KPL/FK ExoMarsRSP Rosalind Franklin Rover Module (RM) Frames Kernel =============================================================================== This frame kernel contains a complete set of frame definitions for the ExoMars RSP Rosalind Franklin Rover Module (RM) including definitions for the RM structures and RM science instrument frames. This kernel also contains NAIF ID/name mapping for the RM instruments. Version and Date ------------------------------------------------------------------------ Version 0.1.0 -- May 13, 2021 -- Alfredo Escalante Lopez, ESAC/ESA Updated PanCam WAC-L, WAC-R and HRC reference frames from calibration data. Defined auxiliary frame RM_PANCAM_JR. Added Pan and Tilt axis offset to RM_PANCAM_BASE reference frame. Version 0.0.9 -- April 25, 2021 -- Alfredo Escalante Lopez, ESAC/ESA Corrected MAST_ZERO reference frame orientation. Added wheels steer IDs/bodies association. Corrected wheel bogies names. Version 0.0.8 -- March 9, 2021 -- Alfredo Escalante Lopez, ESAC/ESA Federico Salvioli, ROCC/ALTEC Corrected various frames name and ID duplicates. Version 0.0.7 -- November 12, 2020 -- Marc Costa Sitja, ESAC/ESA Federico Salvioli, ROCC/ALTEC Corrected frame definitions for RM_WHEEL_LR_STR, RM_WHEEL_RR_STR, RM_WHEEL_RM_FIX and RM_WHEEL_LR_FIX. Version 0.0.6 -- June 4, 2020 -- Marc Costa Sitja, ESAC/ESA Added Rover locomotion and solar arrays frames and IDs. Corrected FRAME_RM_MAST_ZERO frame definition. Updated the the RM_ROVER_DRILL_TIP_MOV defintion to a type 3 frame. Corrected RM_CLUPI_BRACKET and LOCCAM frame definitions. Updated reference frame centers to their ephemeris objects. Version 0.0.5 -- December 20, 2019 -- Marc Costa Sitja, ESAC/ESA Corrected FRAME_RM_MAST_ZERO frame definition Version 0.0.4 -- December 20, 2019 -- Marc Costa Sitja, ESAC/ESA Added reference frames, references, diagrams and IDs for Solar Arrays. Corrected Sites definitions. Defined frames for cruise phase. Corrected PTR frames. Corrected ADRON frames. This should be considered a work in progress version. Version 0.0.3 -- February 28, 2019 -- Marc Costa Sitja, ESAC/ESA Added reference frames, references, diagrams and IDs for ALD components, updated diagrams and done some minor edits. Version 0.0.2 -- February 14, 2019 -- Marc Costa Sitja, ESAC/ESA Added reference frames, references, diagrams and IDs for the drill, MaMiss, WISDOM and CLUPI. Version 0.0.1 -- February 8, 2019 -- Marc Costa Sitja, ESAC/ESA Updated ID from -999 to -174 and done several edits including updated updated diagrams and frame trees. Added reference frames and IDs for LOCCAM, ISEM and ADRON. Version 0.0.0 -- June 8, 2018 -- Marc Costa Sitja, ESAC/ESA Preliminary version. References ------------------------------------------------------------------------ 1. ``Frames Required Reading'', NAIF 2. ``Kernel Pool Required Reading'', NAIF 3. ``C-Kernel Required Reading'', NAIF 4. ``ExoMars Rover and Surface Platform Mission Implementation Plan'', EXM-G2-PLN-ESC-00004, ExoMars Ground Segment Team, Issue 1, Revision 2, ESOC, August 8, 2017 5. ``EXOMARS 2018 ROVER MODULE Coordinate Systems & Conventions for RM control'', EXM-RM-TNO-AI-0448, A. Merlo, Thales Alenia Space, Issue 1, November 2015 6. ExoMars RSP Mars Local Geodetic Frames (emrsp_mlg_vVVV.tf), latest version 7. ``ExoMars Rover Vehicle Coordinate Systems and Conventions Specifications'', EXM-RM-SYS-ASU-00101, Airbus Defense and Space, Issue 2, April 2016 8. ``Description of Frames and Conventions Related to Localisation Camera Data Sets'', EXM-RM-TNO-AS U-00209, K. MacManamon, Airbus Defense and Space, Issue 2, Revision 0, July 2014 9. ``ExoMars/CLUPI Science Requirements Specification Document'', EXM.CL.RSD.SPX.1501, Space Exploration Institute, Issue 1, Rev. 0, July 2015 10. ``Water Ice and Subsurface Deposit Observations on Mars WISDOM instrument'', MICD, EXM-WI-DRW-LAT-0152, Issue 02, Rev. 01, A. Galic, March 2018 11. ``ExoMars ICD ALD Structure - ALD Structure Interface Control Document'', EXM-RM-ICD-KT-0002, Q. Muhlbauer, OHB System AG, Issue 4, May 2016 12. ``Rover Module Outline Drawing'', EXM-D2-ICD-AI-0078, Thales Alenia Space, Revision A, 4th September 2017 13. E-mails from Maria del Pilar Caballo, Apr 28, 2021. Contact Information ------------------------------------------------------------------------ If you have any questions regarding this file contact the ESA SPICE Service at ESAC: Marc Costa Sitja (+34) 91-8131-457 marc.costa@esa.int, esa_spice@sciops.esa.int or ROCC at Altec Space: Federico Salvioli (+39) 011-7430-097 federico.salvioli@altecspace.it Implementation Notes ------------------------------------------------------------------------ This file is used by the SPICE system as follows: programs that make use of this frame kernel must "load" the kernel normally during program initialization. Loading the kernel associates the data items with their names in a data structure called the "kernel pool". The SPICELIB routine FURNSH loads a kernel into the pool as shown below: FORTRAN: (SPICELIB) CALL FURNSH ( frame_kernel_name ) C: (CSPICE) furnsh_c ( frame_kernel_name ); IDL: (ICY) cspice_furnsh, frame_kernel_name MATLAB: (MICE) cspice_furnsh ( 'frame_kernel_name' ) PYTHON: (SPICEYPY)* furnsh( frame_kernel_name ) In order for a program or routine to extract data from the pool, the SPICELIB routines GDPOOL, GIPOOL, and GCPOOL are used. See [2] for more details. This file was created and may be updated with a text editor or word processor. * SPICEPY is a non-official, community developed Python wrapper for the NAIF SPICE toolkit. Its development is managed on Github. It is available at: https://github.com/AndrewAnnex/SpiceyPy RM NAIF ID Codes -- Summary Section ------------------------------------------------------------------------ The following names and NAIF ID codes are assigned to the ExoMars RSP rover, its structures and science instruments (the keywords implementing these definitions are located in the section "RM NAIF ID Codes -- Definition Section" at the end of this file): RM and RM Structures names/IDs: RM -174 (synonyms: EXOMARS RSP RM, EXOMARS RSP ROVER, EXOMARS RSP ROVER MODULE and EXOMARS ROVER) RM_ROVER -174000 RM_MAST -174010 RM_PTR -174012 RM_PB -174013 RM_NAVCAM -174020 RM_NAVCAM_L -174021 RM_NAVCAM_R -174022 RM_LOCCAM -174030 RM_LOCCAM_L -174031 RM_LOCCAM_R -174031 RM_DRILL_POS_FIX -174040 RM_DRILL_POS_MOV -174041 RM_DRILL_TIP_FIX -174042 RM_DRILL_TIP_MOV -174043 RM_ALD -174050 RM_ALD_CSTM -174051 RM_ALD_PSDDS -174053 RM_ALD_PSHS -174055 RM_SAF1_PRI -174062 RM_SAF1_SEC -174063 RM_SAF2_PRI -174065 RM_SAF2_SEC -174066 RM_BOGIE_LF -174071 RM_BOGIE_RF -174074 RM_BOGIE_MR -174076 RM_STEER_LF -174091 RM_STEER_LM -174092 RM_STEER_RF -174093 RM_STEER_RM -174094 RM_STEER_LR -174095 RM_STEER_RR -174096 RM_WHEEL_LF -174081 RM_WHEEL_LM -174082 RM_WHEEL_RF -174083 RM_WHEEL_RM -174084 RM_WHEEL_LR -174085 RM_WHEEL_RR -174086 RM_CALTAR_FIDM1 RM_CALTAR_FIDM2 RM_CALTAR_FIDM3 RM_CALTAR_PCT RM_CALTAR_PCT_SHPOST_1 RM_CALTAR_PCT_SHPOST_2 RM_CALTAR_PCT_YELLOW RM_CALTAR_PCT_RED RM_INSPECTION_MIRROR ( ... ) PanCam names/IDs: RM_PANCAM -174100 RM_PANCAM_WAC_L -174110 RM_PANCAM_WAC_R -174120 RM_PANCAM_HRC -174130 ISEM names/IDs: RM_ISEM -174200 ADRON-RM name/IDs: RM_ADRON-RM -174300 WISDOM name/IDs: RM_WISDOM -174400 RM_WISDOM_ANT1 -174410 RM_WISDOM_ANT2 -174420 MaMiss name/IDs: RM_MAMISS -174500 CLUPI name/IDs: RM_CLUPI -174600 RM_CLUPI_FOV1 -174601 RM_CLUPI_FOV2 -174602 RM_CLUPI_FOV3 -174603 RM_CLUPI_DRILL_TIP -174620 RM_CLUPI_BRACKET -174630 Sites name/IDs: RM_SITE_000 -174700 (synonym: RM_LANDING_SITE) RM_SITE_NNN* -174XXX** (*) NNN corresponds to the travel sequence number and it has a range from 000 (refers to the position of the Rover at landing site) to 299. (**) XXX ranges from 701 up to 899. RM Frames ------------------------------------------------------------------------ The following RM frames are defined in this kernel file: Name Relative to Type NAIF ID ====================== =================== ============ ======= RM Rover and Rover Structures frames: ------------------------------------------------ RM_ROVER RM_MLG, CK -174000 RM_ROVER_CRUISE RM_ROVER_CRUISE CM_SPACECRAFT FIXED -174001 RM_MAST_ZERO RM_ROVER FIXED -174010 RM_MAST RM_MAST_ZERO CK -174011 RM_PTR_ZERO RM_MAST FIXED -174012 RM_PTR RM_PTR_ZERO CK -174013 RM_PB RM_PTR FIXED -174014 RM_NAVCAM_BASE RM_PB FIXED -174020 RM_NAVCAM_L RM_NAVCAM_BASE FIXED -174021 RM_NAVCAM_R RM_NAVCAM_BASE FIXED -174022 RM_LOCCAM_BASE RM_PB FIXED -174030 RM_LOCCAM_L RM_LOCCAM_BASE FIXED -174031 RM_LOCCAM_R RM_LOCCAM_BASE FIXED -174032 RM_DRILL_POS_FIX RM_ROVER FIXED -174040 RM_DRILL_POS_MOV RM_DRILL_POS_FIX CK -174041 RM_DRILL_TIP_FIX RM_DRILL_POS_MOV FIXED -174042 RM_DRILL_TIP_MOV RM_DRILL_TIP_FIX CK(*) -174043 RM_ALD_CSTM_FIX RM_ROVER FIXED -174052 RM_ALD_CSTM_MOV RM_ALD_CSTM_FIX FIXED(*) -174053 RM_ALD_PSDDS_FIX RM_ROVER FIXED -174052 RM_ALD_PSDDS_MOV RM_ALD_PSDDS_FIX FIXED -174053 RM_ALD_PSHS_FIX RM_ROVER FIXED -174054 RM_ALD_PSHS_MOV RM_ALD_PSHS_FIX CK -174055 RM_SA1_ZERO RM_ROVER FIXED -174061 RM_SA1_PRI RM_SA1_ZERO CK -174062 RM_SA1_SEC RM_SA1_PRI CK -174063 RM_SA2_ZERO RM_ROVER FIXED -174064 RM_SA2_PRI RM_SA2_ZERO CK -174065 RM_SA2_SEC RM_SA2_PRI CK -174066 RM_BOGIE_LF_FIX RM_ROVER FIXED -174071 RM_BOGIE_LF_MOV RM_BOGIE_LF_FIX CK -174072 RM_BOGIE_RF_FIX RM_ROVER FIXED -174073 RM_BOGIE_RF_MOV RM_BOGIE_LF_FIX CK -174074 RM_BOGIE_MR_FIX RM_ROVER FIXED -174075 RM_BOGIE_MR_MOV RM_BOGIE_MR_FIX CK -174076 RM_WHEEL_LF_FIX RM_BOGIE_LF_MOV FIXED -1740810 RM_WHEEL_LF_STR RM_WHEEL_LF_FIX CK -1740811 RM_WHEEL_LF_MOV RM_WHEEL_LF_STR CK -1740812 RM_WHEEL_LM_FIX RM_BOGIE_LF_MOV FIXED -1740820 RM_WHEEL_LM_STR RM_WHEEL_LM_FIX CK -1740821 RM_WHEEL_LM_MOV RM_WHEEL_LM_STR CK -1740822 RM_WHEEL_RF_FIX RM_BOGIE_RF_MOV FIXED -1740830 RM_WHEEL_RF_STR RM_WHEEL_RF_FIX CK -1740831 RM_WHEEL_RF_MOV RM_WHEEL_RF_STR CK -1740832 RM_WHEEL_RM_FIX RM_BOGIE_RF_MOV FIXED -1740840 RM_WHEEL_RM_STR RM_WHEEL_RM_FIX CK -1740841 RM_WHEEL_RM_MOV RM_WHEEL_RM_STR CK -1740842 RM_WHEEL_LR_FIX RM_BOGIE_MR_MOV FIXED -1740850 RM_WHEEL_LR_STR RM_WHEEL_LR_FIX CK -1740851 RM_WHEEL_LR_MOV RM_WHEEL_LR_STR CK -1740852 RM_WHEEL_RR_FIX RM_BOGIE_MR_MOV FIXED -1740860 RM_WHEEL_RR_STR RM_WHEEL_RR_FIX CK -1740861 RM_WHEEL_RR_MOV RM_WHEEL_RR_STR CK -1740862 RM_CALIBR_TARGET RM_ROVER FIXED RM_MIRROR_ RM_ROVER FIXED PanCam frames: ------------------------------------------------ RM_PANCAM_BASE RM_PB FIXED -174100 RM_PANCAM_WAC_L RM_PANCAM_BASE FIXED -174110 RM_PANCAM_WAC_R RM_PANCAM_BASE FIXED -174120 RM_PANCAM_HRC RM_PANCAM_BASE FIXED -174130 ISEM frames: ------------------------------------------------ RM_ISEM RM_PB FIXED -174200 ADRON-RM frames: ------------------------------------------------ RM_ADRON-RM RM_ROVER FIXED -174300 WISDOM frames: ------------------------------------------------ RM_WISDOM_BASE RM_ROVER FIXED -174400 RM_WISDOM_ANT1 RM_WISDOM_BASE FIXED -174410 RM_WISDOM_ANT2 RM_WISDOM_BASE FIXED -174420 MaMiss frames: ------------------------------------------------ RM_MAMISS RM_DRILL_TIP_MOV FIXED -174500 CLUPI frames: ------------------------------------------------ RM_CLUPI_BASE RM_DRILL_POS_MOV FIXED -174500 RM_CLUPI_OPT_AXIS RM_CLUPI_BASE FIXED -174510 RM_CLUPI_DRILL_TIP RM_CLUPI_OPT_AXIS FIXED -174520 RM_CLUPI_BRACKET RM_DRILL_POS_FIX FIXED -174530 In addition, the following frames, in use by the ExoMars RSP mission, are defined in another kernel: Name Relative to Type NAIF ID ====================== =================== ============ ======= ExoMars RSP Local Geodetic Frames (1): --------------------------------------------------- RM_LANDING_SITE IAU_MARS FIXED -174900 RM_MLG* IAU_MARS FIXED -174700 (*) The frame is implemented with an SPK to account for the translation of its origin to the different RM_SITE_NNN objects. ExoMars RSP Mission Description -------------------------------------------------------------------------- The mission can be broadly described as follows: launch the ExoMarsRSP Spacecraft and fly it to Mars; land on Mars, deliver the Rover to the surface and perform the nominal exploration mission on the surface. The launch configuration is the Spacecraft Composite (SCC), which is composed of the Carrier Module (CM) and the Descent Module (DM). The CM is jettisoned upon arrival at Mars, and the DM will enter the Mars atmosphere and land, carrying the ``Kazachok'' Surface Platform (SP) and the ``Rosalind Franklin'' Rover (RM). The CM and the RM are developed by ESA. The DM and SP are developed by Roscosmos with ESA contributions. The elements of the spacecraft composite are shown below. CM DM SP RM | .'. = |--. .' | | | )-| | | | ------------- |----------- RM |--' '. | '-------' /\____\| | '.' / \ 0 0 0 | | | | | | | | | | | | | | | V _=_______ | | | |0 0 0\ | | '-------------> (+) ----> ------------- LPC | | '-------' | | | / \ | | | | | | | | V .'. | | .' -o| | '----------------------------> (+) ----> | | || DM | '.._o| | | '.' | | | | | V | .'. | |--. .' -o| '----------------------------------------> (+) ----> )-| || | || SCC |--' '.._o| | '.' Please note that this Frames Kernel file solely implements the Frames for the ExoMars RSP Lander Component (RM). RM Frames Hierarchy -------------------------------------------------------------------------- The diagram below shows the ExoMars RM frames hierarchy (except for science operations frames): "J2000" INERTIAL +--------------------------------------------+ | | | |<-ck |<-pck |<-pck | | | | v v v "IAU_EARTH" "IAU_MARS" "CM_SPACECRAFT" EARTH BODY-FIXED MARS BODY-FIXED (MCMF) --------------- ---------------- ---------------------- | | |<-fixed |<-fixed | | | | | v v "RM_MLG" (**) RM_ROVER_CRUISE MARS TOPOGRAPHIC --------------- ----------------- | | |<-ck(*) |< -ck | | | RM_WHEEL_L{F,M,R}_MOV RM_WHEEL_R{F,M,R}_MOV | | --------------------- --------------------- | | | | | | |<-ck |<-ck | | | | | | v v | | RM_WHEEL_L{F,M,R}_STR RM_WHEEL_R{F,M,R}_STR | | --------------------- --------------------- | | | | | | |<-ck |<-ck | | | | | | v v | "RM_SA1_SEC" | RM_WHEEL_L{F,M,R}_FIX RM_WHEEL_R{F,M,R}_FIX | "RM_SA2_SEC" ------------- | --------------------- --------------------- | ------------ ^ | | | | ^ | | |<-fixed |<-fixed | | |<-ck | | | | |<-ck | | v v | | "RM_SA1Y_PRI" | "RM_BOGIE_{LF,RF,MR}_MOV" | "RM_SA2_PRI" ------------- | +----------------------+ | ------------ ^ | | | ^ | | |<-ck | | |<-ck | | | |<-ck | | v | | "RM_SA1_ZERO" | "RM_BOGIE_{LF,RF,MR}_FIX" | "RM_SA2_ZERO" ------------- | ------------------------- | ------------- | | | | | |<-fixed | |<-fixed | |<-fixed | | | | | v v v "RM_ROVER" v v +-------------------------------------------------------------------+ | | | | | . | | |<-fixed |<-fixed |<-fixed |<-fixed . |<-fixed | | | | | . | | | | v | . | | | | "RM_MAST_ZERO" | . | | | | -------------- | . | | | | | | . | | | | |<-ck | . | | | | | | . | | | | v v . v | | | "RM_MAST" "RM_LOCCCAM_BASE" . "RM_DRILL_POS_FIX" | | | --------- ----------------- . +----------------+ | | v | . . | | | "RM_ALD_CSTM_FIX" |<-fixed . . |<-ck | | ----------------- | . . | | | | v . . v | | fixed->| "RM_PTR_ZERO" . . "RM_DRILL_POS_MOV" | | | ------------- . . +----------------+ | | v | . . . | | | "RM_ALD_CSTM_MOV" |<-ck . . . fixed->| | | ----------------- | . . . | | | v . . . v | | "RM_PTR" . . . "RM_DRILL_TIP_FIX" | V -------- . . . ------------------ | "RM_ALD_PSHS_FIX" | . . . | | ----------------- |<-fixed . . . |<-ck | | | . . . | | ck->| v . . . v | | "RM_PB" . . . "RM_DRILL_TIP_MOV" | v +--------------+ . . . ------------------ | "RM_ALD_PSHS_MOV" . | . . . . | ----------------- . |<-fixed . . . . | . | . . . . |<-fixed . V . . . . | . "RM_NAVCAM_BASE" . . . . v . +----------------+ . . . . "RM_ALD_PSDDS_FIX" . | | . . . . ------------------ . |<-fixed fixed->| . . . . | . | | . . . . ck->| . v v . . . . | . "RM_NAVCAM_L" "RM_NAVCAM_R" . . . . v . ------------- ------------- . . . . "RM_ALD_PSDDS_MOV" . . . . . ------------------ . . . . . . . . . . V V V V V Individual instrument frame trees are provided in the other sections of this file Please refer to the PanCam, NavCam sections for the frame hierarchy of each payload; and to the RM science operations frame definitions kernel for further details on these frame definitions. (*) In these cases transformation is fixed but it has to be stored in a CK to make SPICE "traverse" appropriate frame tree branch based on the time of interest and/or loaded kernels. (**) This frame is equivalent to the SP_TOPO frame defined in the ExoMarsRSP Surface Platform Frames Kernel (emrsp_sp_vNNN.tf) RM Mars Local Geodetic Frames ------------------------------------------------- The Rover Module Mars Local Geodetic frame (Topocentric) -- RM_MLG -- is defined as follows: - +Z axis is in the direction of the vertical (i.e. approximately the negative gravity vector; "Zenith", assuming that the small local variation can be ignored), - +X axis is tangential to the local geodetic horizontal in an eastern direction (i.e. parallel to lines of latitude; "East"), - +Y axis completes the right hand frame ("North"); - the origin of the frame is initially defined to be coincident with the origin of the Rover Body frame, RM_ROVER, prior to the start of travel. During a travel sequence, this frame remains fixed with Mars, but becomes reset at the start of a new travel sequence. The rationale for this is that a travel sequence requires a stationary reference frame in which to measure position and coordinate navigation maps. The start of travel when the frame is reset may be at the start of each sol, or when new targets are generated. If we assume that the total traverse distance during the mission will be relatively short (hundreds of meters, not kilometers) and, therefore, the local north and nadir directions, defining surface frame orientations, will be approximately the same at any point along the traverse path. This assumption allows defining a single surface frame as a fixed offset frame to Mars body-fixed frame, IAU_MARS. With this assumption we will always use the Mars Local Geodetic Landing Site frame that is defined hereafter. RM surface fixed frame -- RM_MLG -- is nominally co-aligned in orientation with the RM_LANDING_SITE and its origin changes throughout the mission. Therefore, this frame is defined as a zero-offset, fixed frame with respect to the RM_LANDING_SITE frame. \begindata FRAME_RM_MLG = -174700 FRAME_-174700_NAME = 'RM_MLG' FRAME_-174700_CLASS = 4 FRAME_-174700_CLASS_ID = -174700 FRAME_-174700_CENTER = -174700 OBJECT_-174700_FRAME = 'RM_MLG' TKFRAME_-174700_RELATIVE = 'IAU_MARS' TKFRAME_-174700_SPEC = 'ANGLES' TKFRAME_-174700_UNITS = 'DEGREES' TKFRAME_-174700_AXES = ( 3, 2, 3 ) TKFRAME_-174700_ANGLES = ( -335.4500000000000, -71.8000000000000, 270.0000000000000 ) \begintext RM Lander and Lander Structures Frames ------------------------------------------------------------------------ This section of the file contains the definitions of the rover and rover structures frames. DISCLAIMER: The origin of the frames specified in the following definitions are not implemented. The ``true'' origin of all frames is in the center of the RM_ROVER frame, the center of which is defined by the position given by the SPK (ephemeris) kernel in use. RM Rover Frames -------------------------------------- According to [4] the RM rover reference frame -- RM_ROVER -- is defined as follows: - +Z axis, lies vertically upwards, antiparallel to the gravity vector when the rover is on flat, horizontal terrain; - +X axis lies towards the front of the Rover in the nominal direction of travel; - +Y axis completes the right-handed frame; - the origin of this frame at the intersection of the following planes: - A plane 252.5 mm aft (i.e. negative offset in +X axis) and parallel to Plane 1 (the plane formed by the nominal bolt axes of the front body HDRMs); - Plane 2, the plane of symmetry between the front body HDRM nominal bolt axes - equivalent to the rover body mid-plane; - A plane 30 mm below and parallel to Plane 3 (the plane of the rover body base). These diagrams illustrate the RM_ROVER frame: -Y Rover side view: ------------------- .-. | | | | |_| |_| | | | | | | | | | +Zrm _|_ ^ | | | -------------------|------------------------------------- ,------------|------------. | | | ___| | | / | +Xrm | | \___|__<---------o ____________. +Yrm is out the page | | +Yrm | | __------/ \-----__ / \.__ | |-----\_/----| | \__. | .| |. .| |. .| |. / |__| \ / |__| \ / |__| \ \ / \ / \ / `-..-' `-..-' `-..-' +Z Rover side view: ------------------- .-------------------------..-------------------------. .-----| || | | .--.| || | | | || || | `-| |'-------------------------''-------------------------' .------------------. | '----------. '----. | | | | | | .-. .' | | | +Xrm +Zrm | | | | |<---------o | | | | | | | | | '-' | '. '--| | | +Zrm is out of the page '-----. .-|--------' '---------' v .--------------- +Yrm ----..-------------------------. | || | | || | | || | '-------------------------''-------------------------' +X Rover side view (drill in stowed position): ---------------------------------------------- o-o-=O===O--o |o|___| _\/ |_|_ |_| | | | | | | | | | _|_ +Zrm | | ^ --------------------------|------------------------- | | | | | | | | '---| | | | 0 | .--'--' '--.-----------|----------| .--| | |---. .-. |============= o--------> ====| .-. |___|=| +Xrm | |+Yrm |=|___| |.-. .-.| || | | || +Xrm is out of the `| | | |' page '_' '_' ~~~~~~~~ ~~~~~~~~ Since the RM bus attitude with respect to an inertial frame is provided by a C-kernel (see [3] for more information), this frame is defined as a CK-based frame. These sets of keywords define the RM_ROVER frame: \begindata FRAME_RM_ROVER = -174000 FRAME_-174000_NAME = 'RM_ROVER' FRAME_-174000_CLASS = 3 FRAME_-174000_CLASS_ID = -174000 FRAME_-174000_CENTER = -174000 CK_-174000_SCLK = -174 CK_-174000_SPK = -174 OBJECT_-174_FRAME = 'RM_ROVER' \begintext RM Rover Cruise Frame ---------------------------------------------------------------------------- The RM Rover Cruise frame -- RM_LANDER_CRUISE -- is a special frame used in cruise in order to "attach" the RM rover to CM during the cruise phase, it is defined as follows (from [4]): - +Z axis is parallel to CM's +Z axis; - +X axis is parallel to CM's +X axis; - +Y axis completes the right-handed frame; - the origin of this frame is the RM/SP interface point on the separation plane. This frame is defined a fixed-offset frame. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_RM_ROVER_CRUISE = -174001 FRAME_-174001_NAME = 'RM_ROVER_CRUISE' FRAME_-174001_CLASS = 4 FRAME_-174001_CLASS_ID = -174001 FRAME_-174001_CENTER = -174000 TKFRAME_-174001_RELATIVE = 'CM_SPACECRAFT' TKFRAME_-174001_SPEC = 'ANGLES' TKFRAME_-174001_UNITS = 'DEGREES' TKFRAME_-174001_AXES = ( 1, 3, 1 ) TKFRAME_-174001_ANGLES = ( 0.0, 0.0, 0.0 ) \begintext RM Deployable Mast, Pan & Tilt Mechanism and Payload Bracket Frames ---------------------------------------------------------------------------- The RM Deployable Mast Assembly (RM_MAST) accommodates the Pan & Tilt Mechanism and the PanCam, NavCam and ISEM instruments, The DMA frame is positioned at the base of the mast. The frame RM_MAST_ZERO has its origin at the base of the mast and its axes are nominally co-aligned to the RM_ROVER frame axes (within knowledge alignment errors), since the mast needs to be deployed and can be rotated, this rotation is incorporated by the RM_MAST frame [12]. When the mast is folded it is 'resting' on the rover body. The Mast Pan & Tilt Rotation Mechanism (PTR) is the structure on top of the Rover Module mast that accommodates the Stereo Bench where PanCam and the NAVCAMs re placed. A series of reference frames are defined in order to capture the Pan and Tilt rotations of the structure. The Pan & Tilt Zero Rotation frame -- RM_PTR_ZERO -- has the origin at the top of the mast, just below the actual pan & tilt mechanism. The axes are nominally aligned to the RM_LANDER frame with null pan & tilt; however the RM_PTR_ZERO frame can take into account possible deformations of the mast and knowledge alignment errors. The frame is defined as follows: - +Y axis is parallel to tilt axis of rotation, and nominally lies horizontally sideways - +Z axis, is parallel to the pan axis of rotation, and nominally lies vertically upwards; - +X axis completes the right-handed frame; - the origin of this frame is defined as the intersection of the tilt axis of rotation and a line intersecting the axis which lies normal to both the tilt axis and pan axis. This intersection is assumed fixed with respect to the top of the mast. and allows for the eventually of the tilt axis and pan axis not intersecting. In order to incorporate the pan & tilt rotations, the Pan & Tilt Rotating frame is defined -- RM_PTR -- , it is identical to the RM_PTR_ZERO frame (i.e. a fixed translation in the Rover Body frame), but rotating with the direction of the Pan & Tilt. Pan and Tilt are then defined by the 3-2-1 Euler rotation, where pan is the first rotation (about the +Z axis), tilt is the second rotation (about the +Y axis), and there is no possibility of rotation about the +X axis. The Payload Bracket frame -- RM_PB -- is fixed relative to the payload bracket (which itself is fixed to the tilt actuator rotor). The orientation of this frame is not fixed with respect to the RM_LANDER frame, but it changes, e.g. when the Deployable Mast Assembly is deployed or when, while in deployed configuration, the mast bends or either the pan and tilt angles are modified. The frame is defined as follows: - +X axis is perpendicular to the +Y axis and is parallel to the interface plane between the payload bracket and the PanCam; - +Y axis is co-aligned with the tilt axis; - +Z axis completes the right-handed frame; - the origin of this frame is the intersection of the pan and tilt axes, therefore it is located within the tilt actuator, along the axis of the tilt actuator shaft where this intersects with the pan axis. This diagram illustrates the RM_MAST_ZERO, RM_MAST, RM_PTR_ZERO, RM_PTR and RM_PB frames: +X Rover side view (with fully deployed mast): ---------------------------------------------- +Zptr0 ^ | o-o-=O=|=O--o |o|_|_| _|/ |_|_ o------------> +Yptr0 +Xptr0 | | +Zmast,+Xmast0 ^ | | | | _|_ +Zrm | o----------> +Ymast,+Ymast0 ------------------ +Xmast --------------------------- | | | ^ +Zrm | | | '---| | | | 0 | .--'--' '--.-----------|----------| .--| | |---. .-. |============= o--------> ====| .-. |___|=| +Xrm | | +Yrm |=|___| |.-. .-.| || | | || +Xrm, +Xmast and `| | | |' +Zptr0 are out of '_' '_' the page. +Zmast0 is ~~~~~~~~ ~~~~~~~~ into the page. -Y Rover side view: ------------------- .-. | | | | |_| |_| | | | | | | | | | +Zrm _|_ ^ | | | -------------------|------------------------------------- ,------------|------------. | | | ___| | | / | +Xrm | | \___|__<---------o ____________. +Yrm is out of the page | | +Yrm | | __------/ \-----__ / \.__ | |-----\_/----| | \__. | .| |. .| |. .| |. / |__| \ / |__| \ / |__| \ \ / \ / \ / `-..-' `-..-' `-..-' These sets of keywords define the Pan & Tilt Mechanism and Rotation and Payload Bracket frames: \begindata FRAME_RM_MAST_ZERO = -174010 FRAME_-174010_NAME = 'RM_MAST_ZERO' FRAME_-174010_CLASS = 4 FRAME_-174010_CLASS_ID = -174010 FRAME_-174010_CENTER = -174010 TKFRAME_-174010_RELATIVE = 'RM_ROVER' TKFRAME_-174010_SPEC = 'ANGLES' TKFRAME_-174010_UNITS = 'DEGREES' TKFRAME_-174010_AXES = ( 3, 1, 2 ) TKFRAME_-174010_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_MAST = -174011 FRAME_-174011_NAME = 'RM_MAST' FRAME_-174011_CLASS = 3 FRAME_-174011_CLASS_ID = -174011 FRAME_-174011_CENTER = -174010 CK_-174011_SCLK = -174 CK_-174011_SPK = -174 FRAME_RM_PTR_ZERO = -174012 FRAME_-174012_NAME = 'RM_PTR_ZERO' FRAME_-174012_CLASS = 4 FRAME_-174012_CLASS_ID = -174012 FRAME_-174012_CENTER = -174012 TKFRAME_-174012_RELATIVE = 'RM_MAST' TKFRAME_-174012_SPEC = 'ANGLES' TKFRAME_-174012_UNITS = 'DEGREES' TKFRAME_-174012_AXES = ( 3, 1, 2 ) TKFRAME_-174012_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_PTR = -174013 FRAME_-174013_NAME = 'RM_PTR' FRAME_-174013_CLASS = 3 FRAME_-174013_CLASS_ID = -174013 FRAME_-174013_CENTER = -174012 CK_-174013_SCLK = -174 CK_-174013_SPK = -174 FRAME_RM_PB = -174014 FRAME_-174014_NAME = 'RM_PB' FRAME_-174014_CLASS = 4 FRAME_-174014_CLASS_ID = -174014 FRAME_-174014_CENTER = -174012 TKFRAME_-174014_RELATIVE = 'RM_PTR' TKFRAME_-174014_SPEC = 'ANGLES' TKFRAME_-174014_UNITS = 'DEGREES' TKFRAME_-174014_AXES = ( 1, 2, 3 ) TKFRAME_-174014_ANGLES = ( 0.0, 0.0, 0.0 ) \begintext RM NavCam Frames ---------------------------------------------------------------------------- The Navigation Cameras reference frame -- RM_NAVCAM_BASE --, where the terrain stereo reconstruction (for Navigation) occurs, is attached to the cameras stereo bench, the axes are aligned to the PTR frame (moving according to pan & tilt mechanisms rotations) and is defined as follows: - +X axis is defined as the projection of the cameras optical axis on the plane perpendicular to the +Y axis; - +Y axis is in the direction from the right camera optical centre to the left camera optical centre; - +Z axis completes the right-handed frame; - The origin is a fixed translation from the PTR frame. These sets of keywords define the NavCam frames: \begindata FRAME_RM_NAVCAM_BASE = -174020 FRAME_-174020_NAME = 'RM_NAVCAM_BASE' FRAME_-174020_CLASS = 4 FRAME_-174020_CLASS_ID = -174020 FRAME_-174020_CENTER = -174020 TKFRAME_-174020_RELATIVE = 'RM_PB' TKFRAME_-174020_SPEC = 'ANGLES' TKFRAME_-174020_UNITS = 'DEGREES' TKFRAME_-174020_AXES = ( 1, 2, 3 ) TKFRAME_-174020_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_NAVCAM_L = -174021 FRAME_-174021_NAME = 'RM_NAVCAM_L' FRAME_-174021_CLASS = 4 FRAME_-174021_CLASS_ID = -174021 FRAME_-174021_CENTER = -174021 TKFRAME_-174021_RELATIVE = 'RM_NAVCAM_BASE' TKFRAME_-174021_SPEC = 'ANGLES' TKFRAME_-174021_UNITS = 'DEGREES' TKFRAME_-174021_AXES = ( 1, 2, 3 ) TKFRAME_-174021_ANGLES = ( 0.0, -90.0, 0.0 ) FRAME_RM_NAVCAM_R = -174022 FRAME_-174022_NAME = 'RM_NAVCAM_R' FRAME_-174022_CLASS = 4 FRAME_-174022_CLASS_ID = -174022 FRAME_-174022_CENTER = -174022 TKFRAME_-174022_RELATIVE = 'RM_NAVCAM_BASE' TKFRAME_-174022_SPEC = 'ANGLES' TKFRAME_-174022_UNITS = 'DEGREES' TKFRAME_-174022_AXES = ( 1, 2, 3 ) TKFRAME_-174022_ANGLES = ( 0.0, -90.0, 0.0 ) \begintext LocCam Frames ------------------------------------------------------------------------ This section of the file contains the definitions of the Localisation Cameras (LocCam) instrument frames. The Localisation Cameras reference frame -- RM_LOCCAM_BASE --, where the terrain stereo reconstruction (for Localisation) occurs, is attached to the cameras stereo bench and is defined as follows: - +X axis is the the projection of the cameras optical axis on the plane perpendicular to the +Y axis; - +Y axis is in the direction from the right camera optical centre to the left camera optical centre; - +Z axis completes the right-handed frame; - the origin, is located at the middle of the segment linking the optical centres of the left and right localisation cameras. The following diagram describes the LocCam frames: -Y Rover side view: ------------------- .-. | | | | |_| |_| | | | | +Zloc | ^ | . | . | . | +Zrm . _|_ ^ .| | | ---- .o +Yloc --------|------------------------------------- .' ,------------|------------. .' | | | .' ___| | | <' / | +Xrm | | +Xloc \___|__<---------o ____________. +Yrm and +Yloc | | +Yrm | | are out of the __------/ \-----__ / \.__ page. | |-----\_/----| | \__. | .| |. .| |. .| |. / |__| \ / |__| \ / |__| \ \ / \ / \ / `-..-' `-..-' `-..-' The origin is nominally a fixed translation from the Rover Module frame -- RM_ROVER --, and the axes are rotated 18 degrees around the +Y axis of the RM_ROVER frame [8]. These sets of keywords define the LocCam frames: \begindata FRAME_RM_LOCCAM_BASE = -174030 FRAME_-174030_NAME = 'RM_LOCCAM_BASE' FRAME_-174030_CLASS = 4 FRAME_-174030_CLASS_ID = -174030 FRAME_-174030_CENTER = -174030 TKFRAME_-174030_RELATIVE = 'RM_ROVER' TKFRAME_-174030_SPEC = 'ANGLES' TKFRAME_-174030_UNITS = 'DEGREES' TKFRAME_-174030_AXES = ( 3, 1, 2 ) TKFRAME_-174030_ANGLES = ( 0.0, 0.0, -18.0 ) FRAME_RM_LOCCAM_L = -174031 FRAME_-174031_NAME = 'RM_LOCCAM_L' FRAME_-174031_CLASS = 4 FRAME_-174031_CLASS_ID = -174031 FRAME_-174031_CENTER = -174031 TKFRAME_-174031_RELATIVE = 'RM_LOCCAM_BASE' TKFRAME_-174031_SPEC = 'ANGLES' TKFRAME_-174031_UNITS = 'DEGREES' TKFRAME_-174031_AXES = ( 1, 2, 3 ) TKFRAME_-174031_ANGLES = ( 0.0, -90.0, 0.0 ) FRAME_RM_LOCCAM_R = -174032 FRAME_-174032_NAME = 'RM_LOCCAM_R' FRAME_-174032_CLASS = 4 FRAME_-174032_CLASS_ID = -174032 FRAME_-174032_CENTER = -174032 TKFRAME_-174032_RELATIVE = 'RM_LOCCAM_BASE' TKFRAME_-174032_SPEC = 'ANGLES' TKFRAME_-174032_UNITS = 'DEGREES' TKFRAME_-174032_AXES = ( 1, 2, 3 ) TKFRAME_-174032_ANGLES = ( 0.0, -90.0, 0.0 ) \begintext RM Drill Frames ---------------------------------------------------------------------------- The Drill is in charge of extracting the samples from the Mars subsurface and delivering them to the Core Sample Transport Mechanism (CSTM), such that they are transported inside the Analytical Laboratory Drawer (ALD), where they are processed and analysed by the scientific instruments. The drill implements a multi-rod concept to allow drilling and sample collection down to 2 meter depth. The drill string is composed, at its maximum length, of a drill tool (with sample collection capability) and three extension rods. Three ``main'' active joints are needed to accomplish the Drill operations: - Positioner Translation Joint, which allows all the translational movements of the Drill box. - Positioner Rotational Joint, which allows all the rotational movements of the Drill box. - Drilling Joint, which groups several mechanisms devoted to the drill rod insertion in the terrain (drilling/coring). RM Drill Positioner frames: ~~~~~~~~~~~~~~~~~~~~~~~~~~~ The Drill Positioner Fixed frame -- RM_DRILL_POS_FIX -- is placed on the Rover to Drill Positioner interface and is invariant to the Drill Positioner Translational and Rotational mechanisms position. It is defined as follows: - +X axis is nominally co-aligned with the RM_ROVER +X axis frame; - +Y axis is nominally co-aligned with the RM_ROVER +Y axis frame; - +Z axis completes the right-handed frame; - the origin is defined as the intersection of the Drill Positioner Rotational Joint axis and the Drill Translational Joint axis, assuming the Drill Positioner in stowed configuration, this is incorporated by the RM_DRILL_POS_FIX body. The Drill Postioner Moving frame -- RM_DRILL_POS_MOV -- is placed on the Rover to Drill Positioner interface and moves according to the Drill Positioner Translational (TRA) and Rotational (ROT) mechanisms position. This frame is coincident with RM_DRILL_POS_FIX frame when the Drill is in stowed configuration (TRA=0 mm; ROT=0 deg), and follows the Drill Positioner Joints motion rototranslating according to Drill Positioner Translational (TRA) and Rotational (ROT) mechanisms positions. The frame can be defined as follows: - +Y axis is co-aligned with the longitudinal direction of the drill and points towards the apperture of the drill; - +Z axis is rotated a positive rotational (ROT) angle from the +Z axis of the RM_DRILL_POS_FIX frame around the +X axis of the RM_DRILL_POS_FIX frame; - +X axis completes the right-handed frame; - the origin is defined as the intersection of the Drill Positioner Rotational Joint axis and the Drill Translational Joint axis, with a longitudinal offset w.r.t. the origin of RM_DRILL_POS frame along the +Y axis defined by the Transitional position (TRA). +X Rover side view (drill in stowed position): ---------------------------------------------- o-o-=O===O--o |o|___| _\/ |_|_ |_| | | | | | | | +Zpdf | ^ | | _|_ +Zrm | | | ^ | --------------------------|----|--------------------- | | | | | | | | | '---| | | | o-----------> +Ydpf '--.-----------|----------| .--|#DRILL#BOX#|##########|---. .-. |============= o--------> ====| .-. |___|=| +Xrm | |+Yrm |=|___| |.-. .-.| || | | || +Xrm is out of the `| | | |' page '_' '_' ~~~~~~~~ ~~~~~~~~ The following diagrams describe the different operational positions of the drill positioner frames for different Translational (TRA) and Rotational (ROT) mechanisms positions (Units in mm and degrees): 1. STOWED POSITION 2. LIFTING PHASE [TRA=0, ROT=0] [TRA=130, ROT=0] ^ +Zdpm +Zdpf, +Zdpm | | ^ | | | | | | | +Zdpf ^ | Ydpm | | | .-------------o-------> | | | +Ydpf,+Ydpm |_____________|_____| +Ydpf .-------------o-------> | o-------> |___________________| | | | | | | 3. VERTICAL ALIGNMENT 4. LOWERING PHASE (drilling position) [TRA=130, ROT=90] [TRA=-240, ROT=90] __ | | | | | | | | | | +Zdpf +Zdpm __ | || o-------> | || +Zdpf | || ^ | | || ^ | |__|| | | | || | | | | | +Ydpf | || | | +Ydpf | o-------> | || o-------> | | | | || | | v | | || | +Ydpm | | o-------> +Zdpm |__| | | v +Ydpm 3. LIFTING PHASE (after sample) 4. HORIZONTAL ALIGNMENT (before sample collection) [TRA=130, ROT=90] discharge) [TRA=130, ROT=180] __ | | | | | | | | | | +Zdpf +Zdpm .---------------------> | || o-------> |_____________^_____| | || ^ | <-------o +Zdpf |__|| | | +Ydpm | | | | | | +Ydpf | | | +Ydpf | o-------> | o-------> | | | | | | | v | | v | +Ydpm +Zpm 5. SAMPLE DISCHARGE PHASE (from drill tip to CSTM container) [TRA=130, ROT=150] .'\ .' .' .' .' .' .' .' .' .' .'o +Zdpf \.'.'|\| .'| | \ +Ydpf .' | o--\----> <' | | v +Ypdm | | +Zpdm +X Rover side view (drill in discharge phase): ---------------------------------------------- o-o-=O===O--o |o|___| _\/ |_|_ |_| | | | | | | . | . ' \ | . ' \ _|_ . ' ^+dZpf. ' | . ' | . ' --------------------. ' . | |------------------- | | . ' . ' | | | | | '---| \ . ' ^ | o------> +Ydpf '--. \. ' |+Zrm | | .--' | | | ''---. .-. |============= o-----> =======| .-. |___|=| +Xrm | +Yrm |=|___| |.-. .-.| || | | || +Yrm and +Ydpf is `| | | |' out of the page '_' '_' ~~~~~~~~ ~~~~~~~~ These sets of keywords define the Drill Positioner frames: \begindata FRAME_RM_DRILL_POS_FIX = -174040 FRAME_-174040_NAME = 'RM_DRILL_POS_FIX' FRAME_-174040_CLASS = 4 FRAME_-174040_CLASS_ID = -174040 FRAME_-174040_CENTER = -174040 TKFRAME_-174040_RELATIVE = 'RM_ROVER' TKFRAME_-174040_SPEC = 'ANGLES' TKFRAME_-174040_UNITS = 'DEGREES' TKFRAME_-174040_AXES = ( 1, 2, 3 ) TKFRAME_-174040_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_DRILL_POS_MOV = -174041 FRAME_-174041_NAME = 'RM_DRILL_POS_MOV' FRAME_-174041_CLASS = 3 FRAME_-174041_CLASS_ID = -174041 FRAME_-174041_CENTER = -174041 CK_-174041_SCLK = -174 CK_-174041_SPK = -174041 \begintext Drill Tip frames: ~~~~~~~~~~~~~~~~~ The Drill Tip Fixed frame -- RM_ROVER_DRILL_TIP_FIX -- is placed on the Rover Drill Tip (when fully retracted) and is invariant to the Drill Rod position. It is defined as follows: - +X axis is nominally parallel to the +X axis of the RM_DRILL_POS_FIX frame; - +Y axis, is nominally parallel to the +Y axis of the RM_DRILL_POS_MOV frame; - +Z axis completes the right-handed frame; - the origin is defined as the tip of the Drill Rod assuming that the Drill Rod is fully retracted. The following diagrams show the RM_ROVER_DRILL_TIP_FIX in some of the drill positions: SAMPLE DISCHARGE PHASE LOWERING PHASE [TRA=130, ROT=150] [TRA=-240, ROT=90] __ .'\ | || +Zdpf .' .' | || ^ | .' .' | || | | .' .' | || | | +Ydpf .' .' | || o-------> .' .'o +Zdpf | || | o.'.'|\| | || | .' .'. | \ +Ydpf | | o-------> +Zdpm +Ydtf <' .' 'o--\----> |o---------> +Zdtf <' | '.| v +Zpdm | | +Ypdm | '> +Zdtf | v +Ydpm | v +Ydtf The Drill Tip Moving frame -- RM_ROVER_DRILL_TIP_MOV -- is attached to the Rover Drill Tip and moves according to the Drill Translational Joint (DRILL). Its orientation is defined by the rotation of the drill tip around the +Y axis of the RM_ROVER_DRILL_TIP_FIX frame. The origin is coincident with the RM_ROVER_DRILL_TIP_FIX frame when the Drill Rod is fully retracted (DRILL = 0mm). When the Drill Translational Joint mechanism moves, the RM_ROVER_DRILL_TIP_MOV frame rigidly translates with respect to the +X axis of the RM_ROVER_DRILL_TIP_FIX frame a DRILL distance in mm. Note that the Drill Translational Joint is composed by a group several mechanisms devoted to the drill rod insertion in the terrain (drilling/coring). It is defined as follows: - +Y axis, is nominally parallel to the +Y axis of the RM_ROVER_DRILL_TIP_FIX; - +Z axis, is rotated the drill tip rotation with respect to the +Z axis of the RM_ROVER_DRILL_TIP_FIX frame; - +X axis completes the right-handed frame; - the origin is defined as the tip of the Drill Rod. The following diagram describes the Drill tip frames: +X Rover side view (drilling position): --------------------------------------- [TRA=-240, ROT=90, DRILL=150] o-o-=O===O--o |o|___| _\/ |_|_ |_| | | | | | | | | _|_ ^+dZpf | | | -------------------------.----.-|---------------------- | | | | | | | | '---| |^ | o------> +Ydpf '--. ||+Zrm | | .--' || | | ''---. .-. |============= o-----> =======| .-. |___|=| | | +Yrm |=|___| |.-. | | .-.| || | | | | || +Yrm, +Ydpf +Ydtm `| | | | | |' are out of the page '_' | | '_' ~~~~~~~~~~~~~~~~~~~~~~~'----'~~~~~~~~~~~~~~~~~~~~ __ || ^ || | .. | DRILL .. | ~1.5m | .. | .. | || v \/ Dril -- o-------> +Zdtm | |. drill tip rotation <-' | v +Ydtm These sets of keywords define the Drill tip frames: \begindata FRAME_RM_DRILL_TIP_FIX = -174042 FRAME_-174042_NAME = 'RM_DRILL_TIP_FIX' FRAME_-174042_CLASS = 4 FRAME_-174042_CLASS_ID = -174042 FRAME_-174042_CENTER = -174042 TKFRAME_-174042_RELATIVE = 'RM_DRILL_POS_MOV' TKFRAME_-174042_SPEC = 'ANGLES' TKFRAME_-174042_UNITS = 'DEGREES' TKFRAME_-174042_AXES = ( 1, 2, 3 ) TKFRAME_-174042_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_DRILL_TIP_MOV = -174043 FRAME_-174043_NAME = 'RM_DRILL_TIP_MOV' FRAME_-174043_CLASS = 3 FRAME_-174043_CLASS_ID = -174043 FRAME_-174043_CENTER = -174043 CK_-174043_SCLK = -174 CK_-174043_SPK = -174043 \begintext ALD Frames ------------------------------------------------------------------------ The Rover will collect samples with the drill and deliver them to the Analytical Laboratory Drawer (ALD) in the body of the rover, via the sample delivery window. Within the ALD the samples will be analysed with an infrared spectrometer (MicrOmega), a raman spectrometer (RLS), and the Mars organics molecule analyser (MOMA) instrument. The samples will be collected by a drill and delivered to the Core Sample Handling System (CSHS) component of the SPDS, which is made up of the Core Sample Transportation Mechanism (CSTM) and the Blank Sample Dispenser (BSD). The CSTM will carry the samples into the ALD, where they will be released through a trapdoor into the Crushing Station (CS) and be reduced to powder. The BSD will deliver 'blank' samples brought from Earth for verification purposes. The powdered samples then pass from the CS to The Powder Sample Dosing and Distribution System (PSDDS) delivers a measured quantity of powder into the Refillable Container (RC) that is mounted on the Powdered Sample Handling System (PSHS). The PSHS is a carousel that moves the samples to various stations for processing and analysis. One station is equipped with a fixed 'scraper', the Powder Sample Flattening Mechanism (PSFM), which levels the surface of the powdered sample in the RC. Another station houses the Refillable Container Cleaning Mechanism (RCCM), while further stations will have instruments to examine the surface of the samples and pyrolysis ovens to feed the MOMA GC-MS. ALD CSTM Frames ~~~~~~~~~~~~~~~ The CSTM is placed diagonally on top of the upper ALD plate to reach the sample handover point of the drill by opening the ALD door. It then retracts after having received the sample from the drill in its sample container. The ALD Core Sample Transportation Mechanism (CSTM) Fixed frame -- RM_ALD_CSTM_FIX -- is attached to the CSTM and invariant to the CSTM mechanism position. It is defined as follows: - +Z axis is nominally parallel to the +Z axis of the RM_ROVER frame; - +X axis is the motion direction of the CSTM mechanism (from close to open); - +Y axis completes the right-handed frame; - the origin is located in the geometrical centre of the CSTM sample receptacle, assuming the CSTM mechanism fully retracted. It is a fixed translation from the RM_ROVER. The ALD CSTM Fixed frame axes are rotated around the +Z axis of the ROVER_RM frame a nominal angle of -26.5 degrees [10]. The ALD CTSM Moving frame -- RM_ALD_CSTM_MOV -- is is attached to the Core Sample Transport Mechanism and moves according to CSTM mechanism position. Its orientation is the same as ACF frame and its origin is coincident with ACF frame when the CSTM mechanism is fully retracted (0mm). When the CSTM mechanisms moves (up to 300mm), the ACM frame rigidly translates with respect to the RM_ALD_CSTM_FIX frame along the +X axis RM_ALD_CSTM_FIX. This diagram illustrate the RM_ALD_CSTM_FIX frame: +Z Rover side view: ------------------- .-------------------------..-------------------------. .-----| || | | .--.| || | | | || || | `-| |'-------------------------''-------------------------' .------------------. +Xcstm | '----------. <. '----. | ' .| |+Zcstm | ' o .-. .' | .| | +Xrm +Zrm | ' | | |<---------o | ' | | | | | +Ycstm <'| | '-' | '. '--| | | +Zrm and +Zcstm are '-----. .-|--------' out of the page. '---------' v .--------------- +Yrm ----..-------------------------. | || | | || | | || | '-------------------------''-------------------------' These sets of keywords define the ALD CSTM frames: \begindata FRAME_RM_ALD_CSTM_FIX = -174052 FRAME_-174052_NAME = 'RM_ALD_CSTM_FIX' FRAME_-174052_CLASS = 4 FRAME_-174052_CLASS_ID = -174052 FRAME_-174052_CENTER = -174052 TKFRAME_-174052_RELATIVE = 'RM_ROVER' TKFRAME_-174052_SPEC = 'ANGLES' TKFRAME_-174052_UNITS = 'DEGREES' TKFRAME_-174052_AXES = ( 1, 2, 3 ) TKFRAME_-174052_ANGLES = ( 0.0, 0.0, 26.5 ) FRAME_RM_ALD_CSTM_MOV = -174053 FRAME_-174053_NAME = 'RM_ALD_CSTM_MOV' FRAME_-174053_CLASS = 4 FRAME_-174053_CLASS_ID = -174053 FRAME_-174053_CENTER = -174053 TKFRAME_-174053_RELATIVE = 'RM_ALD_CSTM_FIX' TKFRAME_-174053_SPEC = 'ANGLES' TKFRAME_-174053_UNITS = 'DEGREES' TKFRAME_-174053_AXES = ( 1, 2, 3 ) TKFRAME_-174053_ANGLES = ( 0.0, 0.0, 0.0 ) \begintext ALD PSDDS and PSHS Frames ~~~~~~~~~~~~~~~~~~~~~~~~~ The PSDDS collects the crushed samples in its sample containers and distributes the sample powder to the receptacles placed on the PSHS. The PSHS with its carousel transports the powdered sample received by the PSDDS by rotation to the ports of the optical instruments of the ALD namely MicrOmega, RLS and MOMA LD-MS. The Powder Sample Dosing and Distribution System (PSDDS) and the Powdered Sample Handling System (PSHS, the carousel) frames are defined solely to provide the rotation angle of their mechanisms. For PSDDS the angle ranges from 0 to 340.06 degrees and provides the position of the POSITIONER whereas for PSHS the angles ranges from 0 to 345 degrees and provides the position of the CAROUSEL. For both zero position is equivalent to 0 degrees. Because of this for both structures a FIXED and a MOVING frame are defined; the MOVING frame incorporates the rotation being defined as a CK-based frame. The ALD PSDDS Fixed frame -- RM_ALD_PSDDS_FIX -- is attached to the Powder Sample Dosing and Distribution System, is invariant to the PSDDS mechanism position and is parallel to the RM_ROVER frame. It is defined as follows: - +X axis is nominally co-aligned with the RM_ROVER +X axis frame; - +Y axis is nominally co-aligned with the RM_ROVER +Y axis frame; - +Z axis completes the right-handed frame; - The origin is located in the geometrical centre of the PSDDS, defined as the intersection of the PSDDS mechanism rotation axis and the PSDDS upper panel (perpendicular to the RM_ROVER +Z axis). The ALD PSDDS Moving frame -- RM_ALD_PSDDS_MOV -- is attached to the Powder Sample Dosing and Distribution System and moves according to the PSDDS mechanism rotation. Its origin is coincident with the RM_ALD_PSDDS_FIX frame, and its orientation is the same when the PSDDS mechanism is in zero position (PSDDS = 0deg). When the PSDDS mechanisms moves, the frame rotates around the +Z axis of the RM_ALD_PSDDS_MOV fame. The ALD PSHS Fixed frame -- RM_ALD_PSHS_FIX -- is attached to the Powder Sample Handiling System and is invariant to the PSHS mechanism position. It is defined as follows: - +X axis is nominally co-aligned with the RM_ROVER +X axis frame; - +Y axis is nominally co-aligned with the RM_ROVER +Y axis frame; - +Z axis completes the right-handed frame; - The origin is located in the geometrical centre of the PSHS, defined as the intersection of the PSHS mechanism rotation axis and the PSHS upper panel (perpendicular to the RM_ROVER +Z axis). The ALD PSHS Moving frame -- RM_ALD_PSHS_MOV -- is attached to the Powder Sample Dosing and Distribution System and moves according to the PSHS mechanism rotation. Its origin is coincident with the RM_ALD_PSHS_FIX frame, and its orientation is the same when the PSDDS mechanism is in zero position (PSHS = 0deg). When the PSHS mechanisms moves, the frame rotates around the +Z axis of the RM_ALD_PSHS_MOV fame. These sets of keywords define the ALD PSDDS and PSHS frames: \begindata FRAME_RM_ALD_PSDDS_FIX = -174055 FRAME_-174055_NAME = 'RM_ALD_PSDDS_FIX' FRAME_-174055_CLASS = 4 FRAME_-174055_CLASS_ID = -174055 FRAME_-174055_CENTER = -174055 TKFRAME_-174055_RELATIVE = 'RM_ROVER' TKFRAME_-174055_SPEC = 'ANGLES' TKFRAME_-174055_UNITS = 'DEGREES' TKFRAME_-174055_AXES = ( 1, 2, 3 ) TKFRAME_-174055_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_ALD_PSDDS_MOV = -174056 FRAME_-174056_NAME = 'RM_ALD_PSDDS_MOV' FRAME_-174056_CLASS = 3 FRAME_-174056_CLASS_ID = -174056 FRAME_-174056_CENTER = -174055 CK_-174056_SCLK = -174 CK_-174056_SPK = -174 FRAME_RM_ALD_PSHS_FIX = -174058 FRAME_-174058_NAME = 'RM_ALD_PSHS_FIX' FRAME_-174058_CLASS = 4 FRAME_-174058_CLASS_ID = -174058 FRAME_-174058_CENTER = -174058 TKFRAME_-174058_RELATIVE = 'RM_ROVER' TKFRAME_-174058_SPEC = 'ANGLES' TKFRAME_-174058_UNITS = 'DEGREES' TKFRAME_-174058_AXES = ( 1, 2, 3 ) TKFRAME_-174058_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_ALD_PSHS_MOV = -174059 FRAME_-174059_NAME = 'RM_ALD_PSHS_MOV' FRAME_-174059_CLASS = 3 FRAME_-174059_CLASS_ID = -174059 FRAME_-174059_CENTER = -174058 CK_-174059_SCLK = -174 CK_-174059_SPK = -174 \begintext Solar Arrays Frames ---------------------------------------------------------------------------- This section contains the definitions of the Solar Arrays (SA) frames as specified in [7]. The RM has two groups of SA panels, the Right SA and the Left SA. Each group consists of two panels (in addition to the panels present on top of the RM body): the primary and the secondary panel -- RM_SA1_PRI, RM_SA1_SEC and RM_SA2_PRI, RM_SA2_SEC --, these two panels are connected by hinges that allow them rotate (and thus be deployed). For each panel, the conventions for the hinge deployment axis are the following: The Primary Hinge deployment axis rotation convention is: - Zero angle when the primary panels are in the nominal fully deployed position with normal to the Photovoltaic assembly (PVA) face parallel to the +Z axis of the RM_ROVER. - Positive rotations deploy the primary panels from their stowed positions: right side hinges rotate clockwise about +X axis of the RM_ROVER frame and left side hinges rotate anticlockwise about +X axis of the RM_ROVER using right-hand grip rule. The Secondary Hinge deployment axis rotation convention is: - Zero angle when the secondary panels are in the nominal fully-deployed position with normal to the PVA face parallel to the +Z axis of the RM_ROVER. - Positive rotations deploy the secondary panels from their stowed positions below the primary panels: when the primary panels are deployed to -90 degrees the right side secondary hinges rotate anticlockwise about +Z axis of the RM_ROVER and left side secondary hinges rotate clockwise about +Z axis of the RM_ROVER using right-hand grip rule. Please note that all the rotations range from -180 to 0 degrees (stowed to fully deployed). For each group three reference frames are defined, a zero one that is parallel to the Rover Body frame, a primary for the pimary array of the group and a secondary for the secondary array of each group the frames are defined hereafter. The Solar Array 1 and 2 zero frames -- RM_SA1_ZERO, RM_SA2_ZERO -- are defined as follows: - +X axis is nominally co-aligned with the RM_ROVER +X axis frame; - +Y axis is nominally co-aligned with the RM_ROVER +Y axis frame; - +Z axis completes the right-handed frame; - The origin is located in the geometrical centre of the first hinge of the Solar Array (the one closer to the front of the RM). The Primary Solar Array 1 frame - RM_SA1_PRI -- frame is defined as follows: - +Z axis is normal to the PVA face; - +X axis is anti-parallel to the +X axis of the RM_ROVER frame and is the rotation axis of the primary solar array (Left Primary Deployment angle LPD); - +Y axis completes the right-handed frame; - The origin is located in the geometrical centre of the first hinge of the Primary Solar Array (the one closer to the front of the RM). The Secondary Solar Array 1 frame - RM_SA1_PRI -- frame is defined as follows: - +Z axis is normal to the PVA face; - +X axis is parallel to the +Y axis of the RM_ROVER frame when the primary array is fully deployed and is the rotation axis of the secondary solar array (Left Secondary Deployment angle LSD); - +Y axis completes the right-handed frame; - The origin is located in the geometrical centre of the first hinge of the Secondary Solar Array (the one closer to the RM body). The Primary Solar Array 2 frame - RM_SA2_PRI -- frame is defined as follows: - +Z axis is normal to the PVA face; - +X axis is parallel to the +X axis of the RM_ROVER frame and is the rotation axis of the primary solar array (Right Primary Deployment angle RPD); - +Y axis completes the right-handed frame; - The origin is located in the geometrical centre of the first hinge of the Primary Solar Array (the one closer to the front of the RM). The Secondary Solar Array 2 frame - RM_SA2_SEC -- frame is defined as follows: - +Z axis is normal to the PVA face; - +X axis is anti-parallel to the +Y axis of the RM_ROVER frame when the primary array is fully deployed and is the rotation axis of the secondary solar array (Right Secondary Deployment angle RSD); - +Y axis completes the right-handed frame; - The origin is located in the geometrical centre of the first hinge of the Secondary Solar Array (the one closer to the RM body). This diagram illustrate solar arrays frames: +Z Rover side view: ------------------- Right secondary hinge ' +Xsa2-sec ^' |' .-------------------------|.-------------------------. .-----| +Ysa2-sec || | Right primary .--.| +Zsa2-zero <-------o| | hinge | | || +Zsa2-pri |+Zsa2-sec | - - - - - |' <---------o -----------''-------------------------' +Xsa2-pri ---------|. ' +Xsa2-zero |'----------. ' +Zrm, +Zsa1-zero, '----. | | +Zsa1-pri, +Zsa1-sec, | | v +Ysa2-zero +Zsa2-zero, +Zsa1-pri | | .-. +Ysa2-pri .' and +Zsa1-sec are out | | | +Xrm +Zrm | of the page. | | | |<---------o | | | |+Ysa2-pri | | | +Ysa2-zero ^ | '. '--| | | | +Zrm and '-----. | .-|--------' out of the page. - - - - - '------|--' v +Yrm Left primary . +Zsa1-pri o--------> --..-------------------------. hinge | +Zsa1-zero +Xsa1-pr |+Zsa1-sec | | +Xsa1-zero o--------> +Ysa1-sec | | || | '-------------------------|'-------------------------' |' +Xsa2-sec v' ' Left secondary hinge The following frames implement the definitions provided below: \begindata FRAME_RM_SA1_ZERO = -174061 FRAME_-174061_NAME = 'RM_SA1_ZERO' FRAME_-174061_CLASS = 4 FRAME_-174061_CLASS_ID = -174061 FRAME_-174061_CENTER = -174062 TKFRAME_-174061_RELATIVE = 'RM_ROVER' TKFRAME_-174061_SPEC = 'ANGLES' TKFRAME_-174061_UNITS = 'DEGREES' TKFRAME_-174061_AXES = ( 1, 2, 3 ) TKFRAME_-174061_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_SA1_PRI = -174062 FRAME_-174062_NAME = 'RM_SA1_PRI' FRAME_-174062_CLASS = 3 FRAME_-174062_CLASS_ID = -174062 FRAME_-174062_CENTER = -174062 CK_-174062_SCLK = -174 CK_-174062_SPK = -174 FRAME_RM_SA1_SEC = -174063 FRAME_-174063_NAME = 'RM_SA1_SEC' FRAME_-174063_CLASS = 3 FRAME_-174063_CLASS_ID = -174063 FRAME_-174063_CENTER = -174063 CK_-174063_SCLK = -174 CK_-174063_SPK = -174 FRAME_RM_SA2_ZERO = -174064 FRAME_-174064_NAME = 'RM_SA2_ZERO' FRAME_-174064_CLASS = 4 FRAME_-174064_CLASS_ID = -174064 FRAME_-174064_CENTER = -174065 TKFRAME_-174064_RELATIVE = 'RM_ROVER' TKFRAME_-174064_SPEC = 'ANGLES' TKFRAME_-174064_UNITS = 'DEGREES' TKFRAME_-174064_AXES = ( 1, 2, 3 ) TKFRAME_-174064_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_SA2_PRI = -174065 FRAME_-174065_NAME = 'RM_SA2_PRI' FRAME_-174065_CLASS = 3 FRAME_-174065_CLASS_ID = -174065 FRAME_-174065_CENTER = -174065 CK_-174065_SCLK = -174 CK_-174065_SPK = -174 FRAME_RM_SA2_SEC = -174066 FRAME_-174066_NAME = 'RM_SA2_SEC' FRAME_-174066_CLASS = 3 FRAME_-174066_CLASS_ID = -174066 FRAME_-174066_CENTER = -174066 CK_-174066_SCLK = -174 CK_-174066_SPK = -174 \begintext Locomotion Frames ---------------------------------------------------------------------------- This section contains the definitions of Rover Locomotion system frames as specified in [7]. It should be noted that the frames described within this section have been defined so that when the rover is fully deployed, is in flat terrain and all steering angles are zero, these frames are intended as being aligned with the Rover Body frame. Bogie Frame definitions ~~~~~~~~~~~~~~~~~~~~~~~ There are three bogie fixed frames, that correspond to the three bogie bodies: the Left Front Boogie fixed frame -- RM_BOGIE_LF_FIX --, the Right Front Bogie fixed frame -- RM_BOGIE_RF_FIX -- and the Middle Rear Bogie fixed frame -- RM_BOGIE_MR_FIX --. These frames have a fixed transformation with respect to the Rover Body frame. The bogie frames are defined as follows: - +Z axis points vertically upwards, anti-parallel to the gravity vector. It is parallel to +Z axis of the RM_ROVER (within knowledge alignment errors) and invariant to pivot angle; - +X axis points towards the front of the Rover in the nominal direction of travel. It is parallel to +X axis of the RM_ROVER frame (within knowledge alignment errors) and is invariant to pivot angle; - +Z axis completes the right-handed frame; - The origin lies on the rotational axis of the bogie in the plane of symmetry. There are three bogie moving frames that define a pure rotation with respect to RM_BOGIE_LF_FIX, RM_BOGIE_RF_FIX and RM_BOGIE_MR_FIX according to the pivot angles LFB, RFB and MRB, the rotations are defined as follows: Left Front Bogie Moving -- RM_BOGIE_LF_MOV -- with origin coincident with RM_BOGIE_LF_FIX and rotating LFB around its +Y axis. This frame has the same orientation as the FIX frame when the rover is on flat, horizontal terrain. Right Front Bogie Moving -- RM_BOGIE_RF_MOV -- with origin coincident with RM_BOGIE_RF_FIX and rotating RFB around its +Y axis. This frame has the same orientation as the FIX frame when the rover is on flat, horizontal terrain. Middle Rear Bogie Moving -- RM_BOGIE_MR_MOV -- with origin coincident with RM_BOGIE_MR_FIX and rotating MRB around its +X axis. This frame has the same orientation as the FIX frame when the rover is on flat, horizontal terrain. These diagrams illustrate the Bogie frames: +Y Rover side view (only bogies and wheels): -------------------------------------------- +Zrm +Yrm, +Ybmr and +Yblf ^ are out of the page. | +Zblf ^ | +Zbmr ^ | +Xrm | | |_<---------o ___________|. +Xblf ||| +Yrm ||| <---------o +Yblf _ <---------o +Ybmr | |-----\_/----| | +Xbmr \__. | .| |. .| |. .| |. / |__| \ / |__| \ / |__| \ \ / \ / \ / `-..-' `-..-' `-..-' Left Front Bogie Middle Rear Bogie +X Rover side view (only bogies and wheels): -------------------------------------------- +Zbrf +Zbmr +Zblf ^ ^ ^ | | | | | | | .----------------|---------------. | +Xblf +Xbrf o--------> ------- o--------> ----. |.o--------> +Yblf |___|=| +Ybrf +Xbmr +Ybmr |=|___| |.-. .-.| +Xbmr, +Xblf and || | | || +Xbrf are out of `| | | |' the page. '_' '_' ~~~~~~~~ ~~~~~~~~ +X Rover side view (drill in stowed position): ---------------------------------------------- o-o-=O===O--o |o|___| _\/ |_|_ |_| | | +Xrm and +Xbrf are | out of the page. | | | | | | _|_ +Zrm | | ^ ------ +Zbrf +Zbrm ------|------------------------- | ^ | ^ | | | | | | '-|-| . | | | 0 | .--'--' .| .-------------|----------| / |' | | |---. / \ o --------> ---- o--------> ====| .-. /.''. '. +Ybrm +Xrm | |+Yrm |=|___| / / '. .-.| / / v | || './ +Ybrm | |' .---. '_' ~~~' '~~~~ ~~~~~~~~ These sets of keywords define the Bugie fixed and moving frames: \begindata FRAME_RM_BOGIE_LF_FIX = -174071 FRAME_-174071_NAME = 'RM_BOGIE_LF_FIX' FRAME_-174071_CLASS = 4 FRAME_-174071_CLASS_ID = -174071 FRAME_-174071_CENTER = -174071 TKFRAME_-174071_RELATIVE = 'RM_ROVER' TKFRAME_-174071_SPEC = 'ANGLES' TKFRAME_-174071_UNITS = 'DEGREES' TKFRAME_-174071_AXES = ( 1, 2, 3 ) TKFRAME_-174071_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_BOGIE_LF_MOV = -174072 FRAME_-174072_NAME = 'RM_BOGIE_LF_MOV' FRAME_-174072_CLASS = 3 FRAME_-174072_CLASS_ID = -174072 FRAME_-174072_CENTER = -174071 CK_-174072_SCLK = -174 CK_-174072_SPK = -174 FRAME_RM_BOGIE_RF_FIX = -174073 FRAME_-174073_NAME = 'RM_BOGIE_RF_FIX' FRAME_-174073_CLASS = 4 FRAME_-174073_CLASS_ID = -174073 FRAME_-174073_CENTER = -174073 TKFRAME_-174073_RELATIVE = 'RM_ROVER' TKFRAME_-174073_SPEC = 'ANGLES' TKFRAME_-174073_UNITS = 'DEGREES' TKFRAME_-174073_AXES = ( 1, 2, 3 ) TKFRAME_-174073_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_BOGIE_RF_MOV = -174074 FRAME_-174074_NAME = 'RM_BOGIE_RF_MOV' FRAME_-174074_CLASS = 3 FRAME_-174074_CLASS_ID = -174074 FRAME_-174074_CENTER = -174073 CK_-174074_SCLK = -174 CK_-174074_SPK = -174 FRAME_RM_BOGIE_MR_FIX = -174075 FRAME_-174075_NAME = 'RM_BOGIE_MR_FIX' FRAME_-174075_CLASS = 4 FRAME_-174075_CLASS_ID = -174075 FRAME_-174075_CENTER = -174075 TKFRAME_-174075_RELATIVE = 'RM_ROVER' TKFRAME_-174075_SPEC = 'ANGLES' TKFRAME_-174075_UNITS = 'DEGREES' TKFRAME_-174075_AXES = ( 1, 2, 3 ) TKFRAME_-174075_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_BOGIE_MR_MOV = -174076 FRAME_-174076_NAME = 'RM_BOGIE_MR_MOV' FRAME_-174076_CLASS = 3 FRAME_-174076_CLASS_ID = -174076 FRAME_-174076_CENTER = -174075 CK_-174076_SCLK = -174 CK_-174076_SPK = -174 \begintext Wheel Frame definitions ~~~~~~~~~~~~~~~~~~~~~~~ There are six wheels fixed frames: RM_WHEEL_LF_FIX, RM_WHEEL_LM_FIX, RM_WHEEL_RF_FIX, RM_WHEEL_RM_FIX, RM_WHEEL_LR_FIX and RM_WHEEL_RR_FIX which correspond to the fix frame associated with every wheel wich are implemented by a fixed transformation with respect to the corresponding bogie moving frames -- RM_BOGIE_LF_MOV, RM_BOGIE_RF_MOV and RM_BOGIE_MR_MOV --, invariant to the rotation on the steering and driving axis and assuming a full deployment of the deployment mechanism. The center of the frames is the center of the corresponding wheel: - Front left wheel (LF), middle left wheel (LM) (mounted on the Left Front Bogie); - Front right wheel (RF), middle right wheel (RM) (mounted on the Right Front Bogie); - Left rear wheel (LR), right rear wheel (RR) (mounted on the Right Front Bogie); In addition, six wheels steering angle frames are defined: RM_WHEEL_LF_STR, RM_WHEEL_LM_STR, RM_WHEEL_RF_STR, RM_WHEEL_RM_STR, RM_WHEEL_LR_STR and RM_WHEEL_RR_STR. These frames are defined with respect to their corresponding fixed frame and implement the steering angle (STR) around the +Z axis of their corresponding fixed frame. Finally, six wheel moving frames are defined: RM_WHEEL_LF_MOV, RM_WHEEL_LM_MOV, RM_WHEEL_RF_MOV, RM_WHEEL_RM_MOV, RM_WHEEL_LR_MOV and RM_WHEEL_RR_MOV. These frames are defined with respect to their corresponding steering frame and implement the forward movement rotation or rototrnaslation angle (DRV) around the +Y axis of their corresponding steering frame. Note that for each frame the wheel deployment mechanism is fully deployed and the steering is in its zero position the moving frame is coincident with the steering frame an d the bogie frames. These diagrams illustrate the Wheels frames: +Y Rover side view (only bogies and wheels): -------------------------------------------- +Zrm +Yrm, +Ybmr, +Yblf, ^ +Ywlr, +Ywlr, +Ywlr | are out of the page. +Zblf ^ | +Zbmr ^ | +Xrm | | +Zblf |_<---------o ___________|. +Zwlr ^ || +Zwlr ^ +Yrm +Ybmr || ^ +Zwlr <-|-------o +Yblf | <---------o | | ||-----\_/----| || +Xbmr \__. || +Xwlf .| |. +Xwlm .| ||. .| ||. <------o| \ <------o| \ +Xwlr <------o| \ \+Ywlr / \+Ywlr / \+Ywlr / `-..-' `-..-' `-..-' Front left wheel Middle left wheel Left rear wheel Left Front Bogie Middle Rear Bogie +Y Rover side view (without solar arrays): ------------------------------------------ +Xlrs < ' . '/ ' . +Xlrf <----'--o ' . .-----. .-----. /|' / '----- +Xrrf <-----o--' .--- /=|========='-. +Xrrs | || +Zrm, +Zlrs, +Zlrf, are | / | '----------.| || +Zrrf, +Zrrs, +Zlmf and '- v . v | |v +Zlms are out of the +Ylrs | +Ylrf +Ylrf +Ylrs page. .-. .' | | | | +Xrm +Zrm | | | | |<---------o | | | | | | | | | | '-' | '.| '--| | || . +Xlms ========. v +Yrm --|| . +Xlmf <-----o--. .-----. '-----' '--|--' '-----' | +Ylmf | +Ylms v +Y Rover side view (only bogies and wheels, with all STR=0): ------------------------------------------------------------ +Zlfs +Zlrs +Ylrs, +Ylrm, +Xlfm ^ +Zlfm ^ +Ylfs and +Ylfm ^ | -- ^ / \-----__ +Zlrm < . \._| are out of the ' .| ||-.'---\_/----| | \'. || page. .'.|.' .| |. .'.||. +Xlfs <-------o| \ / |__| \ +Xlrs <-------o| \ \ / \ / \ .' / DRV = 45 deg `-..-' `-..-' .`-..-' DRV = -45 deg +Xlrm v These sets of keywords define the Wheels fixed, steering and moving frames: \begindata FRAME_RM_WHEEL_LF_FIX = -1740810 FRAME_-1740810_NAME = 'RM_WHEEL_LF_FIX' FRAME_-1740810_CLASS = 4 FRAME_-1740810_CLASS_ID = -1740810 FRAME_-1740810_CENTER = -174081 TKFRAME_-1740810_RELATIVE = 'RM_BOGIE_LF_MOV' TKFRAME_-1740810_SPEC = 'ANGLES' TKFRAME_-1740810_UNITS = 'DEGREES' TKFRAME_-1740810_AXES = ( 1, 2, 3 ) TKFRAME_-1740810_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_WHEEL_LF_STR = -1740811 FRAME_-1740811_NAME = 'RM_WHEEL_LF_STR' FRAME_-1740811_CLASS = 3 FRAME_-1740811_CLASS_ID = -1740811 FRAME_-1740811_CENTER = -174081 CK_-1740811_SCLK = -174 CK_-1740811_SPK = -174 FRAME_RM_WHEEL_LF_MOV = -1740812 FRAME_-1740812_NAME = 'RM_WHEEL_LF_MOV' FRAME_-1740812_CLASS = 3 FRAME_-1740812_CLASS_ID = -1740812 FRAME_-1740812_CENTER = -174081 CK_-1740812_SCLK = -174 CK_-1740812_SPK = -174 FRAME_RM_WHEEL_LM_FIX = -1740820 FRAME_-1740820_NAME = 'RM_WHEEL_LM_FIX' FRAME_-1740820_CLASS = 4 FRAME_-1740820_CLASS_ID = -1740820 FRAME_-1740820_CENTER = -174082 TKFRAME_-1740820_RELATIVE = 'RM_BOGIE_LF_MOV' TKFRAME_-1740820_SPEC = 'ANGLES' TKFRAME_-1740820_UNITS = 'DEGREES' TKFRAME_-1740820_AXES = ( 1, 2, 3 ) TKFRAME_-1740820_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_WHEEL_LM_STR = -1740821 FRAME_-1740821_NAME = 'RM_WHEEL_LM_STR' FRAME_-1740821_CLASS = 3 FRAME_-1740821_CLASS_ID = -1740821 FRAME_-1740821_CENTER = -174082 CK_-1740821_SCLK = -174 CK_-1740821_SPK = -174 FRAME_RM_WHEEL_LM_MOV = -1740822 FRAME_-1740822_NAME = 'RM_WHEEL_LM_MOV' FRAME_-1740822_CLASS = 3 FRAME_-1740822_CLASS_ID = -1740822 FRAME_-1740822_CENTER = -174082 CK_-1740822_SCLK = -174 CK_-1740822_SPK = -174 FRAME_RM_WHEEL_RF_FIX = -1740830 FRAME_-1740830_NAME = 'RM_WHEEL_RF_FIX' FRAME_-1740830_CLASS = 4 FRAME_-1740830_CLASS_ID = -1740830 FRAME_-1740830_CENTER = -174083 TKFRAME_-1740830_RELATIVE = 'RM_BOGIE_RF_MOV' TKFRAME_-1740830_SPEC = 'ANGLES' TKFRAME_-1740830_UNITS = 'DEGREES' TKFRAME_-1740830_AXES = ( 1, 2, 3 ) TKFRAME_-1740830_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_WHEEL_RF_STR = -1740831 FRAME_-1740831_NAME = 'RM_WHEEL_RF_STR' FRAME_-1740831_CLASS = 3 FRAME_-1740831_CLASS_ID = -1740831 FRAME_-1740831_CENTER = -174083 CK_-1740831_SCLK = -174 CK_-1740831_SPK = -174 FRAME_RM_WHEEL_RF_MOV = -1740832 FRAME_-1740832_NAME = 'RM_WHEEL_RF_MOV' FRAME_-1740832_CLASS = 3 FRAME_-1740832_CLASS_ID = -1740832 FRAME_-1740832_CENTER = -174083 CK_-1740832_SCLK = -174 CK_-1740832_SPK = -174 FRAME_RM_WHEEL_RM_FIX = -1740840 FRAME_-1740840_NAME = 'RM_WHEEL_RM_FIX' FRAME_-1740840_CLASS = 4 FRAME_-1740840_CLASS_ID = -1740840 FRAME_-1740840_CENTER = -174084 TKFRAME_-1740840_RELATIVE = 'RM_BOGIE_RF_MOV' TKFRAME_-1740840_SPEC = 'ANGLES' TKFRAME_-1740840_UNITS = 'DEGREES' TKFRAME_-1740840_AXES = ( 1, 2, 3 ) TKFRAME_-1740840_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_WHEEL_RM_STR = -1740841 FRAME_-1740841_NAME = 'RM_WHEEL_RM_STR' FRAME_-1740841_CLASS = 3 FRAME_-1740841_CLASS_ID = -1740841 FRAME_-1740841_CENTER = -174084 CK_-1740841_SCLK = -174 CK_-1740841_SPK = -174 FRAME_RM_WHEEL_RM_MOV = -1740842 FRAME_-1740842_NAME = 'RM_WHEEL_RM_MOV' FRAME_-1740842_CLASS = 3 FRAME_-1740842_CLASS_ID = -1740842 FRAME_-1740842_CENTER = -174084 CK_-1740842_SCLK = -174 CK_-1740842_SPK = -174 FRAME_RM_WHEEL_LR_FIX = -1740850 FRAME_-1740850_NAME = 'RM_WHEEL_LR_FIX' FRAME_-1740850_CLASS = 4 FRAME_-1740850_CLASS_ID = -1740850 FRAME_-1740850_CENTER = -174085 TKFRAME_-1740850_RELATIVE = 'RM_BOGIE_MR_MOV' TKFRAME_-1740850_SPEC = 'ANGLES' TKFRAME_-1740850_UNITS = 'DEGREES' TKFRAME_-1740850_AXES = ( 1, 2, 3 ) TKFRAME_-1740850_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_WHEEL_LR_STR = -1740851 FRAME_-1740851_NAME = 'RM_WHEEL_LR_STR' FRAME_-1740851_CLASS = 3 FRAME_-1740851_CLASS_ID = -1740851 FRAME_-1740851_CENTER = -174085 CK_-1740851_SCLK = -174 CK_-1740851_SPK = -174 FRAME_RM_WHEEL_LR_MOV = -1740852 FRAME_-1740852_NAME = 'RM_WHEEL_LR_MOV' FRAME_-1740852_CLASS = 3 FRAME_-1740852_CLASS_ID = -1740852 FRAME_-1740852_CENTER = -174085 CK_-1740852_SCLK = -174 CK_-1740852_SPK = -174 FRAME_RM_WHEEL_RR_FIX = -1740860 FRAME_-1740860_NAME = 'RM_WHEEL_RR_FIX' FRAME_-1740860_CLASS = 4 FRAME_-1740860_CLASS_ID = -1740860 FRAME_-1740860_CENTER = -174086 TKFRAME_-1740860_RELATIVE = 'RM_BOGIE_MR_MOV' TKFRAME_-1740860_SPEC = 'ANGLES' TKFRAME_-1740860_UNITS = 'DEGREES' TKFRAME_-1740860_AXES = ( 1, 2, 3 ) TKFRAME_-1740860_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_WHEEL_RR_STR = -1740861 FRAME_-1740861_NAME = 'RM_WHEEL_RR_STR' FRAME_-1740861_CLASS = 3 FRAME_-1740861_CLASS_ID = -1740861 FRAME_-1740861_CENTER = -174086 CK_-1740861_SCLK = -174 CK_-1740861_SPK = -174 FRAME_RM_WHEEL_RR_MOV = -1740862 FRAME_-1740862_NAME = 'RM_WHEEL_RR_MOV' FRAME_-1740862_CLASS = 3 FRAME_-1740862_CLASS_ID = -1740862 FRAME_-1740862_CENTER = -174086 CK_-1740862_SCLK = -174 CK_-1740862_SPK = -174 \begintext PanCam Frames ------------------------------------------------------------------------ This section of the file contains the definitions of the Panoramic Camera (PanCam) instrument frames. PanCam Frame Tree ~~~~~~~~~~~~~~~~~ The diagram below shows the PanCam frame hierarchy. "RM_PB" ------- | |<-fixed | V "RM_PANCAM_BASE" +----------------------------------------+ | | | fixed->| fixed->| fixed->| | | | v v v "RM_PANCAM_HRC" "RM_PANCAM_WAC_L" "RM_PANCAM_WAC_R" --------------- ----------------- ----------------- PanCam Frame definitions ~~~~~~~~~~~~~~~~~~~~~~~~ The Panoramic Cameras reference frame (PANCAM) is attached to the PanCam stereo bench that is rigidly mounted on the Payload Bench on top of the Rover Mast. Therefore, the base frame associated with it -- the RM PANCAM Base rame, RM_PANCAM_BASE -- is specified as a fixed offset frame with its orientation given relative to the RM_ROVER frame as follows: - +X axis is defined as the projection of the cameras optical axis on the plane perpendicular to the +Y axis; - +Y axis is in the direction from the right WAC camera optical centre to the left WAC camera optical centre; - +Z axis completes the right-handed frame; - The origin is located at the middle of the segment linking the optical centres of the left and right WAC cameras. The calibrated boresight misalignment have been determined during calibration campaigns. The following misalignment, expressed as a rotation transformation from the RM_PANCAM_WAC_L, RM_PANCAM_WAC_R and RM_PANCAM_HRC frames to RM_PANCAM_BASE frame, were provided by Maria del Pilar Caballo (joanneum) on April 28, 2021 [13]: base M = |92.85895611| * |-0.10894262| * |90.00271849| wac-l Z Y X base M = |87.188956| * |-0.00325969| * |89.941108| wac-r Z Y X base M = |89.95718161| * |0.86280677| * |90.09956721| hrc Z Y X These diagrams illustrate the nominal RM_PANCAM_BASE, RM_PANCAM_WAC_L, RM_PANCAM_WAC_R and RM_PANCAM_HRC frame with respect to the rover frame. +X Rover side view: ------------------- +Zpancam ^ | | | | o-o-=Oo--------> +Ypancam +Xpancam _| _\/ |_|_ |_| | | | | | | | | | _|_ +Zrm | | ^ --------------------------|-------------------------- | | | | | | | | '---| | | | 0 | .--'--' '--.-----------|----------| .--| | |---. .-. |============= o--------> ====| .-. |___|=| +Xrm | +Yrm |=|___| |.-. .-.| || | | || +Yrm is out of the `| | | |' page '_' '_' ~~~~~~~~ ~~~~~~~~ +X Rover Mast view: ------------------- +Xpwacl +Xphrc +Xpwacr ^ ^ +Zpancam ^ | | ^ | | PanCamHRC | __________|___________ | .--|-------------|---| +Yphrc | Navcam |-----------------|--. | /o-------> / o--------> | /^\ | /o-------> | \_/ WAC-L \__/ | \_/ o-------->/ | PanCam WAC-R \_/ | +Ypwacr '____________________| +Xpancam +Ypancam__________________' .-----.'----------------------' | /^\ |====|----=====-----| | \_/ |====| / \ | +Zpwacl, +Zphrc, +Zpwacr '-----' | / \ | and +Xpancam are out of ISEM . . . . the page. . Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--the order of rotations assigned to the TKFRAME_*_AXES keyword is defined accordingly. \begindata FRAME_RM_PANCAM_BASE = -174100 FRAME_-174100_NAME = 'RM_PANCAM_BASE' FRAME_-174100_CLASS = 4 FRAME_-174100_CLASS_ID = -174100 FRAME_-174100_CENTER = -174100 TKFRAME_-174100_RELATIVE = 'RM_PB' TKFRAME_-174100_SPEC = 'ANGLES' TKFRAME_-174100_UNITS = 'DEGREES' TKFRAME_-174100_AXES = ( 3, 2, 1 ) TKFRAME_-174100_ANGLES = ( -5.26308059 -6.72424544 -0.06027912 ) FRAME_RM_PANCAM_JR = -174101 FRAME_-174101_NAME = 'RM_PANCAM_JR' FRAME_-174101_CLASS = 4 FRAME_-174101_CLASS_ID = -174101 FRAME_-174101_CENTER = -174100 TKFRAME_-174101_RELATIVE = 'RM_PANCAM_BASE' TKFRAME_-174101_SPEC = 'ANGLES' TKFRAME_-174101_UNITS = 'DEGREES' TKFRAME_-174101_AXES = ( 2, 3, 1 ) TKFRAME_-174101_ANGLES = ( 90.0, 90.0, 0.0 ) FRAME_RM_PANCAM_WAC_L = -174110 FRAME_-174110_NAME = 'RM_PANCAM_WAC_L' FRAME_-174110_CLASS = 4 FRAME_-174110_CLASS_ID = -174110 FRAME_-174110_CENTER = -174110 TKFRAME_-174110_RELATIVE = 'RM_PANCAM_BASE' TKFRAME_-174110_SPEC = 'ANGLES' TKFRAME_-174110_UNITS = 'DEGREES' TKFRAME_-174110_AXES = ( 3, 2, 1 ) TKFRAME_-174110_ANGLES = ( 92.85895611 -0.10894262 90.00271849) FRAME_RM_PANCAM_WAC_R = -174120 FRAME_-174120_NAME = 'RM_PANCAM_WAC_R' FRAME_-174120_CLASS = 4 FRAME_-174120_CLASS_ID = -174120 FRAME_-174120_CENTER = -174120 TKFRAME_-174120_RELATIVE = 'RM_PANCAM_BASE' TKFRAME_-174120_SPEC = 'ANGLES' TKFRAME_-174120_UNITS = 'DEGREES' TKFRAME_-174120_AXES = ( 3, 2, 1 ) TKFRAME_-174120_ANGLES = ( 8.7188956e+01 -3.25969e-02 8.9941108e+01) FRAME_RM_PANCAM_HRC = -174130 FRAME_-174130_NAME = 'RM_PANCAM_HRC' FRAME_-174130_CLASS = 4 FRAME_-174130_CLASS_ID = -174130 FRAME_-174130_CENTER = -174130 TKFRAME_-174130_RELATIVE = 'RM_PANCAM_BASE' TKFRAME_-174130_SPEC = 'ANGLES' TKFRAME_-174130_UNITS = 'DEGREES' TKFRAME_-174130_AXES = ( 3, 2, 1 ) TKFRAME_-174130_ANGLES = ( 89.95718161 0.86280677 90.09956721 ) \begintext ISEM Frames ------------------------------------------------------------------------ This section of the file contains the definitions of the Infrared Spectrometer for ExoMars (ISEM). ISEM Frame Tree ~~~~~~~~~~~~~~~~~ The diagram below shows the ISEM frame hierarchy. "RM_PB" ------- | |<-fixed | V "RM_ISEM" --------- ISEM Frame Definition ~~~~~~~~~~~~~~~~~~~~~ The ISEM reference frame -- RM_ISEM -- is attached to the ISEM instrument and is nominally parallel Payload Bench -- RM_PB -- and is defined as follows: - +X axis is parallel to the +X axis of the RM_PB frame; - +Y axis is parallel to the +Y axis of the RM_PB frame; - +Z axis completes the right-handed frame; - the origin is located on the instrument optical axis, exactly at the end of the ISEM Optical Box. The following diagram describes the RM_ISEM reference frame: +X Rover side view: ------------------- +Zisem ^ | | | o-o-|O===O--o |o---------> +Yisem _\/ |_|_ |_| | | | | | | | | | _|_ +Zrm | | ^ --------------------------|-------------------------- | | | | | | | | '---| | | | 0 | .--'--' '--.-----------|----------| .--| | |---. .-. |============= o--------> ====| .-. |___|=| +Xrm | +Yrm |=|___| |.-. .-.| || | | || +Xrm and +Xisem are `| | | |' out of the page. '_' '_' ~~~~~~~~ ~~~~~~~~ +X Rover Mast view: ------------------- +Zisem ______________________ .--------------- ^ --| |--------------------. | /^\ PanCam /| \ | /^\ /^\ | /^\ | | \_/ WAC-L \|_/ | \_/ \_/ | PanCam WAC-R \_/ | '________________|___| NavCaM |____________________' .--|--.'----------------------' | /o---------> == +Zpb | \_/ |== +Yisem ^ \ | +Xpb and +Xisem are '-----' | / | \ | out of the page. ISEM . . | . . . | o--------> +Ypb +Xpb These sets of keywords define the ISEM frame: \begindata FRAME_RM_ISEM = -174200 FRAME_-174200_NAME = 'RM_ISEM' FRAME_-174200_CLASS = 4 FRAME_-174200_CLASS_ID = -174200 FRAME_-174200_CENTER = -174200 TKFRAME_-174200_RELATIVE = 'RM_PB' TKFRAME_-174200_SPEC = 'ANGLES' TKFRAME_-174200_UNITS = 'DEGREES' TKFRAME_-174200_AXES = ( 1, 2, 3 ) TKFRAME_-174200_ANGLES = ( 0.0, 0.0, 0.0 ) \begintext ADRON-RM Frames ------------------------------------------------------------------------ This section of the file contains the definitions of the Autonomous Detector of Radiation of Neutrons Onboard Rover (ADRON-RM) frames. ADRON-RM Frame Tree ~~~~~~~~~~~~~~~~~~~ The diagram below shows the ADRON-RM frame hierarchy. "RM_ROVER" ---------- | |<-fixed | V "RM_ADRON-RM" ------------- ADRON-RM Frame Definition ~~~~~~~~~~~~~~~~~~~~~~~~~ The ISEM reference frame -- RM_ADRON-RM -- is attached to the ADRON-RM instrument and is fixed with respect to the rover frame -- RM_ROVER --, and defined as follows: - +X axis is parallel to the +X axis of the RM_ROVER frame; - +Y axis is parallel to the +Y axis of the RM_ROVER frame; - +Z axis completes the right-handed frame; - the origin is located on the instrument center. The following diagram describes the RM_ADRON-RM reference frame: -Y Rover side view: ------------------- - · - · - | | +Zrm +Zadr _|_ ^ ^ | | | | -------------------|-------------|----------------------- ,------------|------------.| | | | ___| | | / | +Xrm | +Xadr | \___|__<---------o __<---------o +Yrm and +Yadr are out | | +Yrm | | of the page. __------/ \-----__ / \.__ | |-----\_/----| | \__. | .| |. .| |. .| |. / |__| \ / |__| \ / |__| \ \ / \ / \ / `-..-' `-..-' `-..-' These sets of keywords define the ADRON frame: \begindata FRAME_RM_ADRON-RM = -174300 FRAME_-174300_NAME = 'RM_ADRON-RM' FRAME_-174300_CLASS = 4 FRAME_-174300_CLASS_ID = -174300 FRAME_-174300_CENTER = -174300 TKFRAME_-174300_RELATIVE = 'RM_ROVER' TKFRAME_-174300_SPEC = 'ANGLES' TKFRAME_-174300_UNITS = 'DEGREES' TKFRAME_-174300_AXES = ( 1, 2, 3 ) TKFRAME_-174300_ANGLES = ( 0.0, 0.0, 0.0 ) \begintext WISDOM Frames ------------------------------------------------------------------------ This section of the file contains the definitions of the Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar frames. WISDOM Frame Tree ~~~~~~~~~~~~~~~~~ The diagram below shows the WISDOM frame hierarchy. "RM_ROVER" ---------- | |<-fixed | V "RM_WISDOM_BASE" +-------------------------+ | | |<-fixed fixed->| | | v v "RM_WISDOM_ANT1" "RM_WISDOM_ANT2" --------------- ---------------- WISDOM Frame Definitions: ~~~~~~~~~~~~~~~~~~~~~~~~~ The WISDOM base reference frame -- RM_WISDOM_BASE --, where the subsurface stratigrafy reconstruction occurs, is placed on the WISDOM instrument, is fixed with respect to the rover frame -- RM_ROVER --, and defined as follows: - +X axis is nominally parallel to the +X axis of the RM_ROVER frame; - +Y axis is nominally parallel to the +Y axis of the RM_ROVER frame; - +Z axis completes the right-handed frame; - The origin is located at the middle of the segment linking the two WISDOM hornet mounting positions. The WISDOM antennas ANT1 and ANT2 -- RM_WISDOM_ANT1, RM_WISDOM_ANT2 -- are rotated 8 degrees with respect to the RM_WISDOM_BASE frame around the +Y axis and are defined as follows [10]: - +Z axis points towards the direction of the antenna boresight; - +X is rotated 135 degrees around the WISDOM base frame +Y axis towards the WISDOM base frame +Z axis; - +Y axis is parallel to the WISDOM base frame +Y axis and completes the right-handed frame; - The origin is located at focal point of the antennas. The following diagram describes the WISDOM reference frames: -Y Rover side view: ------------------- - · - · - | | +Zrm +Zwis _|_ ^ ^ | | | | +Xant1, +Xant2 -------------------|-------------|------- ^ -------------- ,------------|------------.| .' | | | .' ___| | | .' / | +Xrm | +Xwis | .' \___|__<---------o __<---------o. +Yrm, +Ywis, +Yant1 and | | +Yrm | |'. +Yant2 are out of the __------/ \-----__ / \._'. page. | |-----\_/----| | \__. |'. .| |. .| |. .| |. v / |__| \ / |__| \ / |__| +Zant1, +Zant2 \ / \ / \ / `-..-' `-..-' `-..-' These sets of keywords define the WISDOM frame: \begindata FRAME_RM_WISDOM_BASE = -174400 FRAME_-174400_NAME = 'RM_WISDOM_BASE' FRAME_-174400_CLASS = 4 FRAME_-174400_CLASS_ID = -174400 FRAME_-174400_CENTER = -174 TKFRAME_-174400_RELATIVE = 'RM_ROVER' TKFRAME_-174400_SPEC = 'ANGLES' TKFRAME_-174400_UNITS = 'DEGREES' TKFRAME_-174400_AXES = ( 1, 2, 3 ) TKFRAME_-174400_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_WISDOM_ANT1 = -174410 FRAME_-174410_NAME = 'RM_WISDOM_ANT1' FRAME_-174410_CLASS = 4 FRAME_-174410_CLASS_ID = -174410 FRAME_-174410_CENTER = -174 TKFRAME_-174410_RELATIVE = 'RM_WISDOM_BASE' TKFRAME_-174410_SPEC = 'ANGLES' TKFRAME_-174410_UNITS = 'DEGREES' TKFRAME_-174410_AXES = ( 1, 2, 3 ) TKFRAME_-174410_ANGLES = ( 0.0, 172.0, 0.0 ) FRAME_RM_WISDOM_ANT2 = -174420 FRAME_-174420_NAME = 'RM_WISDOM_ANT2' FRAME_-174420_CLASS = 4 FRAME_-174420_CLASS_ID = -174420 FRAME_-174420_CENTER = -174 TKFRAME_-174420_RELATIVE = 'RM_WISDOM_BASE' TKFRAME_-174420_SPEC = 'ANGLES' TKFRAME_-174420_UNITS = 'DEGREES' TKFRAME_-174420_AXES = ( 1, 2, 3 ) TKFRAME_-174420_ANGLES = ( 0.0, 172.0, 0.0 ) \begintext MaMiss Frames ------------------------------------------------------------------------ This section of the file contains the definitions of the Mars Multispectral Imager for Subsurface Studies (MaMiss) frames. MaMiss Frame Tree: ~~~~~~~~~~~~~~~~~~ The diagram below shows the MaMiss frame hierarchy. RM_ROVER -------- | |<-fixed | v "RM_DRILL_POS_FIX" +----------------+ . | . |<-ck . | . v . "RM_DRILL_POS_MOV" . +----------------+ . . | . . fixed->| . . | . . v . . "RM_DRILL_TIP_FIX" . . ------------------ . . | . . |<-fixed . . | . . v . . "RM_DRILL_TIP_MOV" . . ------------------ . . | . . |<-fixed . . | v v v "RM_MAMISS" ----------- MaMiss Frame Definitions: ~~~~~~~~~~~~~~~~~~~~~~~~~ The MaMiss frame (MaMiss) is placed on the Rover Drill Rod with origin on the MaMiss sapphire window and is parallel to the Drill Tip moving frame. It is defined as follows: - +X axis is nominally parallel to the +X axis of the RM_DRILL_TIP_MOV frame; - +Y axis is nominally parallel to the +Y axis of the RM_DRILL_TIP_MOV frame; - +Z axis completes the right-handed frame; - The origin, is defined as the intersection between the Drill Rod extension direction and the MaMiss sapphire window. The following diagram describes the MaMiss reference frame: +X side of the extended Rod: ---------------------------- .. .. || +Xdtm and +Xmmis \/ Dril are out of the page o-------> +Zdtm, +Zmmiss | | | v +Ydtm, +Ymmiss These sets of keywords define the MaMiss frame: \begindata FRAME_RM_MAMISS = -174500 FRAME_-174500_NAME = 'RM_MAMISS' FRAME_-174500_CLASS = 4 FRAME_-174500_CLASS_ID = -174500 FRAME_-174500_CENTER = -174043 TKFRAME_-174500_RELATIVE = 'RM_DRILL_TIP_MOV' TKFRAME_-174500_SPEC = 'ANGLES' TKFRAME_-174500_UNITS = 'DEGREES' TKFRAME_-174500_AXES = ( 1, 2, 3 ) TKFRAME_-174500_ANGLES = ( 0.0, 0.0, 0.0 ) \begintext CLUPI Frames ------------------------------------------------------------------------ This section of the file contains the definitions of the Close-Up Imager (CLUPI) frames. CLUPI will be accommodated on the drill box of the rover. By using the degrees of freedom provided by both the rover and the drill box, CLUPI will be angled and raised so that it can observe in a variety of viewing modes. The use of two fixed mirrors—one flat and one concave will provide three FOVs. CLUPI Frame Tree: ~~~~~~~~~~~~~~~~~ The diagram below shows the CLUPI frame hierarchy. RM_ROVER -------- | |<-fixed | v "RM_DRILL_POS_FIX" +---------------------------------+ | | |<-fixed |<-ck | | V v "RM_CLUPI_BRACKET" "RM_DRILL_POS_MOV" ------------------ +--------------------------+ | | fixed->| fixed->| | | v v "RM_CLUPI_BASE" "RM_DRILL_TIP_FIX" --------------- ------------------ | | |<-fixed |<-fixed | | v v "RM_CLUPI_OPT_AXIS" "RM_DRILL_TIP_MOV" ------------------- ------------------ | . |<-fixed . | . v v "RM_CLUPI_DRILL_TIP" -------------------- CLUPI Frame Definitions: ~~~~~~~~~~~~~~~~~~~~~~~~ The CLUPI Base frame -- RM_CLUPI_BASE -- is placed on the CLUPI image sensor, which is fixed to the Drill Positioner. Hence its frame is rigidly following the RM_DRILL_POS_MOV frame and is defined as follows It is defined as follows: - +X axis is nominally parallel to the +X axis of the RM_DRILL_TIP_MOV frame; - +Y axis is nominally parallel to the +X axis of the RM_DRILL_POS_MOV frame; - +Z axis completes the right-handed frame; - the origin is located in the CLUPI image sensor optical centre. The CLUPI Optical Axis frame -- RM_CLUPI_OPT_AXIS -- is nominally parallel to the RM_CLUPI_BASE with a rotation such that the CLUPI boresight is along the +Z axis instead of the +Y axis. This frame is implemented to incorporate possible missalignments of the optical axis. The frame RM_CLUPI_OPT_AXIS is defined as follows: - +Z axis is the optical axis of CLUPI; - +X axis is nominally parallel to the +X axis of the RM_DRILL_TIP_MOV frame; - +Y axis completes the right-handed frame; - the origin is located in the CLUPI image sensor optical centre. The CLUPI Drill Tip mirror reference frame -- RM_CLUPI_DRILL_TIP --, provides the reflection direction of CLUPI's 2nd mirror. CLUPI's 2nd mirror (or drill mirror) is fixed on the drill box near the front end of the box and splits the FOV into two parts: (i) the main part, RM_CLUPI_FOV2, 2 is not deflected and looks in the direction of the optical axis of CLUPI and (ii) the smaller part of the sensor RM_CLUPI_FOV3, looks toward the drill tip. The RM_CLUPI_DRILL_TIP is defined as a fixed rotation of 54 degrees around the RM_CLUPI_OPT_AXIS frame. - +Y axis is nominally rotated a fixed angle of 54 degrees around the +X axis of the RM_CLUPI_OPT_AXIS frame; - +Z axis is the boresight of the mirrored portion of CLUPI's FOV (FOV3); - +X axis completes the right-handed frame; - the origin is located in the tip mirror reflecting point of CLUPI's FOV3 boresight. When the drill is in stowed position, the CLUPI FOV 1 is looking at the surface in front of the rover due to the first mirror (or bracket mirror), fixed on the rover bracket that holds the drill when in stowed position. The fixed orientation of CLUPI’s axis is toward the surface with an angle of 20 degrees with respect to the horizontal of the rover. To implement FOV1 we define the Rover Bracket Mirror frame as follows: - +Z axis is the boresight of CLUPI's mirrored FOV (FOV1); - +Y axis is parallel to the sensor pixel samples; - +X axis completes the right-handed frame; - the origin is located in the bracket mirror reflecting point of CLUPI's FOV1 boresight. The following diagrams illustrate the CLUPI frames: +X Rover side view (drill in discharge phase): ---------------------------------------------- o-o-=O===O--o |o|___| _\/ |_|_ |_| | | | | | | . | . ' \ | . ' \ _|_ . ' ^+dZpf. ' | . ' | . ' -----------------.o-. ' . | |------------------- | . '. '\ . ' | | | | | +Zopt, . ' \ \ . ' ^ | o------> +Ydpf +Ybas < '--. o. '\ |+Zrm | | .--. ' \ \ | | | ''--. .- . '===== \== v = o-----> ======| .-. +Ydtf <' =| \ +Zbas, +Yrm |=|___| |.-. v +Yopt .-.| || | +Zdtf | || +Xrm, +Xdtf, +Xopt `| | | |' and +Xbas are out '_' '_' of the page ~~~~~~~~ ~~~~~~~~ +X Rover side view (drill in hor. align. before discharge): ----------------------------------------------------------- - · - · - | _|_ +Zrm | | ^ - +Zopt <-------o--------|-------------------------- | | .'|'. -----|---------. | | '--- .'| | '. | |.--'--' .'--'-|----'.--|-------- '| +Zcdt V .--' v '> +Ycdt | '---. .-. |== +Yopt === o--------> ====| .-. |___|=| +Xrm | |+Yrm |=|___| |.-. .-.| || | | || +Xrm, +Xopt, +Zcdt `| | | |' are out of the '_' '_' page ~~~~~~~~ ~~~~~~~~ -Y Rover side view: ------------------- - · - · - | | +Zrm _|_ ^ | | | -------------------|------------------------------------- ,------------|------------. | | | o__| | | / | +Xrm | | /\___|__<---------o ____________. +Yrm is out / | | +Yrm | | of the page. /_------/ \-----__ / \.__ v |-----\_/----| | \__. | +Zbrk |. .| |. .| |. / |__| \ / |__| \ / |__| \ \ / \ / \ / `-..-' `-..-' `-..-' Relevant frames (for all diagrams): rm: RM_ROVER dtf: RM_DRILL_TIP_FIX opt: RM_CLUPI_OPT_AXIS bas: RM_CLUPI_BASE cdt: RM_CLUPI_DRILL_TIP brk: RM_CLUPI_BRACKET These sets of keywords define the CLUPI frames: \begindata FRAME_RM_CLUPI_BASE = -174600 FRAME_-174600_NAME = 'RM_CLUPI_BASE' FRAME_-174600_CLASS = 4 FRAME_-174600_CLASS_ID = -174600 FRAME_-174600_CENTER = -174600 TKFRAME_-174600_RELATIVE = 'RM_DRILL_POS_MOV' TKFRAME_-174600_SPEC = 'ANGLES' TKFRAME_-174600_UNITS = 'DEGREES' TKFRAME_-174600_AXES = ( 1, 2, 3 ) TKFRAME_-174600_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_RM_CLUPI_OPT_AXIS = -174610 FRAME_-174610_NAME = 'RM_CLUPI_OPT_AXIS' FRAME_-174610_CLASS = 4 FRAME_-174610_CLASS_ID = -174610 FRAME_-174610_CENTER = -174600 TKFRAME_-174610_RELATIVE = 'RM_CLUPI_BASE' TKFRAME_-174610_SPEC = 'ANGLES' TKFRAME_-174610_UNITS = 'DEGREES' TKFRAME_-174610_AXES = ( 3, 2, 1 ) TKFRAME_-174610_ANGLES = ( 0.0, 0.0, -90.0 ) FRAME_RM_CLUPI_DRILL_TIP = -174620 FRAME_-174620_NAME = 'RM_CLUPI_DRILL_TIP' FRAME_-174620_CLASS = 4 FRAME_-174620_CLASS_ID = -174620 FRAME_-174620_CENTER = -174620 TKFRAME_-174620_RELATIVE = 'RM_CLUPI_OPT_AXIS' TKFRAME_-174620_SPEC = 'ANGLES' TKFRAME_-174620_UNITS = 'DEGREES' TKFRAME_-174620_AXES = ( 3, 2, 1 ) TKFRAME_-174620_ANGLES = ( 0.0, 0.0, -54.0 ) FRAME_RM_CLUPI_BRACKET = -174630 FRAME_-174630_NAME = 'RM_CLUPI_BRACKET' FRAME_-174630_CLASS = 4 FRAME_-174630_CLASS_ID = -174630 FRAME_-174630_CENTER = -174630 TKFRAME_-174630_RELATIVE = 'RM_DRILL_POS_FIX' TKFRAME_-174630_SPEC = 'ANGLES' TKFRAME_-174630_UNITS = 'DEGREES' TKFRAME_-174630_AXES = ( 3, 2, 1 ) TKFRAME_-174630_ANGLES = ( 0.0, -160.0, 0.0 ) \begintext RM NAIF ID Codes -- Definitions =============================================================================== This section contains name to NAIF ID mappings for the ExoMarsRSP RM mission. Once the contents of this file is loaded into the KERNEL POOL, these mappings become available within SPICE, making it possible to use names instead of ID code in the high level SPICE routine calls. Name ID Synonyms --------------------- ------- ----------------------- Rover: ----------- RM -174 EXOMARS RSP ROVER MODULE EXOMARS RSP RM EXOMARS RSP ROVER EXOMARS ROVER RM_ROVER -174000 RM_MAST -174011 RM_PTR -174013 RM_PB -174014 RM_NAVCAM -174020 RM_NAVCAM_L -174021 RM_NAVCAM_R -174022 RM_LOCCAM -174030 RM_LOCCAM_L -174031 RM_LOCCAM_R -174031 RM_DRILL_POS_FIX -174040 RM_DRILL_POS_MOV -174041 RM_DRILL_TIP_FIX -174042 RM_DRILL_TIP_MOV -174043 RM_ALD -174050 RM_ALD_CSTM -174051 RM_ALD_CSTM_FIX -174052 RM_ALD_CSTM_MOV -174053 RM_ALD_PSDDS -174055 RM_ALD_PSHS -174058 RM_SA1_PRI -174062 RM_SA1_SEC -174063 RM_SA2_PRI -174065 RM_SA2_SEC -174066 RM_BOGIE_LF -174071 RM_BOGIE_RF -174074 RM_BOGIE_MR -174076 RM_STEER_LF -174091 RM_STEER_LM -174092 RM_STEER_RF -174093 RM_STEER_RM -174094 RM_STEER_LR -174095 RM_STEER_RR -174096 RM_WHEEL_LF -174081 RM_WHEEL_LM -174082 RM_WHEEL_RF -174083 RM_WHEEL_RM -174084 RM_WHEEL_LR -174085 RM_WHEEL_RR -174086 The mappings summarized in this table are implemented by the keywords below. \begindata NAIF_BODY_NAME += ( 'RM' ) NAIF_BODY_CODE += ( -174 ) NAIF_BODY_NAME += ( 'EXOMARS RSP ROVER MODULE' ) NAIF_BODY_CODE += ( -174 ) NAIF_BODY_NAME += ( 'EXOMARS RSP RM' ) NAIF_BODY_CODE += ( -174 ) NAIF_BODY_NAME += ( 'EXOMARS RSP ROVER' ) NAIF_BODY_CODE += ( -174 ) NAIF_BODY_NAME += ( 'EXOMARS ROVER' ) NAIF_BODY_CODE += ( -174 ) NAIF_BODY_NAME += ( 'RM_ROVER' ) NAIF_BODY_CODE += ( -174000 ) NAIF_BODY_NAME += ( 'RM_SITE_DISPOSAL' ) NAIF_BODY_CODE += ( -174900 ) NAIF_BODY_NAME += ( 'RM_MAST_ZERO' ) NAIF_BODY_CODE += ( -174010 ) NAIF_BODY_NAME += ( 'RM_MAST' ) NAIF_BODY_CODE += ( -174011 ) NAIF_BODY_NAME += ( 'RM_PTR_ZERO' ) NAIF_BODY_CODE += ( -174012 ) NAIF_BODY_NAME += ( 'RM_PTR' ) NAIF_BODY_CODE += ( -174013 ) NAIF_BODY_NAME += ( 'RM_NAVCAM' ) NAIF_BODY_CODE += ( -174020 ) NAIF_BODY_NAME += ( 'RM_NAVCAM_L' ) NAIF_BODY_CODE += ( -174021 ) NAIF_BODY_NAME += ( 'RM_NAVCAM_R' ) NAIF_BODY_CODE += ( -174022 ) NAIF_BODY_NAME += ( 'RM_LOCCAM' ) NAIF_BODY_CODE += ( -174030 ) NAIF_BODY_NAME += ( 'RM_LOCCAM_L' ) NAIF_BODY_CODE += ( -174031 ) NAIF_BODY_NAME += ( 'RM_LOCCAM_R' ) NAIF_BODY_CODE += ( -174032 ) NAIF_BODY_NAME += ( 'RM_DRILL_POS_FIX' ) NAIF_BODY_CODE += ( -174040 ) NAIF_BODY_NAME += ( 'RM_DRILL_POS_MOV' ) NAIF_BODY_CODE += ( -174041 ) NAIF_BODY_NAME += ( 'RM_DRILL_TIP_FIX' ) NAIF_BODY_CODE += ( -174042 ) NAIF_BODY_NAME += ( 'RM_DRILL_TIP_MOV' ) NAIF_BODY_CODE += ( -174043 ) NAIF_BODY_NAME += ( 'RM_ALD' ) NAIF_BODY_CODE += ( -174050 ) NAIF_BODY_NAME += ( 'RM_ALD_CSTM' ) NAIF_BODY_CODE += ( -174051 ) NAIF_BODY_NAME += ( 'RM_ALD_CSTM_FIX' ) NAIF_BODY_CODE += ( -174052 ) NAIF_BODY_NAME += ( 'RM_ALD_CSTM_MOV' ) NAIF_BODY_CODE += ( -174053 ) NAIF_BODY_NAME += ( 'RM_ALD_PSDDS' ) NAIF_BODY_CODE += ( -174055 ) NAIF_BODY_NAME += ( 'RM_ALD_PSHS' ) NAIF_BODY_CODE += ( -174058 ) NAIF_BODY_NAME += ( 'RM_SA1_PRI' ) NAIF_BODY_CODE += ( -174062 ) NAIF_BODY_NAME += ( 'RM_SA1_SEC' ) NAIF_BODY_CODE += ( -174063 ) NAIF_BODY_NAME += ( 'RM_SA2_PRI' ) NAIF_BODY_CODE += ( -174065 ) NAIF_BODY_NAME += ( 'RM_SA2_SEC' ) NAIF_BODY_CODE += ( -174066 ) NAIF_BODY_NAME += ( 'RM_BOGIE_LF' ) NAIF_BODY_CODE += ( -174071 ) NAIF_BODY_NAME += ( 'RM_BOGIE_RF' ) NAIF_BODY_CODE += ( -174074 ) NAIF_BODY_NAME += ( 'RM_BOGIE_MR' ) NAIF_BODY_CODE += ( -174076 ) NAIF_BODY_NAME += ( 'RM_STEER_LF' ) NAIF_BODY_CODE += ( -174091 ) NAIF_BODY_NAME += ( 'RM_STEER_LM' ) NAIF_BODY_CODE += ( -174092 ) NAIF_BODY_NAME += ( 'RM_STEER_RF' ) NAIF_BODY_CODE += ( -174093 ) NAIF_BODY_NAME += ( 'RM_STEER_RM' ) NAIF_BODY_CODE += ( -174094 ) NAIF_BODY_NAME += ( 'RM_STEER_LR' ) NAIF_BODY_CODE += ( -174095 ) NAIF_BODY_NAME += ( 'RM_STEER_RR' ) NAIF_BODY_CODE += ( -174096 ) NAIF_BODY_NAME += ( 'RM_WHEEL_LF' ) NAIF_BODY_CODE += ( -174081 ) NAIF_BODY_NAME += ( 'RM_WHEEL_LM' ) NAIF_BODY_CODE += ( -174082 ) NAIF_BODY_NAME += ( 'RM_WHEEL_RF' ) NAIF_BODY_CODE += ( -174083 ) NAIF_BODY_NAME += ( 'RM_WHEEL_RM' ) NAIF_BODY_CODE += ( -174084 ) NAIF_BODY_NAME += ( 'RM_WHEEL_LR' ) NAIF_BODY_CODE += ( -174085 ) NAIF_BODY_NAME += ( 'RM_WHEEL_RR' ) NAIF_BODY_CODE += ( -174086 ) \begintext PanCam: ----------- RM_PANCAM -174100 RM_PANCAM_WAC_L -174110 RM_PANCAM_WAC_R -174120 RM_PANCAM_HRC -174130 The mappings summarised in this table are implemented by the keywords below. \begindata NAIF_BODY_NAME += ( 'RM_PANCAM' ) NAIF_BODY_CODE += ( -174100 ) NAIF_BODY_NAME += ( 'RM_PANCAM_WAC_L' ) NAIF_BODY_CODE += ( -174110 ) NAIF_BODY_NAME += ( 'RM_PANCAM_WAC_R' ) NAIF_BODY_CODE += ( -174120 ) NAIF_BODY_NAME += ( 'RM_PANCAM_HRC' ) NAIF_BODY_CODE += ( -174130 ) \begintext ISEM: ----------- RM_ISEM -174200 The mappings summarised in this table are implemented by the keywords below. \begindata NAIF_BODY_NAME += ( 'RM_ISEM' ) NAIF_BODY_CODE += ( -174200 ) \begintext ADRON-RM: ----------- RM_ADRON-RM -174300 The mappings summarised in this table are implemented by the keywords below. \begindata NAIF_BODY_NAME += ( 'RM_ADRON-RM' ) NAIF_BODY_CODE += ( -174300 ) \begintext WISDOM: ----------- RM_WISDOM -174400 RM_WISDOM_ANT1 -174410 RM_WISDOM_ANT1 -174410 The mappings summarised in this table are implemented by the keywords below. \begindata NAIF_BODY_NAME += ( 'RM_WISDOM' ) NAIF_BODY_CODE += ( -174400 ) NAIF_BODY_NAME += ( 'RM_WISDOM_ANT1' ) NAIF_BODY_CODE += ( -174410 ) NAIF_BODY_NAME += ( 'RM_WISDOM_ANT2' ) NAIF_BODY_CODE += ( -174420 ) \begintext MaMiss: ----------- RM_MAMISS -174500 The mappings summarised in this table are implemented by the keywords below. \begindata NAIF_BODY_NAME += ( 'RM_MAMISS' ) NAIF_BODY_CODE += ( -174500 ) \begintext CLUPI: ----------- RM_CLUPI -174600 RM_CLUPI_FOV1 -174601 RM_CLUPI_FOV2 -174602 RM_CLUPI_FOV3 -174603 RM_CLUPI_DRILL_TIP -174620 RM_CLUPI_BRACKET -174630 The mappings summarised in this table are implemented by the keywords below. \begindata NAIF_BODY_NAME += ( 'RM_CLUPI' ) NAIF_BODY_CODE += ( -174600 ) NAIF_BODY_NAME += ( 'RM_CLUPI_FOV1' ) NAIF_BODY_CODE += ( -174601 ) NAIF_BODY_NAME += ( 'RM_CLUPI_FOV2' ) NAIF_BODY_CODE += ( -174602 ) NAIF_BODY_NAME += ( 'RM_CLUPI_FOV3' ) NAIF_BODY_CODE += ( -174603 ) NAIF_BODY_NAME += ( 'RM_CLUPI_DRILL_TIP' ) NAIF_BODY_CODE += ( -174620 ) NAIF_BODY_NAME += ( 'RM_CLUPI_BRACKET' ) NAIF_BODY_CODE += ( -174630 ) \begintext Sites: ----------- RM_SITE_000 -174700 (synonym: RM_LANDING_SITE) RM_SITE_NNN -174XXX The mappings summarised in this table are implemented by the keywords below. \begindata NAIF_BODY_NAME += ( 'RM_SITE_000' ) NAIF_BODY_CODE += ( -174700 ) NAIF_BODY_NAME += ( 'RM_LANDING_SITE' ) NAIF_BODY_CODE += ( -174700 ) NAIF_BODY_NAME += ( 'RM_SITE_001' ) NAIF_BODY_CODE += ( -174701 ) NAIF_BODY_NAME += ( 'RM_SITE_002' ) NAIF_BODY_CODE += ( -174702 ) NAIF_BODY_NAME += ( 'RM_SITE_003' ) NAIF_BODY_CODE += ( -174703 ) NAIF_BODY_NAME += ( 'RM_SITE_004' ) NAIF_BODY_CODE += ( -174704 ) NAIF_BODY_NAME += ( 'RM_SITE_005' ) NAIF_BODY_CODE += ( -174705 ) NAIF_BODY_NAME += ( 'RM_SITE_006' ) NAIF_BODY_CODE += ( -174706 ) NAIF_BODY_NAME += ( 'RM_SITE_007' ) NAIF_BODY_CODE += ( -174707 ) NAIF_BODY_NAME += ( 'RM_SITE_008' ) NAIF_BODY_CODE += ( -174708 ) NAIF_BODY_NAME += ( 'RM_SITE_009' ) NAIF_BODY_CODE += ( -174709 ) NAIF_BODY_NAME += ( 'RM_SITE_010' ) NAIF_BODY_CODE += ( -174710 ) NAIF_BODY_NAME += ( 'RM_SITE_011' ) NAIF_BODY_CODE += ( -174711 ) NAIF_BODY_NAME += ( 'RM_SITE_012' ) NAIF_BODY_CODE += ( -174712 ) NAIF_BODY_NAME += ( 'RM_SITE_013' ) NAIF_BODY_CODE += ( -174713 ) NAIF_BODY_NAME += ( 'RM_SITE_014' ) NAIF_BODY_CODE += ( -174714 ) NAIF_BODY_NAME += ( 'RM_SITE_015' ) NAIF_BODY_CODE += ( -174715 ) NAIF_BODY_NAME += ( 'RM_SITE_016' ) NAIF_BODY_CODE += ( -174716 ) \begintext End of FK file.