| | ACCEL-Z | | | | o-----> | | o-----> | o-----> | | | | | +Xam-x | | | +Zver | +Yam-z | | | | | | | | | | | | '--------v---------' | v | | v | | | +Zam-x | +Yver | | +Xam-z | | | '---------' '--------------------' | |____________________________________________________________| +Zurf, +Yam-X, +Xver and +Zam-Z are out of the page +X ISA side view: ----------------- VERTEX ACCEL-X (ACCEL-Y) ACCEL-Z +Yam-x ^ +Xver ^ +Zam-z ^ .---|---. .----|----. | | | | | | | | | | | | | | | | | | | | | .----------|---------. | | | | | | | | | | o-------> | o------>| o------> | | +Zurf +Xisa-x Over | +Zver +Yam-z _| ^ |_ | | | | | | | | | | | '----------|-------'__'---------'__'--------------------' |=======|================================| |==| | |=====| |==| |==| | |=====| |==| ------------ o---------------> ------------------------------- +Yurf +Xurf +Zam-X, +Yver and +Xisa-Z are out of the page Since the SPICE frames subsystem calls for specifying the reverse transformation -- going from the instrument or structure frame to the base frame -- as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_ISA_AM_X = -121810 FRAME_-121810_NAME = 'MPO_ISA_AM_X' FRAME_-121810_CLASS = 4 FRAME_-121810_CLASS_ID = -121810 FRAME_-121810_CENTER = -121807 TKFRAME_-121810_RELATIVE = 'MPO_ISA_ILS' TKFRAME_-121810_SPEC = 'ANGLES' TKFRAME_-121810_UNITS = 'DEGREES' TKFRAME_-121810_ANGLES = ( 0.0, -90.0, -90.0 ) TKFRAME_-121810_AXES = ( 3, 1, 2 ) FRAME_MPO_ISA_AM_Y = -121820 FRAME_-121820_NAME = 'MPO_ISA_AM_Y' FRAME_-121820_CLASS = 4 FRAME_-121820_CLASS_ID = -121820 FRAME_-121820_CENTER = -121808 TKFRAME_-121820_RELATIVE = 'MPO_ISA_ILS' TKFRAME_-121820_SPEC = 'ANGLES' TKFRAME_-121820_UNITS = 'DEGREES' TKFRAME_-121820_ANGLES = ( 0.0, -90.0, -90.0 ) TKFRAME_-121820_AXES = ( 3, 2, 1 ) FRAME_MPO_ISA_VERTEX = -121821 FRAME_-121821_NAME = 'MPO_ISA_VERTEX' FRAME_-121821_CLASS = 4 FRAME_-121821_CLASS_ID = -121821 FRAME_-121821_CENTER = -121808 TKFRAME_-121821_RELATIVE = 'MPO_ISA_ILS' TKFRAME_-121821_SPEC = 'ANGLES' TKFRAME_-121821_UNITS = 'DEGREES' TKFRAME_-121821_ANGLES = ( 0.0, -90.0, -90.0 ) TKFRAME_-121821_AXES = ( 3, 2, 1 ) FRAME_MPO_ISA_AM_Z = -121830 FRAME_-121830_NAME = 'MPO_ISA_AM_Z' FRAME_-121830_CLASS = 4 FRAME_-121830_CLASS_ID = -121830 FRAME_-121830_CENTER = -121809 TKFRAME_-121830_RELATIVE = 'MPO_ISA_ILS' TKFRAME_-121830_SPEC = 'ANGLES' TKFRAME_-121830_UNITS = 'DEGREES' TKFRAME_-121830_ANGLES = ( 0.0, 0.0, 0.0 ) TKFRAME_-121830_AXES = ( 1, 2, 3 ) \begintext MORE (Mercury Orbiter Radioscience Experiment) Frames and Ephemeris Objects: ------------------------------------------------------------------------------ Currently there are no reference frames defined for MORE. Instead there is a set of S/C, HGA and ISA reference frames and Ephemeris Bodies (reference frames origins and other fixed-offset points on MPO) that are used to compute the Schulte Vector. The reference frames are the following: Name Relative to Type NAIF ID ====================== ===================== ============ ========= Spacecraft frames: ------------------ MPO_SPACECRAFT J2000 CK -121000 High Gain Antenna Frames: ------------------------- MPO_HGA_ARA MPO_SPACECRAFT FIXED -121020 MPO_HGA_IF_INT MPO_SPACECRAFT FIXED -121021 MPO_HGA_SCHULTE MPO_SPACECRAFT FIXED -121024 MPO_HGA_OPT_SWD MPO_HGA_SCHULTE FIXED -121027 MPO_HGA_APM_DGN MPO_HGA_IF_INT FIXED -121026 MPO_HGA_APM MPO_HGA_APM_DGN FIXED -121028 MPO_HGA_AZ MPO_HGA_APM CK -121035 MPO_HGA_EL_ZERO MPO_HGA_AZ FIXED -121039 MPO_HGA_EL MPO_HGA_EL_ZERO CK -121036 MPO_HGA_OPTICS MPO_HGA_EL FIXED -121037 MPO_HGA MPO_HGA_OPTICS FIXED -121038 ISA Frames: ----------- MPO_ISA_URF MPO_SPACECRAFT FIXED -121800 MPO_ISA_UOAF MPO_ISA_URF FIXED -121801 MPO_ISA_FEE_BOX MPO_ISA_UOAF FIXED -121802 MPO_ISA_ILS MPO_ISA_UOAF FIXED -121803 MPO_ISA_VERTEX MPO_ISA_ILS FIXED -121821 The ephemeris points required to compute the Schulte Vector with SPICE are provided in the following SPK kernels: bc_mpo_schulte_vector_vNN.bc where NN version of the kernel The latest version of this kernel needs to be loaded in the kernel pool in order to obtain the position of the given centers. The list of ephemeris points is provided hereafter: Name Description Expressed in NAIF ID ====================== =============================== =============== ======= MPO_HGA_ARA_SC MPO_HGA_ARA origin MPO_SPACECRAFT -121850 MPO_HGA_P1_ARA Schulte Point as designed MPO_HGA_ARA -121851 MPO_HGA_P21_ARA PointB as designed MPO_HGA_ARA -121852 MPO_HGA_P1-IF-INT_ARA Schulte Point before HGA inst. MPO_HGA_ARA -121853 MPO_HGA_P21-IF-INT_ARA PointB before HGA installation MPO_HGA_ARA -121854 MPO_HGA_P1-IF_IFINT Schulte Point after HGA inst. MPO_HGA_IF_INT -121855 MPO_HGA_P1_IFINT MPO_HGA_SCHULTE origin MPO_HGA_IF_INT -121857 MPO_HGA_APM-DGN_ARA MPO_HGA_APM_DGN origin MPO_HGA_ARA -121858 MPO_HGA_APM_SCHULTE Measured origin of MPO_HGA_APM MPO_HGA_SCHULTE -121859 MPO_HGA_OPT_EL MPO_HGA_OPTICAL origin (CK dep) MPO_HGA_EL -121864 MPO_HGA_PC-X_OPT X-Band Phase Center (CK dep) MPO_HGA_OPTIC -121865 MPO_HGA_PC-KA_OPT Ka-Band Phase Center (CK dep) MPO_HGA_OPTIC -121866 MPO_SCHULTE_X_BAND Duplicate of PC-X_OPT MPO_HGA_OPTIC -121870 MPO_SCHULTE_KA_BAND Duplicate of PC-KA_OPT MPO_HGA_OPTIC -121871 MPO_SCHULTE_X_BAND_MET X phase center from metrology MPO_HGA_OPTICS -121872 MPO_SCHULTE_KA_BAND_MET Ka phase center from metrology MPO_HGA_OPTICS -121873 MPO_HGA_S2_IF_INT S2 Sphere pos. before HGA int. MPO_HGA_IF_INT -121804 MPO_HGA_S2_IF S2 Sphere pos. after HGA int. MPO_HGA_IF -121805 MPO_ISA-VERTEX_FEE ISA Vertex Point (AM-Y CG) MPO_ISA_FEE_BOX -121806 MPO_SCHULTE_ORIGIN Duplicate of MPO_ISA-VERTEX_FEE MPO_ISA_FEE_BOX -121874 Schulte Vector computation using SPICE: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The Schulte Vector is the vector defined by the IDA measurement reference location to the phase centre of the HGA expressed in the MPO reference frame. Therefore the following objects need to be used: - MPO_SCHULTE_ORIGIN (MPO_ISA-VERTEX_FEE is a synonym); - MPO_SCHULTE_X_BAND (MPO_PC-X_OPT is a synonym) or MPO_SCHULTE_KA_BAND (MPO_PC-KA_OPT is a synonym) (Depending on whether if X- or Ka-Band is used); All these ephemeris points need to be expressed in the MPO_SPACECRAFT frame. Therefore to compute the Schulte Vector one could call the SPICE API SPKPOS: CALL SPKPOS ( TARG, ET, REF, ABCORR, OBS, POS, LT ), in such way: CALL SPKPOS ( 'MPO_SCHULTE_X_BAND', ET, 'MPO_SPACECRAFT', 'NONE', & 'SCHULTE_ORIGIN', POS, LT ) or CALL SPKPOS ( 'MPO_SCHULTE_KA_BAND', ET, 'MPO_SPACECRAFT', 'NONE', & 'MPO_SCHULTE_ORIGIN', POS, LT ) where ET is the chosen ephemeris time (input); POS is the resulting Schulte Vector (output); LT is the is the one-way light time between the observer and target in seconds (not relevant output). The following Python 3.X code snippet example could be implemented to compute the Schulte Vector: import spiceypy as spiceypy cspice.furnsh('bc_ops.tm') obs = 'MPO_SCHULTE_ORIGIN' targ = 'MPO_SCHULTE_X_BAND' ref = 'MPO_SPACECRAFT' et = spiceypy.utc2et('2027-01-03') schulte, lt = spiceypy.spkpos(targ, et, ref, 'NONE', obs) schulte, norm = spiceypy.unorm(schulte) print(schulte) spiceypy.kclear MPO-MAG Frames: -------------------------------------------------------------------------- This section contains the definition of the MPO Mercury Magnetometer (MPO-MAG) instrument frames. The MPO-MAG instrument is the MPO component of the Magnetic Field Investigation on the BepiColombo mission (MERMAG). MPO-MAG Frame Tree: ~~~~~~~~~~~~~~~~~~~ The diagram below shows the MPO_MAG frame hierarchy: "MPO_SPACECRAFT" ---------------- | |<-fixed | v "MPO_MAG_BOOM-H" ---------------- | |<-ck | v "MPO_MAG_BOOM" +------------------------+ | | |<-fixed |<-fixed | | v v "MPO_MPO-MAG_IBS" "MPO_MPO-MAG_OBS" ----------------- ----------------- MPO-MAG frames definitions: ~~~~~~~~~~~~~~~~~~~~~~~~~~~ The MPO-MAG experiment comprises two sensors mounted in the MPO Magnetometer Boom at different distances from the boom's hinge. The deployable boom that is located on the -X side in the plane of the radiator and tilted 10 degrees to nadir. The innermost is called the MERMAG in-board sensor (IBS) and it is a fluxgate magnetometer. A second fluxgate magnetometer, called the MERMAG out-board sensor (OBS), is located at the tip of the boom. Each of the sensor's frames -- MPO_MPO-MAG_IBS, MPO_MPO-MAG_OBS -- are defined as follows (from [22]): - +Z axis is nominally anti-parallel to the boom and points from the sensor toward the boom deployment hinge; - +X axis is nominally anti-parallel to the boom's +X axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the geometric center of the sensor. These diagrams illustrates the MPO_MPO-MAG sensors' frames: +X Magnetometer Boom side view: ------------------------------- +Yobs .---. MPO-MAG Outboard Sensor <--------o | (MPO-MAG_OBS) '-|-' ||| |v +Zobs | | | | | | | | +Yibs .---. MPO-MAG Inboard Sensor <--------o | (MPO-MAG_IBS) '-|-' ||| |v +Zibs | | ~~~ ~~~ | | | | |^ +Zmagb ||| ||| +Xmagb, +Xibs, +Xobs and ||| +Ymagb +Xsca are out of the page o--------> +Xmagb -Z S/C side view: ----------------- ^ Xmga_boom / / / MPO 0 <--- MPO-MAG_OBS Magnetometer ---> / Boom / Ymga_boom 0 <--- MPO-MAG_IBS <--.. / _ ''--.. / MGA --> -)[_] ''--.. / 0 -Xsc ^ ''--.. ./+Zmag_boom_h,+Zmag_boom \ | . ' ,'''0o-------> \ . '| ,' || Ymag_boom_h /___, ,_______, o-------|--' || \///| |///////|\ | | || ////|=|///////|\\ | | |v \///| |///////| \\____| | |Xmag_boom_h ////| |///////| /,----| o-------------> -Ysc \///|=|///////|// | -Zsc | ////| |///////|/ | | \---' '-------' '. | '._________ | | | '. \ | |__|\ '. \ | __||__ '-'--' / O \ -Zsc, +Zmag_boom_h and +Zmag_boom are out of the page. Nominally, the two MPO-MAG sensors frames are co-aligned with the magnetometer frame. Following the Earth swingby (April 2020), the orientation of the IB and the OB were calibrated identifying a slight deviation from the nominal ``even'' angles by roughly 1 degree. The resulting angles are provided in the frame definition. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_MPO_MPO-MAG_IBS = -121891 FRAME_-121891_NAME = 'MPO_MPO-MAG_IBS' FRAME_-121891_CLASS = 4 FRAME_-121891_CLASS_ID = -121891 FRAME_-121891_CENTER = -121 TKFRAME_-121891_RELATIVE = 'MPO_MAG_BOOM' TKFRAME_-121891_SPEC = 'ANGLES' TKFRAME_-121891_UNITS = 'DEGREES' TKFRAME_-121891_AXES = ( 1, 2, 3 ) TKFRAME_-121891_ANGLES = ( 180.748, 0.372, 0.791 ) FRAME_MPO_MPO-MAG_OBS = -121892 FRAME_-121892_NAME = 'MPO_MPO-MAG_OBS' FRAME_-121892_CLASS = 4 FRAME_-121892_CLASS_ID = -121892 FRAME_-121892_CENTER = -121 TKFRAME_-121892_RELATIVE = 'MPO_MAG_BOOM' TKFRAME_-121892_SPEC = 'ANGLES' TKFRAME_-121892_UNITS = 'DEGREES' TKFRAME_-121892_AXES = ( 1, 2, 3 ) TKFRAME_-121892_ANGLES = ( 179.937, 0.488, 1.563 ) \begintext MGNS (Mercury Gamma and Neutron Spectrometer) Frames: ------------------------------------------------------------------------------ This section of the file contains the definitions of the MGNS frames. MGNS Frame Tree: ~~~~~~~~~~~~~~~~ The diagram below shows the MGNS frame hierarchy. "J2000" INERTIAL --------------- | |<-ck | V "MPO_SPACECRAFT" ---------------- | |<-fixed | V "MPO_MGNS" ---------- MGNS base frame ~~~~~~~~~~~~~~~~ The Mercury Gamma and Neutron Spectrometer (MGNS) is rigidly mounted on the spacecraft Science Deck. The base frame -- MPO_MGNS, associated to it, maps the MPO spacecraft reference axis defined in the mechanical drawings and it is specified as a fixed-offset frame with its orientation aligned to the MPO_SPACECRAFT frame. The MGNS base frame is defined by the detector design and its mounting on the spacecraft as follows (from [21]): - +Y axis passes through the next fixation hole at the same side of the unit; it is nominally co-aligned with the spacecraft +Z axis; - +Z axis is is perpendicular to the interface plane towards the unit; it is nominally co-aligned with the spacecraft +Z axis; - +X axis completes the right-handed frame; - the origin is located at the unit reference foot at the unit to spacecraft interface plane. This diagram illustrates the nominal MPO_MGNS frame with respect to the spacecraft frame. -X S/C side view: ----------------- / \ \O ||\__ .---------. o==o======n________/ \_ / |\ / | o. / |/ ' . Rotating / x-------> | ' . Solar Panel / | +Ysc | ' . / | | ' . / | o-----------> ' . /--------|----|--------' +Ymgns | | v | +Zsc/nadir | | V +Zmgns Xsc is into the page +Zmgns is out of the page Nominally, the MPO_MGNS and the MPO_SPACECRAFT frames are co-aligned. \begindata FRAME_MPO_MGNS = -121895 FRAME_-121895_NAME = 'MPO_MGNS' FRAME_-121895_CLASS = 4 FRAME_-121895_CLASS_ID = -121895 FRAME_-121895_CENTER = -121 TKFRAME_-121895_RELATIVE = 'MPO_SPACECRAFT' TKFRAME_-121895_SPEC = 'ANGLES' TKFRAME_-121895_UNITS = 'DEGREES' TKFRAME_-121895_ANGLES = ( 0.0, 0.0, 0.0 ) TKFRAME_-121895_AXES = ( 1, 2, 3 ) \begintext BEPICOLOMBO MPO NAIF ID Codes to Name Mapping ------------------------------------------------------------------------------ This section contains name to NAIF ID mappings for the BepiColombo MPO mission. Once the contents of this file is loaded into the KERNEL POOL, these mappings become available within SPICE, making it possible to use names instead of ID code in the high level SPICE routine calls. Spacecraft: ---------------------------------------------------------------- This table presents the BepiColombo Spacecraft and its main structures' names and --------------------- ------- -------------------------- Name ID Synonyms --------------------- ------- -------------------------- MPO -121 BEPICOLOMBO MPO, MERCURY PLANETARY ORBITER MPO_SPACECRAFT -121000 MPO_SC MPO_SA -121012 MPO_SA_GIMBAL -121010 MPO_SA_Y-1 -121911 MPO_SA_Y-2 -121912 MPO_SA_Y-3 -121913 MPO_SA_P1-1 -121914 MPO_SA_P1-2 -121915 MPO_SA_P1-3 -121916 MPO_SA_P1-4 -121917 MPO_SA_P2-1 -121918 MPO_SA_P2-2 -121919 MPO_SA_P2-3 -121920 MPO_SA_P2-4 -121921 MPO_SA_P3-1 -121922 MPO_SA_P3-2 -121923 MPO_SA_P3-3 -121924 MPO_SA_P3-4 -121925 MPO_OB -121013 MPO_MAG_BOOM-H -121030 MPO_MAG_BOOM -121031 MPO_HGA -121023 MPO_MGA_BOOM-H -121040 MPO_MGA -121043 MPO_LGA+X -121050 MPO_LGA-X -121051 MPO_STR-1 -121061 MPO_STR-2 -121062 MPO_STR-3 -121063 MPO_MOSIF -121090 --------------------- ------- -------------------------- Notes: -- 'MPO', 'BEPICOLOMBO MPO' and 'MERCURY PLANETARY ORBITER' are synonyms and all map to the BepiColombo MPO spacecraft ID (-121); -- 'MPO_SC' and 'MPO_SPACECRAFT' are synonyms and all map to the BepiColombo MPO S/C bus structure ID (-121000); \begindata NAIF_BODY_NAME += ( 'BEPICOLOMBO MPO' ) NAIF_BODY_CODE += ( -121 ) NAIF_BODY_NAME += ( 'MERCURY PLANETARY ORBITER' ) NAIF_BODY_CODE += ( -121 ) NAIF_BODY_NAME += ( 'MPO' ) NAIF_BODY_CODE += ( -121 ) NAIF_BODY_NAME += ( 'MPO_SC' ) NAIF_BODY_CODE += ( -121000 ) NAIF_BODY_NAME += ( 'MPO_SPACECRAFT' ) NAIF_BODY_CODE += ( -121000 ) NAIF_BODY_NAME += ( 'MPO_SA' ) NAIF_BODY_CODE += ( -121012 ) NAIF_BODY_NAME += ( 'MPO_SA_GIMBAL' ) NAIF_BODY_CODE += ( -121010 ) NAIF_BODY_NAME += ( 'MPO_SA_Y-1' ) NAIF_BODY_CODE += ( -121911 ) NAIF_BODY_NAME += ( 'MPO_SA_Y-2' ) NAIF_BODY_CODE += ( -121912 ) NAIF_BODY_NAME += ( 'MPO_SA_Y-3' ) NAIF_BODY_CODE += ( -121913 ) NAIF_BODY_NAME += ( 'MPO_SA_P1-1' ) NAIF_BODY_CODE += ( -121914 ) NAIF_BODY_NAME += ( 'MPO_SA_P1-2' ) NAIF_BODY_CODE += ( -121915 ) NAIF_BODY_NAME += ( 'MPO_SA_P1-3' ) NAIF_BODY_CODE += ( -121916 ) NAIF_BODY_NAME += ( 'MPO_SA_P1-4' ) NAIF_BODY_CODE += ( -121917 ) NAIF_BODY_NAME += ( 'MPO_SA_P2-1' ) NAIF_BODY_CODE += ( -121918 ) NAIF_BODY_NAME += ( 'MPO_SA_P2-2' ) NAIF_BODY_CODE += ( -121919 ) NAIF_BODY_NAME += ( 'MPO_SA_P2-3' ) NAIF_BODY_CODE += ( -121920 ) NAIF_BODY_NAME += ( 'MPO_SA_P2-4' ) NAIF_BODY_CODE += ( -121921 ) NAIF_BODY_NAME += ( 'MPO_SA_P3-1' ) NAIF_BODY_CODE += ( -121922 ) NAIF_BODY_NAME += ( 'MPO_SA_P3-2' ) NAIF_BODY_CODE += ( -121923 ) NAIF_BODY_NAME += ( 'MPO_SA_P3-3' ) NAIF_BODY_CODE += ( -121924 ) NAIF_BODY_NAME += ( 'MPO_SA_P3-4' ) NAIF_BODY_CODE += ( -121925 ) NAIF_BODY_NAME += ( 'MPO_OB' ) NAIF_BODY_CODE += ( -121013 ) NAIF_BODY_NAME += ( 'MPO_MAG_BOOM-H' ) NAIF_BODY_CODE += ( -121030 ) NAIF_BODY_NAME += ( 'MPO_MAG_BOOM' ) NAIF_BODY_CODE += ( -121031 ) NAIF_BODY_NAME += ( 'MPO_HGA' ) NAIF_BODY_CODE += ( -121023 ) NAIF_BODY_NAME += ( 'MPO_MGA_BOOM-H' ) NAIF_BODY_CODE += ( -121040 ) NAIF_BODY_NAME += ( 'MPO_MGA' ) NAIF_BODY_CODE += ( -121043 ) NAIF_BODY_NAME += ( 'MPO_LGA+X' ) NAIF_BODY_CODE += ( -121050 ) NAIF_BODY_NAME += ( 'MPO_LGA-X' ) NAIF_BODY_CODE += ( -121051 ) NAIF_BODY_NAME += ( 'MPO_STR-1' ) NAIF_BODY_CODE += ( -121061 ) NAIF_BODY_NAME += ( 'MPO_STR-2' ) NAIF_BODY_CODE += ( -121062 ) NAIF_BODY_NAME += ( 'MPO_STR-3' ) NAIF_BODY_CODE += ( -121063 ) NAIF_BODY_NAME += ( 'MPO_MOSIF' ) NAIF_BODY_CODE += ( -121090 ) \begintext BELA: ----- This table summarizes BELA IDs: ---------------------- -------- Name ID ---------------------- -------- MPO_BELA -121100 MPO_BELA_RECEIVER -121101 MPO_BELA_TRANSMITTER -121102 ---------------------- -------- Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'MPO_BELA' ) NAIF_BODY_CODE += ( -121100 ) NAIF_BODY_NAME += ( 'MPO_BELA_RECEIVER' ) NAIF_BODY_CODE += ( -121101 ) NAIF_BODY_NAME += ( 'MPO_BELA_TRANSMITTER' ) NAIF_BODY_CODE += ( -121102 ) \begintext MERTIS: ------- This table summarizes MERTIS IDs: ---------------------- -------- Name ID ---------------------- -------- MPO_MERTIS_PLANET -121201 MPO_MERTIS_SPACE -121202 MPO_MERTIS_BB3 -121203 MPO_MERTIS_BB7 -121204 MPO_MERTIS_TIS -121210 MPO_MERTIS_TIS_PLANET -121211 MPO_MERTIS_TIS_SPACE -121212 MPO_MERTIS_TIR -121220 MPO_MERTIS_TIR_PLANET -121221 MPO_MERTIS_TIR_SPACE -121222 MPO_MERTIS -121230 ---------------------- -------- Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'MPO_MERTIS_PLANET' ) NAIF_BODY_CODE += ( -121201 ) NAIF_BODY_NAME += ( 'MPO_MERTIS_SPACE' ) NAIF_BODY_CODE += ( -121202 ) NAIF_BODY_NAME += ( 'MPO_MERTIS_BB3 ' ) NAIF_BODY_CODE += ( -121203 ) NAIF_BODY_NAME += ( 'MPO_MERTIS_BB7' ) NAIF_BODY_CODE += ( -121204 ) NAIF_BODY_NAME += ( 'MPO_MERTIS_TIS' ) NAIF_BODY_CODE += ( -121210 ) NAIF_BODY_NAME += ( 'MPO_MERTIS_TIS_PLANET' ) NAIF_BODY_CODE += ( -121211 ) NAIF_BODY_NAME += ( 'MPO_MERTIS_TIS_SPACE' ) NAIF_BODY_CODE += ( -121212 ) NAIF_BODY_NAME += ( 'MPO_MERTIS_TIR' ) NAIF_BODY_CODE += ( -121220 ) NAIF_BODY_NAME += ( 'MPO_MERTIS_TIR_PLANET' ) NAIF_BODY_CODE += ( -121221 ) NAIF_BODY_NAME += ( 'MPO_MERTIS_TIR_SPACE' ) NAIF_BODY_CODE += ( -121222 ) NAIF_BODY_NAME += ( 'MPO_MERTIS' ) NAIF_BODY_CODE += ( -121230 ) \begintext MIXS: ----- This table summarizes MIXS IDs: ------------ -------- Name ID ------------ -------- MPO_MIXS -121300 MPO_MIXS-C -121350 MPO_MIXS-T -121355 ------------ -------- Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'MPO_MIXS' ) NAIF_BODY_CODE += ( -121300 ) NAIF_BODY_NAME += ( 'MPO_MIXS-C' ) NAIF_BODY_CODE += ( -121310 ) NAIF_BODY_NAME += ( 'MPO_MIXS-T' ) NAIF_BODY_CODE += ( -121320 ) \begintext PHEBUS: ------- This table summarizes PHEBUS IDs: ---------------------- -------- Name ID ---------------------- -------- MPO_PHEBUS -121430 MPO_PHEBUS_SLIT_75 -121431 MPO_PHEBUS_SLIT_100 -121432 MPO_PHEBUS_75 -121433 MPO_PHEBUS_100 -121434 MPO_PHEBUS_PB -121411 ---------------------- -------- Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'MPO_PHEBUS' ) NAIF_BODY_CODE += ( -121430 ) NAIF_BODY_NAME += ( 'MPO_PHEBUS_SLIT_75' ) NAIF_BODY_CODE += ( -121431 ) NAIF_BODY_NAME += ( 'MPO_PHEBUS_SLIT_100' ) NAIF_BODY_CODE += ( -121432 ) NAIF_BODY_NAME += ( 'MPO_PHEBUS_75' ) NAIF_BODY_CODE += ( -121433 ) NAIF_BODY_NAME += ( 'MPO_PHEBUS_100' ) NAIF_BODY_CODE += ( -121434 ) NAIF_BODY_NAME += ( 'MPO_PHEBUS_PB' ) NAIF_BODY_CODE += ( -121411 ) \begintext SERENA: ------- This table summarizes SERENA IDs: ------------------------- -------- Name ID ------------------------- --------- MPO_SERENA -121500 MPO_SERENA_ELENA -121510 MPO_SERENA_MIPA -121520 MPO_SERENA_PICAM -121530 MPO_SERENA_PICAM_00_30 -121531 MPO_SERENA_PICAM_30_60 -121532 MPO_SERENA_PICAM_60_90 -121533 MPO_SERENA_STROFIO -121540 MPO_SERENA_STROFIO+X -121541 MPO_SERENA_STROFIO-X -121542 MPO_SERENA_ELENA_AN_NN* -1215NN* * There are NNN NAIF ID codes for the MPO_SERENA_ELENA_AN elements. NN is the anode number and ranges from 50 to 82. IMPORTANT: Please note that the MPO_SERENA_ELENA_AN_NN* NAIF ID definitions are not included in the MPO Frames Kernel file (bc_mpo_vNN.tf, where NN is the version number of the file). Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'MPO_SERENA' ) NAIF_BODY_CODE += ( -121500 ) NAIF_BODY_NAME += ( 'MPO_SERENA_ELENA' ) NAIF_BODY_CODE += ( -121510 ) NAIF_BODY_NAME += ( 'MPO_SERENA_MIPA' ) NAIF_BODY_CODE += ( -121520 ) NAIF_BODY_NAME += ( 'MPO_SERENA_PICAM' ) NAIF_BODY_CODE += ( -121530 ) NAIF_BODY_NAME += ( 'MPO_SERENA_PICAM_00_30' ) NAIF_BODY_CODE += ( -121531 ) NAIF_BODY_NAME += ( 'MPO_SERENA_PICAM_30_60' ) NAIF_BODY_CODE += ( -121532 ) NAIF_BODY_NAME += ( 'MPO_SERENA_PICAM_60_90' ) NAIF_BODY_CODE += ( -121533 ) NAIF_BODY_NAME += ( 'MPO_SERENA_STROFIO+X' ) NAIF_BODY_CODE += ( -121541 ) NAIF_BODY_NAME += ( 'MPO_SERENA_STROFIO-X' ) NAIF_BODY_CODE += ( -121542 ) NAIF_BODY_NAME += ( 'MPO_SERENA_STROFIO' ) NAIF_BODY_CODE += ( -121543 ) \begintext SIMBIO-SYS: ----------- This table summarizes SIMBIO-SYS IDs: ------------------------- -------- Name ID ------------------------- -------- MPO_SIMBIO-SYS -121600 MPO_SIMBIO-SYS_HRIC_URF -121601 MPO_SIMBIO-SYS_HRIC_UORF -121602 MPO_SIMBIO-SYS_VIHI_UORF -121603 MPO_SIMBIO-SYS_HRIC_FPA -121610 MPO_SIMBIO-SYS_HRIC_F550 -121611 MPO_SIMBIO-SYS_HRIC_FPAN -121612 MPO_SIMBIO-SYS_HRIC_F750 -121613 MPO_SIMBIO-SYS_HRIC_F880 -121614 MPO_SIMBIO-SYS_STC_FPA -121620 MPO_SIMBIO-SYS_STC-L -121621 MPO_SIMBIO-SYS_STC-H -121622 MPO_SIMBIO-SYS_STC-L_F920 -121623 MPO_SIMBIO-SYS_STC-L_F550 -121624 MPO_SIMBIO-SYS_STC-L_P700 -121625 MPO_SIMBIO-SYS_STC-H_P700 -121626 MPO_SIMBIO-SYS_STC-H_F420 -121627 MPO_SIMBIO-SYS_STC-H_F750 -121628 MPO_SIMBIO-SYS_VIHI_FPA -121630 ------------------------- -------- Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS' ) NAIF_BODY_CODE += ( -121600 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_HRIC_URF' ) NAIF_BODY_CODE += ( -121601 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_HRIC_UORF' ) NAIF_BODY_CODE += ( -121602 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_VIHI_UORF' ) NAIF_BODY_CODE += ( -121603 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_HRIC_FPA' ) NAIF_BODY_CODE += ( -121610 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_HRIC_F550' ) NAIF_BODY_CODE += ( -121611 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_HRIC_FPAN' ) NAIF_BODY_CODE += ( -121612 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_HRIC_F750' ) NAIF_BODY_CODE += ( -121613 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_HRIC_F880' ) NAIF_BODY_CODE += ( -121614 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_STC_FPA' ) NAIF_BODY_CODE += ( -121620 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_STC-L' ) NAIF_BODY_CODE += ( -121621 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_STC-H' ) NAIF_BODY_CODE += ( -121622 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_STC-L_F920' ) NAIF_BODY_CODE += ( -121623 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_STC-L_F550' ) NAIF_BODY_CODE += ( -121624 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_STC-L_P700' ) NAIF_BODY_CODE += ( -121625 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_STC-H_P700' ) NAIF_BODY_CODE += ( -121626 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_STC-H_F420' ) NAIF_BODY_CODE += ( -121627 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_STC-H_F750' ) NAIF_BODY_CODE += ( -121628 ) NAIF_BODY_NAME += ( 'MPO_SIMBIO-SYS_VIHI_FPA' ) NAIF_BODY_CODE += ( -121630 ) \begintext SIXS: ----- This table summarizes SIXS IDs: ------------------ -------- Name ID ------------------ -------- MPO_SIXS -121700 MPO_SIXS-X -121710 MPO_SIXS-X-1 -121711 MPO_SIXS-X-2 -121712 MPO_SIXS-X-3 -121713 MPO_SIXS-X-1_PLAN -121714 MPO_SIXS-X-2_PLAN -121715 MPO_SIXS-X-3_PLAN -121716 MPO_SIXS-P -121720 MPO_SIXS-P-0 -121721 MPO_SIXS-P-1 -121722 MPO_SIXS-P-2 -121723 MPO_SIXS-P-3 -121724 MPO_SIXS-P-4 -121725 ------------------ -------- Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'MPO_SIXS' ) NAIF_BODY_CODE += ( -121700 ) NAIF_BODY_NAME += ( 'MPO_SIXS-X' ) NAIF_BODY_CODE += ( -121710 ) NAIF_BODY_NAME += ( 'MPO_SIXS-X-1' ) NAIF_BODY_CODE += ( -121711 ) NAIF_BODY_NAME += ( 'MPO_SIXS-X-2' ) NAIF_BODY_CODE += ( -121712 ) NAIF_BODY_NAME += ( 'MPO_SIXS-X-3' ) NAIF_BODY_CODE += ( -121713 ) NAIF_BODY_NAME += ( 'MPO_SIXS-X-1_PLAN' ) NAIF_BODY_CODE += ( -121714 ) NAIF_BODY_NAME += ( 'MPO_SIXS-X-2_PLAN' ) NAIF_BODY_CODE += ( -121715 ) NAIF_BODY_NAME += ( 'MPO_SIXS-X-3_PLAN' ) NAIF_BODY_CODE += ( -121716 ) NAIF_BODY_NAME += ( 'MPO_SIXS-P' ) NAIF_BODY_CODE += ( -121720 ) NAIF_BODY_NAME += ( 'MPO_SIXS-P-0' ) NAIF_BODY_CODE += ( -121721 ) NAIF_BODY_NAME += ( 'MPO_SIXS-P-1' ) NAIF_BODY_CODE += ( -121722 ) NAIF_BODY_NAME += ( 'MPO_SIXS-P-2' ) NAIF_BODY_CODE += ( -121723 ) NAIF_BODY_NAME += ( 'MPO_SIXS-P-3' ) NAIF_BODY_CODE += ( -121724 ) NAIF_BODY_NAME += ( 'MPO_SIXS-P-4' ) NAIF_BODY_CODE += ( -121725 ) \begintext ISA: ---- This table summarizes ISA IDs: ------------------ -------- Name ID ------------------ -------- MPO_ISA -121800 MPO_ISA-VERTEX_FEE -121806 MPO_ISA-AM-X_FEE -121807 MPO_ISA-AM-Y_FEE -121808 MPO_ISA-AM-Z_FEE -121809 ------------------- -------- Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'MPO_ISA' ) NAIF_BODY_CODE += ( -121800 ) NAIF_BODY_NAME += ( 'MPO_ISA-VERTEX_FEE' ) NAIF_BODY_CODE += ( -121806 ) NAIF_BODY_NAME += ( 'MPO_ISA-AM-X_FEE' ) NAIF_BODY_CODE += ( -121807 ) NAIF_BODY_NAME += ( 'MPO_ISA-AM-Y_FEE' ) NAIF_BODY_CODE += ( -121808 ) NAIF_BODY_NAME += ( 'MPO_ISA-AM-Z_FEE' ) NAIF_BODY_CODE += ( -121809 ) \begintext MORE: ----- This table summarizes MORE IDs: -------------------------- -------- Name ID -------------------------- -------- MPO_MORE -121875 MPO_HGA_ARA_SC -121850 MPO_HGA_P1_ARA -121851 MPO_HGA_P21_ARA -121852 MPO_HGA_P1-IF-INT_ARA -121853 MPO_HGA_P21-IF-INT_ARA -121854 MPO_HGA_P1-IF_IFINT -121855 MPO_HGA_P1_IFINT -121857 MPO_HGA_S2_ARA -121804 MPO_HGA_S2_IF -121805 MPO_HGA_APM-DGN_ARA -121858 MPO_HGA_APM_SCHULTE -121859 MPO_HGA_OPT_EL -121864 MPO_HGA_PC-X_OPT -121865 MPO_HGA_PC-KA_OPT -121866 MPO_SCHULTE_X_BAND -121870 MPO_SCHULTE_KA_BAND -121871 MPO_SCHULTE_X_BAND_MET -121872 MPO_SCHULTE_KA_BAND_MET -121873 MPO_SCHULTE_ORIGIN -121874 --------------------------- -------- Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'MPO_MORE' ) NAIF_BODY_CODE += ( -121875 ) NAIF_BODY_NAME += ( 'MPO_HGA_ARA_SC' ) NAIF_BODY_CODE += ( -121850 ) NAIF_BODY_NAME += ( 'MPO_HGA_P1_ARA' ) NAIF_BODY_CODE += ( -121851 ) NAIF_BODY_NAME += ( 'MPO_HGA_P21_ARA' ) NAIF_BODY_CODE += ( -121852 ) NAIF_BODY_NAME += ( 'MPO_HGA_P1-IF-INT_ARA' ) NAIF_BODY_CODE += ( -121853 ) NAIF_BODY_NAME += ( 'MPO_HGA_P21-IF-INT_ARA' ) NAIF_BODY_CODE += ( -121854 ) NAIF_BODY_NAME += ( 'MPO_HGA_P1-IF_IFINT' ) NAIF_BODY_CODE += ( -121855 ) NAIF_BODY_NAME += ( 'MPO_HGA_P1_IFINT' ) NAIF_BODY_CODE += ( -121857 ) NAIF_BODY_NAME += ( 'MPO_HGA_S2_IF_INT' ) NAIF_BODY_CODE += ( -121804 ) NAIF_BODY_NAME += ( 'MPO_HGA_S2_IF' ) NAIF_BODY_CODE += ( -121805 ) NAIF_BODY_NAME += ( 'MPO_HGA_APM-DGN_ARA' ) NAIF_BODY_CODE += ( -121858 ) NAIF_BODY_NAME += ( 'MPO_HGA_APM_APM-DGN' ) NAIF_BODY_CODE += ( -121859 ) NAIF_BODY_NAME += ( 'MPO_HGA_OPT_EL' ) NAIF_BODY_CODE += ( -121864 ) NAIF_BODY_NAME += ( 'MPO_HGA_PC-X_OPT' ) NAIF_BODY_CODE += ( -121865 ) NAIF_BODY_NAME += ( 'MPO_HGA_PC-KA_OPT' ) NAIF_BODY_CODE += ( -121866 ) NAIF_BODY_NAME += ( 'MPO_SCHULTE_X_BAND' ) NAIF_BODY_CODE += ( -121870 ) NAIF_BODY_NAME += ( 'MPO_SCHULTE_KA_BAND' ) NAIF_BODY_CODE += ( -121871 ) NAIF_BODY_NAME += ( 'MPO_SCHULTE_X_BAND_MET' ) NAIF_BODY_CODE += ( -121872 ) NAIF_BODY_NAME += ( 'MPO_SCHULTE_KA_BAND_MET' ) NAIF_BODY_CODE += ( -121873 ) NAIF_BODY_NAME += ( 'MPO_SCHULTE_ORIGIN' ) NAIF_BODY_CODE += ( -121874 ) \begintext MPO-MAG: -------- This table summarizes MPO-MAG IDs: ---------------- -------- Name ID ---------------- -------- MPO_MPO-MAG -121890 MPO_MPO-MAG_IBS -121891 MPO_MPO-MAG_OBS -121892 -------------- -------- Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'MPO_MPO-MAG' ) NAIF_BODY_CODE += ( -121890 ) NAIF_BODY_NAME += ( 'MPO_MPO-MAG_IBS' ) NAIF_BODY_CODE += ( -121891 ) NAIF_BODY_NAME += ( 'MPO_MPO-MAG_OBS' ) NAIF_BODY_CODE += ( -121892 ) \begintext MGNS: ----- This table summarizes MGNS IDs: -------------- -------- Name ID -------------- -------- MPO_MGNS -121895 -------------- -------- Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'MPO_MGNS' ) NAIF_BODY_CODE += ( -121895 ) \begintext BERM: ----- This table summarizes BERM IDs: -------------- -------- Name ID -------------- -------- MPO_BERM -121896 -------------- -------- Name-ID Mapping keywords: \begindata NAIF_BODY_NAME += ( 'MPO_BERM' ) NAIF_BODY_CODE += ( -121896 ) \begintext End of FK file.