KPL/FK Trace Gas Orbiter (TGO) Spacecraft Frames Kernel =============================================================================== This frame kernel contains a complete set of frame definitions for the ExoMars 2016 Trace Gas Orbiter Spacecraft (TGO) including definitions for the TGO structures and TGO science instrument frames. This kernel also contains NAIF ID/name mapping for the TGO instruments. Version and Date ------------------------------------------------------------------------ Version 2.3 -- July 9, 2021 -- Ricardo Valles Blanco, ESAC/ESA Marc Costa Sitja, NAIF/JPL Added missing TGO_SA+Z and TGO_SA-Z NAIF ID Codes to 'TGO NAIF ID Codes -- Summary Section'. Corrected typos and reformatted text. Updated TIRVIM scanner reference frames and descriptions. Version 2.2 -- April 7, 2021 -- Ricardo Valles Blanco, ESAC/ESA Fixed typos for PDS4 Bundle release Version 3.0, and updated contact information. Version 2.1 -- November 5, 2020 -- Alfredo Escalante Lopez, ESAC/ESA Marc Costa Sitja, ESAC/ESA Added ephemeris points for TGO S/C Bus. Corrected fixed frames for TIRVIM scanner occultation, space and Sun channel. Corrected typos in NOMAD description. Version 2.0 -- September 24, 2020 -- Marc Costa Sitja, ESAC/ESA Alfredo Escalante Lopez, ESAC/ESA Updated several TGO structures centers for DSK Surfaces. Version 1.9 -- March 4, 2020 -- Marc Costa Sitja, ESAC/ESA Added several TGO structures NAIF IDs and body names. Version 1.8 -- August 8, 2019 -- Marc Costa Sitja, ESAC/ESA Boris Semenov, NAIF/JPL Corrected TGO_ACS_TIRVIM_SCAN_BASE frame to TGO_ACS_TIRVIM_SCAN. Removed TGO_NOMAD_LNO_SCAN references in favour of TGO_NOMAD_LNO_FMM. Renamed TGO_ACS_TIRVIM_SCAN_OCC_BSR references to TGO_ACS_TIRVIM_SCAN_OCC_BS. Corrected several typos and diagrams. Version 1.7 -- March 6, 2019 -- Marc Costa Sitja, ESAC/ESA Marty Jean-Charles, CNES Updated SA+Z_ZERO and SA-Z_ZERO frames; the normal of the SA was antiparallel to the Sun vector. Version 1.6 -- July 3, 2018 -- Marc Costa Sitja, ESAC/ESA Nikolay Ignatiev, IKI Corrected typo in TGO_ACS_TIRVIM_SUN frame definition and added TGO_ACS_TIRVIM_SUN_BSR ID. Version 1.5 -- June 18, 2018 -- Marc Costa Sitja, ESAC/ESA Updated NOMAD UVIS Occultation and NOMAD SO Boresight alignments. Version 1.4 -- May 15, 2018 -- Stepanov Tulyakov, EPFL Marc Costa Sitja, ESAC/ESA Updated CaSSIS rotations of CRU with respect to SC and FSA with respect to TEL. Added LGAs reference frames, corrected STR IDs and added Structures IDs. Version 1.3 -- March 29, 2018 -- Marc Costa Sitja, ESAC/ESA Boris Semenov, NAIF/JPL Added Star Tracker reference frames and spacecraft reference frame for planning CKs. Version 1.2 -- July 20, 2017 -- Marc Costa Sitja, ESAC/ESA Corrected typo in NOMAD UVIS reference frame. Version 1.1 -- July 20, 2017 -- Marc Costa Sitja, ESAC/ESA Bernhard Geiger, ESAC/ESA Updated ACS frame definitions, added TIRVIM frames and implemented boresight misalignments. Corrected typos in NOMAD frame and ID descriptions. Version 1.0 -- January 15, 2017 -- Marc Costa Sitja, ESAC/ESA Corrected several HGA IDs from -226 to -143. Version 0.9 -- December 15, 2016 -- Marc Costa Sitja, ESAC/ESA Updated NOMAD_SO definitions with Alejandro Cardesin. Version 0.8 -- September 26, 2016 -- Marc Costa Sitja, ESAC/ESA Corrected NOMAD UVIS Nadir Boresight misalignment. Renamed the NOMAD LNO Scan mirror frame (TGO_NOMAD_LNO_SCAN) to NOMAD LNO Flip Mirror Mechanism frame (TGO_NOMAD_LNO_FMM). Renamed the NOMAD LNO nadir and occultation frames (TGO_NOMAD_LNO_*) to NOMAD LNO nadir and occultation operations frames (TGO_NOMAD_LNO_OPS_*). Minor edits to some text after NOMAD instrument team review. Added reference [18]. Version 0.7 -- August 11, 2016 -- Marc Costa Sitja, ESAC/ESA Bernhard Geiger, ESAC/ESA Alejandro Cardesin, ESAC/ESA Added references [13], [14], [15], [16] and [17]. Updated Spacecraft drawings with Main Engine. Corrected TGO Solar Array Frames and TGO High Gain Antenna definitions as described in reference [13]. Separated the ACS NIR and the TRIVIM frames definitions sections. Corrected rotation of the CaSSIS Filter Strip Assembly Frame. Updated the NAIF IDs for CaSSIS definitions. Corrected several typos and updated text and diagram information. Updated NOMAD frames orientation with information provided by I. Thomas ([15]). Removed references to flip/scanning mirror in ACS NIR channel frame definitions. Updated ACS frames orientation with information provided by A. Trokhimovskiy ([16]). Corrected TGO_ACS_TIRVIM_SCAN frame definition. Version 0.6 -- June 6, 2016 -- Jorge Diaz del Rio, ODC Space Updated comments to exchange the Science Operations Frame Definitions Kernel file name by the description of the data. Version 0.5 -- May 31, 2016 -- Jorge Diaz del Rio, ODC Space TGO_SA*_GIMBAL frame renamed to TGO_SA*_ZERO. Corrected typos in comments. Added ``EXOMARS 2016 TGO'' and ``TRACE GAS ORBITER'' as synonyms for TGO. Version 0.4 -- May 20, 2016 -- Jorge Diaz del Rio, ODC Space Anton Ledkov, IKI Preliminary Version. Added ACS and NOMAD frames. Modified FREND frame chain upon request from FREND Instrument Team. Corrected CaSSIS CRU and FSA frames orientations. Added CaSSIS filter name/ID mappings. Added SA and HGA frames. Added list of science operations frames. Version 0.3 -- March 17, 2016 -- Jorge Diaz del Rio, ODC Space Preliminary Version. Corrected rotations in TGO_CASSIS_CRU and in TGO_CASSIS_FSA frame definitions. Added FREND frames. Version 0.2 -- March 11, 2016 -- Jorge Diaz del Rio, ODC Space Preliminary Version. Added CaSSIS frames. Version 0.1 -- January 26, 2016 -- Jorge Diaz del Rio, ODC Space Preliminary Version. Added TGO_SPACECRAFT frame for its use with test CK kernel. Version 0.0 -- December 17, 2015 -- Jorge Diaz del Rio, ODC Space Preliminary Version. Only TGO Name to NAIF ID mappings for their use with test SPK kernel. Version 0.0-draft -- May 26, 2015 -- Anton Ledkov, IKI Draft Version. References ------------------------------------------------------------------------ 1. ``Frames Required Reading'', NAIF 2. ``Kernel Pool Required Reading'', NAIF 3. ``C-Kernel Required Reading'', NAIF 4. ``ExoMars: Science Operations Centre - Flight Dynamics - Pointing Timeline-ICD,'' EXM-GS-ICD-ESC-50003, Issue 1.4, 15 December 2015 5. ``CaSSIS Rotation Axis Determination Report'', EXM-CA-TRE-UBE-00112 Issue 0.7, 1 March 2016 6. ``The Color and Stereo Surface Imaging System (CaSSIS) for ESA's Trace Gas Orbiter.'' Eighth International Conference on Mars (2014) N. Thomas et al. 7. ``FREND Mechanical ICD Drawings,'' EXM-FR-DRW-IKI-0020, Issue 1.2, 1 March 2015 8. Email from FREND PM (Alexey Malakhov) on March 17, 2016 (Re. TGO FREND FK/IK approach) 9. ``High Resolution Middle Infrared Spectrometer, a Part of Atmospheric Chemistry Suite (ACS) for ExoMars 2016 Trace Gas Orbiter'', International Conference on Space Optics, Tenerife 7-10 October 2014 10. ``NOMAD Experiment ICD'', EXM-PL-ICD-ESA-00025, Issue 2.7 2014-09-23 11. ``Atmospheric Chemistry Suite (ACS): a Set of Infrared Spectrometers for Atmospheric Measurements onboard ExoMars Trace Gas Orbiter'', A. Trokhimovskiy et al. 12. TGO Science Operations Frames Definition Kernel, latest version. 13. ``EXOMARS OMB frame definitions and conventions'', EXM-OM-TNO-AF-0361, Issue 3, 2011-10-14, Thales Alenia Space. 14. ``EXOMARS Spacecraft Mechanical Interface Control Document'', EXM-MS-ICD-AI-0019, Issue 12, 2015-08-10, Thales Alenia Space. 15. Email from Ian Thomas ``[EM16-SOC] [TGO] [SGS] [EM16.NOMAD] SPICE review and misalignment update by 25th July'' on 25 July 2016. 16. Email from Alexander Trokhimovskiy ``Re: [EM16-SOC] [TGO] [SGS] [EM16.ACS] [EM16.NOMAD] SPICE review and misalignment update by 25th July'' on 27 July 2016. 17. Email from Alexander Trokhimovskiy ``Re: [EM16-SOC] [TGO] [SGS] [EM16.ACS] [EM16.NOMAD] SPICE review and misalignment update by 25th July'' on 11 August 2016. 18. Email from Ian Thomas ``UVIS Nadir Boresight Correction'' on 16 September 2016. 19. ``Boresight Alignment'', ExoMars 2016 Confluence Page, https://issues.cosmos.esa.int/exomarswiki/display/OE/Boresight+Alignment Bernhard Geiger (ESAC/ESA), accessed on 19th July 2017. 20. Email from Bernhard Geiger (ESAC/ESA) ``TGO Star Tracker boresights and frames'' on 7th November 2017. 21. ``ICD, EXOMARS HGA-A'', EXM-OM-ICD-MDA-0041-7, Louis-Philippe Lebel, MacDonald, Dettwiler and Associates Corporation on 21st January 2015. 22. Email from Ian Thomas ``New SO and UVIS solar boresight vectors' on 13 June 2018. Contact Information ------------------------------------------------------------------------ If you have any questions regarding this file contact the ESA SPICE Service (ESS) at ESAC: Alfredo Escalante Lopez (+34) 91-8131-429 spice@sciops.esa.int, or SPICE support at IKI: Alexander Abbakumov +7 (495) 333-40-13 aabbakumov@romance.iki.rssi.ru or NAIF at JPL: Boris Semenov +1 (818) 354-8136 Boris.Semenov@jpl.nasa.gov Implementation Notes ------------------------------------------------------------------------ This file is used by the SPICE system as follows: programs that make use of this frame kernel must "load" the kernel normally during program initialization. Loading the kernel associates the data items with their names in a data structure called the "kernel pool". The SPICELIB routine FURNSH loads a kernel into the pool as shown below: FORTRAN: (SPICELIB) CALL FURNSH ( frame_kernel_name ) C: (CSPICE) furnsh_c ( frame_kernel_name ); IDL: (ICY) cspice_furnsh, frame_kernel_name MATLAB: (MICE) cspice_furnsh ( 'frame_kernel_name' ) PYTHON: (SPICEYPY)* furnsh( frame_kernel_name ) In order for a program or routine to extract data from the pool, the SPICELIB routines GDPOOL, GIPOOL, and GCPOOL are used. See [2] for more details. This file was created and may be updated with a text editor or word processor. * SPICEYPY is a non-official, community developed Python wrapper for the NAIF SPICE toolkit. Its development is managed on Github. It is available at: https://github.com/AndrewAnnex/SpiceyPy TGO NAIF ID Codes -- Summary Section ------------------------------------------------------------------------ The following names and NAIF ID codes are assigned to the TGO spacecraft, its structures and science instruments (the keywords implementing these definitions are located in the section "TGO NAIF ID Codes -- Definition Section" at the end of this file): TGO Spacecraft and Spacecraft Structures names/IDs: TGO -143 (synonyms: TRACE GAS ORBITER, EXOMARS TGO, and EXOMARS 2016 TGO) TGO_SPACECRAFT -143000 TGO_SPACECRAFT_C1 -143501 TGO_SPACECRAFT_C2 -143502 TGO_SPACECRAFT_C3 -143503 TGO_SPACECRAFT_C4 -143504 TGO_SPACECRAFT_C5 -143505 TGO_SPACECRAFT_C6 -143506 TGO_SPACECRAFT_C7 -143507 TGO_SPACECRAFT_C8 -143508 TGO_SPACECRAFT_C9 -143509 TGO_SPACECRAFT_C10 -143510 TGO_SPACECRAFT_C11 -143511 TGO_SPACECRAFT_C12 -143512 TGO_HGA_STOWED -143020 TGO_HGA_APM -143022 TGO_HGA -143025 TGO_LGA+Z -143031 TGO_LGA-Z -143032 TGO_LGA+X -143033 TGO_STR-1 -143041 TGO_STR-2 -143042 TGO_SA+Z_GIMBAL -143060 TGO_SA+Z -143011 TGO_SA+Z_C1 -143061 TGO_SA+Z_C2 -143062 TGO_SA+Z_C3 -143063 TGO_SA+Z_C4 -143064 TGO_SA-Z_GIMBAL -143070 TGO_SA-Z -143013 TGO_SA-Z_C1 -143071 TGO_SA-Z_C2 -143072 TGO_SA-Z_C3 -143073 TGO_SA-Z_C4 -143074 ACS names/IDs: TGO_ACS -143100 TGO_ACS_NIR_NAD -143111 TGO_ACS_NIR_OCC -143112 TGO_ACS_MIR -143120 TGO_ACS_TIRVIM -143130 TGO_ACS_TIRVIM_BBY -143131 TGO_ACS_TIRVIM_SPC -143132 TGO_ACS_TIRVIM_NAD -143133 TGO_ACS_TIRVIM_OCC -143134 TGO_ACS_TIRVIM_SUN -143140 FREND names/IDs: TGO_FREND -143200 TGO_FREND_HE -143210 TGO_FREND_SC -143220 NOMAD names/IDs: TGO_NOMAD -143300 TGO_NOMAD_LNO -143310 TGO_NOMAD_LNO_OPS_NAD -143311 TGO_NOMAD_LNO_OPS_OCC -143312 TGO_NOMAD_SO -143320 TGO_NOMAD_UVIS_NAD -143331 TGO_NOMAD_UVIS_OCC -143332 CaSSIS names/IDs: TGO_CASSIS -143400 TGO_CASSIS_PAN -143421 TGO_CASSIS_RED -143422 TGO_CASSIS_NIR -143423 TGO_CASSIS_BLU -143424 TGO Frames ------------------------------------------------------------------------ The following TGO frames are defined in this kernel file: Name Relative to Type NAIF ID ====================== ========================== ======= ======= TGO Spacecraft and Spacecraft Structures frames: ------------------------------------------------ TGO_SPACECRAFT J2000, CK -143000 TGO_SPACECRAFT_PLAN TGO_SPACECRAFT_PLAN J2000 CK -143002 TGO_SA+Z_ZERO TGO_SPACECRAFT FIXED -143010 TGO_SA+Z TGO_SA+Z_ZERO CK -143011 TGO_SA-Z_ZERO TGO_SPACECRAFT FIXED -143012 TGO_SA-Z TGO_SA-Z_ZERO CK -143013 TGO_HGA_EL TGO_SPACECRAFT CK -143021 TGO_HGA_AZ TGO_HGA_EL CK -143022 TGO_HGA TGO_HGA_AZ FIXED -143025 TGO_LGA+Z TGO_SPACECRAFT FIXED -143031 TGO_LGA-Z TGO_SPACECRAFT FIXED -143032 TGO_LGA-X TGO_SPACECRAFT FIXED -143033 TGO_STR-1 TGO_SPACECRAFT FIXED -143041 TGO_STR-2 TGO_SPACECRAFT FIXED -143042 ACS frames: ----------- TGO_ACS_NIR_BASE TGO_SPACECRAFT FIXED -143100 TGO_ACS_NIR_NAD TGO_ACS_NIR_BASE FIXED -143111 TGO_ACS_NIR_OCC TGO_ACS_NIR_BASE FIXED -143112 TGO_ACS_MIR TGO_SPACECRAFT FIXED -143120 TGO_ACS_TIRVIM_BASE TGO_SPACECRAFT FIXED -143105 TGO_ACS_TIRVIM_SCAN_ROT TGO_ACS_TIRVIM_BASE FIXED -143106 TGO_ACS_TIRVIM_SCAN TGO_ACS_TIRVIM_SCAN_ROT CK -143107 TGO_ACS_TIRVIM TGO_ACS_TIRVIM_SCAN FIXED -143130 TGO_ACS_TIRVIM_SCAN_BBY TGO_ACS_TIRVIM_BASE FIXED -143131 TGO_ACS_TIRVIM_SCAN_SPC TGO_ACS_TIRVIM_BASE FIXED -143132 TGO_ACS_TIRVIM_SCAN_NAD TGO_ACS_TIRVIM_BASE FIXED -143133 TGO_ACS_TIRVIM_SCAN_OCC TGO_ACS_TIRVIM_BASE FIXED -143134 TGO_ACS_TIRVIM_SCAN_OCC_BS TGO_ACS_TIRVIM_BASE FIXED -143135 TGO_ACS_TIRVIM_SUN TGO_ACS_TIRVIM_BASE FIXED -143140 TGO_ACS_TIRVIM_SUN_BSR TGO_ACS_TIRVIM_BASE FIXED -143141 FREND frames: ------------- TGO_FREND TGO_SPACECRAFT FIXED -143200 NOMAD frames: ------------- TGO_NOMAD_LNO_BASE TGO_SPACECRAFT FIXED -143300 TGO_NOMAD_LNO_FMM TGO_NOMAD_LNO_BASE CK -143305 TGO_NOMAD_LNO TGO_NOMAD_LNO_BASE FIXED -143310 TGO_NOMAD_LNO_OPS_NAD TGO_NOMAD_LNO_BASE FIXED -143311 TGO_NOMAD_LNO_OPS_OCC TGO_NOMAD_LNO_BASE FIXED -143312 TGO_NOMAD_SO TGO_SPACECRAFT FIXED -143320 TGO_NOMAD_UVIS_BASE TGO_SPACECRAFT FIXED -143330 TGO_NOMAD_UVIS_NAD TGO_NOMAD_UVIS_BASE FIXED -143331 TGO_NOMAD_UVIS_OCC TGO_NOMAD_UVIS_BASE FIXED -143332 CaSSIS frames: -------------- TGO_CASSIS_CRU TGO_SPACECRAFT FIXED -143400 TGO_CASSIS_TEL TGO_CASSIS_CRU CK -143410 TGO_CASSIS_FSA TGO_CASSIS_TEL FIXED -143420 In addition, the following frames, in use by the ExoMars 2016 mission, are defined in another kernel: Name Relative to Type NAIF ID ====================== ========================== ======= ======= ExoMars 2016 mission science operations frames (1): --------------------------------------------------- TGO_MARS_NPO J2000 DYNAMIC -143900 (1) This frame is defined in the ExoMars 2016 Science Operations Frame Definitions kernel file (see [12]). This frame can be used 'as is' or to define default TGO attitude profiles. In order to use it for the latter together with this frames kernel, additional fixed-offset frames kernel(s) need to be loaded. See the section ``Using this frame'' in the comment area of this file for further details. ExoMars 2016 Frames Hierarchy -------------------------------------------------------------------------- The diagram below shows the ExoMars 2016 frames hierarchy (except for science operations frames): "J2000" INERTIAL +-----------------------------------------------------+ | | | | |<-pck | | |<-pck | | | | v | | v "IAU_MARS" | | "IAU_EARTH" MARS BODY-FIXED | |<-ck EARTH BODY-FIXED --------------- | | ---------------- | v "TGO_LGA+Z" "TGO_LGA+X" | "TGO_SPACECRAFT_PLAN" ----------- ----------- | --------------------- ^ ^ | | | | |<-ck |<-ck |<-fixed |<-fixed | | | | | | | "TGO_LGA-Z" | | | | ----------- | | | | ^ | | | | | | | | | |<-fixed | v v | | | "TGO_SPACECRAFT" +------------------------------------------------------------+ | | . | | | |<-fixed |<-fixed . |<-fixed |<-fixed ck->| | | . | | | v | . v v v "TGO_SA+Z_ZERO" | . "TGO_STR-1" "TGO_STR-2" "TGO_HGA_EL" --------------- | . ----------- ----------- ------------ | | . | |<-ck v . ck->| | "TGO_SA-Z_ZERO" . | v --------------- . v "TGO_SA+Z" | . "TGO_HGA_AZ" ---------- |<-ck . ------------ | . | v . fixed->| "TGO_SA-Z" . | ---------- . v . "TGO_HGA" . --------- V Individual instrument frame trees are provided in the other sections of this file Please refer to the ACS, CaSSIS, FREND and NOMAD sections for the frame hierarchy of each payload; and to the TGO science operations frame definitions kernel [12] for further details on these frame definitions. TGO Spacecraft and Spacecraft Structures Frames ------------------------------------------------------------------------ This section of the file contains the definitions of the spacecraft and spacecraft structures frames. DISCLAIMER: The origin of the frames specified in the following definitions are not implemented. The ``true'' origin of all frames is in the center of the TGO_SPACECRAFT frame, the center of which is defined by the position given by the SPK (ephemeris) kernel in use. TGO Spacecraft Frames -------------------------------------- According to [4] the TGO spacecraft reference frame -- TGO_SPACECRAFT -- is defined as follows: - +X axis is perpendicular to the launch vehicle interface plane and points towards the Schiaparelli Entry, Descent and Landing Demonstrator Module (EDM) attachment point; - -Y axis is perpendicular to the payload Science Deck and points towards the payload side; representing the reference spacecraft line of sight towards Mars during science operations; - +Z axis completes the right-handed frame. - the origin of this frame is located at the centre of the launch vehicle interface ring: at the bottom of the interface cylinder and the top of the launch vehicle specific interface frame. These diagrams illustrate the TGO_SPACECRAFT frame: -X S/C side (Main Engine side) view: ------------------------------------ ^ | toward Mars | Science Deck ._____________. .__ _______________. | | .______________ ___. | \ \ \ | | / \ \ | | / / \ | ___ | / / / | | \ \ +Zsc | / _ +Xsc | .' \ \ | | / / <--------x) |o | / / | | \ \ .' | \_|_/ | `. \ \ | | / / / | Main |Engine| \ / / | .__\ \_______________/ | (ME) | | \_______________\ \__. +Z Solar Array ._____ v +Ysc . -Z Solar Array ._____. .' `. / \ . `. .' . +Xsc is into | `o' | the page. . | . \ | / `. .' HGA ` --- ' -Y S/C side (Science Deck side) view: ------------------------------------- _____ / \ EDM | | ._____________. | | | | |nom| |acs| |___' '___| o==/ /==================o<| |>o==================/ /==o +Z Solar Array |--. .--| -Z Solar Array |ca| |fr| |--' +Xsc '--| | ^ | | | | | | | +Zsc .______|______. <-------x\ `. ME /______+Ysc_\ HGA `.|.' +Ysc is into the page. ``nom'' corresponds to ``NOMAD''; ``acs'' corresponds to ``ACS''; ``ca'' corresponds to ``CaSSIS''; and ``fr'' corresponds to ``FREND''. +Z S/C side view: ----------------- ._________________. | | ============o= | | SA+Z +Zsc_..--, | <-----o-..__| | +Xsc || ME ._________________.| o-o|/| \|V +Ysc o | : \ |/ \| HGA Since the S/C bus attitude with respect to an inertial frame is provided by a C-kernel (see [3] for more information), this frame is defined as a CK-based frame. These sets of keywords define the TGO_SPACECRAFT frame: \begindata FRAME_TGO_SPACECRAFT = -143000 FRAME_-143000_NAME = 'TGO_SPACECRAFT' FRAME_-143000_CLASS = 3 FRAME_-143000_CLASS_ID = -143000 FRAME_-143000_CENTER = -143000 CK_-143000_SCLK = -143 CK_-143000_SPK = -143000 OBJECT_-143_FRAME = 'TGO_SPACECRAFT' \begintext An additional S/C bus reference frame is defined in order to accommodate the C-kernels that have been generated with a fictional SCLK kernel. These CK kernels contain predicted data and are used for long and mid term planning. The before-mentioned CKs are generated with a fictional SCLK kernel due to the fact that successive updates of the real SCLK kernel will lead to erroneous results for the predicted data provided by those kernels after the last Time Correlation Packet that the real SCLK contains. The alternative of re-generating the planning CKs with the latest SCLK kernel is not considered. In order to be able to use the long and mid term planning CKs with the measured and short term planning CKs the planning CKs are generated with the fictional SCLK and are defined relative to the TGO spacecraft planning reference frame -- TGO_SPACECRAFT_PLAN --. Those planning CKs are then appended with a CK segment generated with the real SCLK that maps the TGO_SPACECRAFT_PLAN to the TGO_SPACECRAFT reference frame thus allowing to use both planning and measured CK files together with correct results. Note that when new SCLK are available the segment boundaries of the planning CKs will be affected. Due to this reason, the mapping segments boundaries are adjusted inwards by a minute on each side to get a better chance of them always being within the original CK segment boundaries. The TGO_SPACECRAFT_PLAN frame is defined as a CK-based frame. These sets of keywords define the TGO_SPACECRAFT_PLAN frame. \begindata FRAME_TGO_SPACECRAFT_PLAN = -143002 FRAME_-143002_NAME = 'TGO_SPACECRAFT_PLAN' FRAME_-143002_CLASS = 3 FRAME_-143002_CLASS_ID = -143002 FRAME_-143002_CENTER = -143 CK_-143002_SCLK = -143999 CK_-143002_SPK = -143000 \begintext TGO Solar Array Frames -------------------------------------------------------------------------- TGO solar arrays are articulated (having one degree of freedom), therefore the Solar Array frames, TGO_SA+Z and TGO_SA-Z, are defined as CK frames with their orientation given relative to TGO_SA+Z_ZERO and TGO_SA-Z_ZERO respectively. TGO_SA+Z_ZERO and TGO_SA-Z_ZERO are two ``fixed-offset'' frames, defined with respect to TGO_SPACECRAFT, as follows: - +Z is parallel to the longest side of the array, positively oriented from the yoke to the end of the wing; - +X is antiparallel to the spacecraft bus +X axis, pointing on the opposite direction to the EDM attachment side; - +Y completes the right-handed frame. - the origin of the frame is located at the yoke geometric center. Both Solar Array frames (TGO_SA+Z and TGO_SA-Z) are defined as follows: - +Z is parallel to the longest side of the array, positively oriented from the yoke to the end of the wing; - +X is normal to the solar array plane, the solar cells facing +X; - +Y completes the right-handed frame; - the origin of the frame is located at the yoke geometric center. The axis of rotation is parallel to the Z axis of the spacecraft and the solar array frames. This diagram illustrates the TGO_SA+Z_ZERO, TGO_SA+Z, TGO_SA-Z_ZERO and TGO_SA-Z frames: -X S/C side (Main Engine side) view: ------------------------------------ ^ | toward Mars | +Ysa+z0 Science Deck +Ysa+z ._____________. .__ _______________. ^| | .______________ ___. | \ \ \ || | / \ \ | | / / +Zsa+z0 \ || _ +Xsa-z0 / +Zsa-z0 / / | | \ \ +Zsa+z `.||+Zsc/ _ +Xsa-z.' +Zsa-z \ \ | | / / <-------o| <----x)+Xsc |o--------> / / | | \ \ .' +Xsa+z0|_/ ||`. \ \ | | / / / +Xsa+z | || \ / / | .__\ \_______________/ | v +Ysc |v \_______________\ \__. +Z Solar Array .____________+Ysa-z0 -Z Solar Array +Zsc ._____. +Ysa-z0 .' `. / \ . `. .' . +Xsc is into the page; | `o' | +Xsa+z, +Xsa+z0, . | . +Xsa-z and +Xsa-z0 are \ | / out of the page. `. .' HGA ` --- ' These sets of keywords define solar array frames: \begindata FRAME_TGO_SA+Z_ZERO = -143010 FRAME_-143010_NAME = 'TGO_SA+Z_ZERO' FRAME_-143010_CLASS = 4 FRAME_-143010_CLASS_ID = -143010 FRAME_-143010_CENTER = -143060 TKFRAME_-143010_RELATIVE = 'TGO_SPACECRAFT' TKFRAME_-143010_SPEC = 'ANGLES' TKFRAME_-143010_UNITS = 'DEGREES' TKFRAME_-143010_AXES = ( 3, 1, 2 ) TKFRAME_-143010_ANGLES = ( 180.0, 0.0, 0.0 ) FRAME_TGO_SA+Z = -143011 FRAME_-143011_NAME = 'TGO_SA+Z' FRAME_-143011_CLASS = 3 FRAME_-143011_CLASS_ID = -143011 FRAME_-143011_CENTER = -143011 CK_-143011_SCLK = -143 CK_-143011_SPK = -143011 FRAME_TGO_SA-Z_ZERO = -143012 FRAME_-143012_NAME = 'TGO_SA-Z_ZERO' FRAME_-143012_CLASS = 4 FRAME_-143012_CLASS_ID = -143012 FRAME_-143012_CENTER = -143070 TKFRAME_-143012_RELATIVE = 'TGO_SPACECRAFT' TKFRAME_-143012_SPEC = 'ANGLES' TKFRAME_-143012_UNITS = 'DEGREES' TKFRAME_-143012_AXES = ( 1, 2, 3 ) TKFRAME_-143012_ANGLES = ( 180.0, 0.0, 180.0 ) FRAME_TGO_SA-Z = -143013 FRAME_-143013_NAME = 'TGO_SA-Z' FRAME_-143013_CLASS = 3 FRAME_-143013_CLASS_ID = -143013 FRAME_-143013_CENTER = -143013 CK_-143013_SCLK = -143 CK_-143013_SPK = -143013 \begintext TGO High Gain Antenna Frame --------------------------- The TGO High Gain Antenna is attached to the +Y panel of the S/C bus in the corner with the -X panel by a gimbal providing two degrees of freedom and it articulates during flight to track Earth. To incorporate rotations in the gimbal the HGA frame chain includes three frames: TGO_HGA_EL, TGO_HGA_AZ, and TGO_HGA. The first two frames are defined as CK-based frames and are co-aligned with the spacecraft frame in the zero gimbal position. In a non-zero position the TGO_HGA_EL is rotated from the spacecraft frame by an elevation angle about +Y and the TGO_TGO_AZ frame is rotated from the TGO_HGA_EL frame by an azimuth angle about +Z. These rotations are stored in separated segments in CK files. In [21] TGO_HGA frame is equivalent to the ``High Gain Antenna Functional Frame (HGAF)''. The TGO_HGA frame is defined as follows: - +Z axis is in the antenna boresight direction; - +X axis points from the gimbal toward the antenna dish symmetry axis; - +Y axis completes the right hand frame; - the origin of the frame is located at the phase center (theoretical and nominal location). The TGO_HGA frame is defined as a fixed offset frame relative to the TGO_HGA_AZ frame and is rotated by -90 degrees about +X from it. This diagram illustrates the TGO_HGA frames in the zero gimbal position: -X S/C side (Main Engine side) view: ------------------------------------ ^ | toward Mars | Science Deck ._____________. .__ _______________. | | .______________ ___. | \ \ \ | | / \ \ | | / / \ | __ | / / / | | \ \ +Zsc / _ +Xsc | .' \ \ | | / / <------x) |o | / / | | \ \ .' | \_|_/ | `. \ \ | | / / / | | | \ / / | .__\ \_______________+Zhga_az(*) | | \_______________\ \__. +Z Solar Array +Zhga_el(*) v_+Ysc . -Z Solar Array <------x +Xhga_az(*) +Xhga_el(*) .' | `. / | +Yhga_az(*) . `. v +Zhga_el(*) +Xsc, +Xhga_az(*) | Zhga o-------> and +Xhga_el(*) are . | . +Yhga into the page; +Zhga \ | / is out of the page. `. | .' HGA ` -V- ' +Xhga * The TGO_HGA_AZ and TGO_HGA_EL frames are in zero gimbal position. This set of keywords defines the HGA frame as a CK frame: \begindata FRAME_TGO_HGA_EL = -143021 FRAME_-143021_NAME = 'TGO_HGA_EL' FRAME_-143021_CLASS = 3 FRAME_-143021_CLASS_ID = -143021 FRAME_-143021_CENTER = -143022 CK_-143021_SCLK = -143 CK_-143021_SPK = -143022 FRAME_TGO_HGA_AZ = -143022 FRAME_-143022_NAME = 'TGO_HGA_AZ' FRAME_-143022_CLASS = 3 FRAME_-143022_CLASS_ID = -143022 FRAME_-143022_CENTER = -143022 CK_-143022_SCLK = -143 CK_-143022_SPK = -143022 FRAME_TGO_HGA = -143025 FRAME_-143025_NAME = 'TGO_HGA' FRAME_-143025_CLASS = 4 FRAME_-143025_CLASS_ID = -143025 FRAME_-143025_CENTER = -143025 TKFRAME_-143025_RELATIVE = 'TGO_HGA_AZ' TKFRAME_-143025_SPEC = 'ANGLES' TKFRAME_-143025_UNITS = 'DEGREES' TKFRAME_-143025_ANGLES = ( 0.000, 90.000, 0.000 ) TKFRAME_-143025_AXES = ( 2, 1, 3 ) \begintext TGO Low Gain Antennae Frames ---------------------------- The low gain antenna is an essential component of the S/C in an emergency case. During and after separation, full antenna coverage is necessary before a stable attitude is achieved, requiring three antennas with spherical coverage. In case of S/C survival mode, the LGAs provide the communication capability for recovery by ground operation. TGO has three Low Gain Antennae installed in the +Z, -Z and -X panels of the S/C bus -- TGO_LGA+Z, TGO_LGA-Z, TGO_LGA-X -- and are defined as ``fixed-offset'', defined with respect to the TGO_SPACECRAFT frame as follows (from [13]): - +X axis is in the antenna boresight direction (nominally co-aligned to the spacecraft +Z, -Z and -X axis); - +Y axis is in the direction of the spacecraft +X axis; - +Z completes the right hand frame; - the origin of the frame is defined as a reference mounting hole of each LGA. This diagram illustrates the TGO Low Gain Antennae frames: -X S/C side (Main Engine side) view: ------------------------------------ ^ | toward Mars | Science Deck ._____________. .__ _______________. | | .______________ ___. | \ \ +Zlga+z ^ ^ +Zlga-z \ \ | | / / \ | +Zlga-x | / / / | | \ \ `. | ^ / _ \ | .' \ \ | | / / +Xlga+z <------o | | +Ylga-z x------> +Xlga-z / / | | \ \ +Ylga+z| \___/ | `. \ \ | | / / / | o----> +Ylga-x \ / / | .__\ \_______________/ +Xlga-x | \_______________\ \__. +Z Solar Array ._____________. -Z Solar Array ._____. .' `. <--------x +Xsc / \ The TGO_SPACECRAFT frame +Zsc | . `. .' . origin is conveniently | | `o' | moved. | . | . v \ | / +Ysc `. .' +Xsc, +Ylga-z is into HGA ` --- ' the page; +Xlga-x and +Ylga+z are out of the page. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_TGO_LGA+Z = -143031 FRAME_-143031_NAME = 'TGO_LGA+Z' FRAME_-143031_CLASS = 4 FRAME_-143031_CLASS_ID = -143031 FRAME_-143031_CENTER = -143031 TKFRAME_-143031_RELATIVE = 'TGO_SPACECRAFT' TKFRAME_-143031_SPEC = 'ANGLES' TKFRAME_-143031_UNITS = 'DEGREES' TKFRAME_-143031_AXES = ( 2, 1, 3 ) TKFRAME_-143031_ANGLES = ( 0.0, -90.0, -90.0 ) FRAME_TGO_LGA-Z = -143032 FRAME_-143032_NAME = 'TGO_LGA-Z' FRAME_-143032_CLASS = 4 FRAME_-143032_CLASS_ID = -143032 FRAME_-143032_CENTER = -143032 TKFRAME_-143032_RELATIVE = 'TGO_SPACECRAFT' TKFRAME_-143032_SPEC = 'ANGLES' TKFRAME_-143032_UNITS = 'DEGREES' TKFRAME_-143032_AXES = ( 2, 1, 3 ) TKFRAME_-143032_ANGLES = ( 0.0, -90.0, +90.0 ) FRAME_TGO_LGA-X = -143033 FRAME_-143033_NAME = 'TGO_LGA-X' FRAME_-143033_CLASS = 4 FRAME_-143033_CLASS_ID = -143033 FRAME_-143033_CENTER = -143033 TKFRAME_-143033_RELATIVE = 'TGO_SPACECRAFT' TKFRAME_-143033_SPEC = 'ANGLES' TKFRAME_-143033_UNITS = 'DEGREES' TKFRAME_-143033_AXES = ( 3, 1, 2 ) TKFRAME_-143033_ANGLES = ( 0.0, +90.0, 180.0 ) \begintext TGO Star Trackers Frames -------------------------------------------------------------------------- There are two Star Trackers (STRs) mounted close to the PLM Instruments, on a dedicated panel attached to the 2 PLM Bench panels with their boresight canted 42 degrees from the spacecraft +X axis and with 5 deg above the XZ plane towards the +Y axis. The nominal and redundant STR are in mirror position with respect to the XY plane. This layout ensures a large angle between STR boresight and Sun whatever mission phase and that all S/C appendages (especially the Solar Arrays) are maintained outside of the Sun Exclusion Angle. The redundant STR is not co-aligned with main unit to minimize the risk of failure propagation in case of an unexpected external straylight perturbation. The angle between the two boresight is 83 degrees. The on-board software manages fully autonomously the power-on of the STR until operational tracking mode is reached. The Star Tracker STR-1 and STR-2 frames -- TGO_STR-1 and TGO_STR-2 -- are defined as follows: - +Z axis is anti-parallel to the direction of an incoming collimated light ray which is parallel to the optical axis; - +X axis is in the plane formed by the +Z axis and the vector from the detector centre pointing along the positively counted detector rows, perpendicular to the +Z axis - +Y axis completes the right hand frame; - the origin of the frame is defined as the intersection of the mounting interface plane and the +X Panel mounting hole. These diagrams illustrate the Star Trackers frames: -Y S/C side (Science Deck side) view: ------------------------------------- +Zstr-2 _____ +Zstr-1 ^ / \ EDM ^ \ | | / \ ._____________. / \| | | |/ +Xstr-2 .o | | x. +Ystr-1 .' |___' '___| '. o==/ /===============.' o | |>o='. ==============/ /==o V | -. .--| V -Ystr-2 | | | | +Xstr-1 |--' +Xsc '--| | ^ | | | | Ysc and +Ystr-1 are | | | into the page. +Zsc .______|______. Xstr-2 is out of the <-------x `. ME page. /______+Ysc \ HGA `.|.' The rotation matrices from the Star Tracker frames to the S/C frame are the matrices that result of the following quaternions (from [20]): Quaternion = ( 0.40858701, 0.01988630, -0.91164303, -0.03958660 ) STR-1 -> SC q_0 q_1 q_2 q_3 Quaternion = ( 0.65510702, 0.31692499, -0.25880700, 0.63514697 ) STR-2 -> SC q_0 q_1 q_2 q_3 This is incorporated by the frame definitions below. \begindata FRAME_TGO_STR-1 = -143041 FRAME_-143041_NAME = 'TGO_STR-1' FRAME_-143041_CLASS = 4 FRAME_-143041_CLASS_ID = -143041 FRAME_-143041_CENTER = -143041 TKFRAME_-143041_RELATIVE = 'TGO_SPACECRAFT' TKFRAME_-143041_SPEC = 'MATRIX' TKFRAME_-143041_MATRIX = ( -0.66532202, -0.00390928, -0.74654627, -0.06860763, 0.99607487, 0.05592719, 0.74339734, 0.08842836, -0.66297875 ) FRAME_TGO_STR-2 = -143042 FRAME_-143042_NAME = 'TGO_STR-2' FRAME_-143042_CLASS = 4 FRAME_-143042_CLASS_ID = -143042 FRAME_-143042_CENTER = -143042 TKFRAME_-143042_RELATIVE = 'TGO_SPACECRAFT' TKFRAME_-143042_SPEC = 'MATRIX' TKFRAME_-143042_MATRIX = ( 0.05921395, -0.99622389, 0.06349536, 0.66813407, -0.00770686, -0.74400099, 0.74168091, 0.08647865, 0.66515477 ) \begintext ACS Frames ------------------------------------------------------------------------ This section of the file contains the definitions of the Atmospheric Chemistry Suite (ACS) instrument frames. ACS Frame Tree ~~~~~~~~~~~~~~ The diagram below shows the ACS frame hierarchy. "J2000" INERTIAL +-----------------------------------------------------+ | | | |<-pck | |<-pck | | | v | v "IAU_MARS" | "IAU_EARTH" MARS BODY-FIXED |<-ck EARTH BODY-FIXED --------------- | ---------------- v "TGO_SPACECRAFT" +-----------------------------------------+ | | | |<-fixed |<-fixed |<-fixed | | | v v | "TGO_ACS_NIR_BASE" "TGO_ACS_MIR" | +---------------------+ ------------- | | | | |<-fixed |<-fixed | | | | v v | "TGO_ACS_NIR_NAD" "TGO_ACS_NIR_OCC" | ----------------- ----------------- | | v "TGO_ACS_TIRVIM_BASE" +-------------------------------------------------------------------------+ | | | | | | | | |<-fxd |<-fxd |<-fxd |<-fxd |<-fxd fixed->| fixed->| fixed->| | | | | | | | | | | | | v | v | | | | | "TGO_ACS_TIRVIM_SCAN_BBY" | "TGO_ACS_TIRVIM_SUN" | | | | | ------------------------- | -------------------- | | | | v | v | | | "TGO_ACS_TIRVIM_SCAN_SPC" | "TGO_ACS_TIRVIM_SUN_BSR" | | | ------------------------- | ------------------------ | | v | | | "TGO_ACS_TIRVIM_SCAN_NAD" | | | ------------------------- | | v v | "TGO_ACS_TIRVIM_SCAN_OCC" "TGO_ACS_TIRVIM_SCAN_ROT" | ------------------------- ------------------------- v | "TGO_ACS_TIRVIM_SCAN_OCC_BS" ck->| ---------------------------- | v "TGO_ACS_TIRVIM_SCAN" --------------------- | fixed->| | v "TGO_ACS_TIRVIM" ---------------- ACS TIRVIM Base Frame ~~~~~~~~~~~~~~~~~~~~~ The ACS Thermal Infrared V-shape Interferometer Mounting Spectrometer (TIRVIM) is rigidly mounted on the spacecraft Science Deck. Therefore, the base frame associated with it -- the ACS TIRVIM Base frame, TGO_ACS_TIRVIM_BASE -- is specified as a fixed offset frame with its orientation given relative to the TGO_SPACECRAFT frame. The ACS TIRVIM Base frame are defined as follows (from [9]): - +X axis is along the nominal spectrometer mirror rotation axis, and it is nominally co-aligned with the spacecraft +Z axis; - +Z axis is co-aligned with the -Y spacecraft axis and it is along the spectrometer boresight in "nadir" position; - +Y axis completes the right-handed frame; - the origin of this frame is located at the intersection of the spectrometer scanning mirror rotation axis and mirror central axis. These diagrams illustrate the nominal TGO_ACS_TIRVIM_BASE frame with respect to the spacecraft frame. -X S/C side (Main Engine side) view: ------------------------------------ ^ | toward Mars | | ^ +Zacs_tirvim_base | Science deck | .___________|_. .__ _______________. | <-------o +Yacs_tirvim_base____ ___. | \ \ \ | +Xacs_tirvim_base/ \ \ | | / / \ | ___ | / / / | | \ \ +Zsc | / _ +Xsc | .' \ \ | | / / <--------x) |o | / / | | \ \ .' | \_|_/ | `. \ \ | | / / / | | | \ / / | .__\ \_______________/ | | | \_______________\ \__. +Z Solar Array ._____ v +Ysc . -Z Solar Array ._____. .' `. / \ . `. .' . +Xsc is into the page; | `o' | +Yacs_tirvim_base is . | . out of the page. \ | / `. .' HGA ` --- ' -Y S/C side (Science Deck side) view: ------------------------------------- _____ / \ EDM | | ._____________. |+Xacs_tirvim_base | <------o | +Zacs_tirvim_base +Zsc | '__|_| o==/ /==================o<| | |>o==================/ /==o +Z Solar Array | | | -Z Solar Array | v +Yacs_tirvim_base | +Xsc | | ^ | | | | | | | +Zsc .______|______. +Ysc is into the <-------x `. ME page; /______+Ysc \ +Zacs_tirvim_base HGA `.|.' is out of the page. Nominally, a rotation of -90 degrees about +Y spacecraft axis and then a rotation of 90 degrees about the +X resulting axis are required to align the TGO_SPACECRAFT to the TGO_ACS_TIRVIM_BASE frame. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_TGO_ACS_TIRVIM_BASE = -143105 FRAME_-143105_NAME = 'TGO_ACS_TIRVIM_BASE' FRAME_-143105_CLASS = 4 FRAME_-143105_CLASS_ID = -143105 FRAME_-143105_CENTER = -143100 TKFRAME_-143105_RELATIVE = 'TGO_SPACECRAFT' TKFRAME_-143105_SPEC = 'ANGLES' TKFRAME_-143105_UNITS = 'DEGREES' TKFRAME_-143105_AXES = ( 3, 2, 1 ) TKFRAME_-143105_ANGLES = ( 0.0, 90.0, -90.0 ) \begintext ACS TIRVIM Scanning Mirror frames ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The Thermal Infrared V-shape Interferometer Mounting Spectrometer (TIRVIM) has a single-axis scanning mirror that provide the possibility of observation in nadir and any position from it (360 degrees of positive rotation only) (see [11]). Since this scanning mirrors rotate with respect to the TIRVIM base, the TGO_ACS_TIRVIM_SCAN frame is defined as a CK frame with its orientation provided in a CK file relative to the TGO_ACS_TIRVIM_SCAN_ROT frames. The TGO_ACS_TIRVIM_SCAN_ROT frame is then defined to incorporate misalignments in the Scanner rotation axis. The ACS TIRVIM scanning mirror rotation frame and the ACS TIRVIM scanning mirror frames -- TGO_ACS_TIRVIM_SCAN_ROT and TGO_ACS_TIRVIM_SCAN -- are defined as (from [9]): - +X axis is along the nominal spectrometer scanning mirror rotation axis, and it is nominally co-aligned with the spectrometer base +X axis; - +Z axis is parallel to the scanning mirror boresight that defines the spectrometer boresight; in 'nadir' scanner position is co-aligned with the -Y spacecraft axis -- this is the 'fixed' position for the TGO_ACS_TIRVIM_SCAN_ROT frame --; in 'space' scanner position is co-aligned with the +X spacecraft axis; - +Y axis completes the right-handed frame; - the origin of this frame is located at the intersection of the spectrometer scanning mirror rotation axis and mirror central axis. For an arbitrary scanner angle, the scanning mirror frame base is rotated by this angle about the +X axis with respect to its rotation frame. The sense of rotation is: (1) nadir - (2) space - (3) black body - (4) occultation - (1) nadir These diagrams illustrate the TGO_ACS_TIRVIM frames for nominal scanner positions 'nadir' (~0.0 degrees), equivalent to TGO_ACS_TIRVIM_SCAN_ROT, solar 'occultation' (~67.07 deg from the spacecraft -Y axis to the -X in the XY plane) and 'space' (~90.00 deg from the spacecraft -Y axis to the +X in the XY plane). All diagrams are +Z S/C side view: Scanner in 'nadir' position Scanner in 'occ' position --------------------------- ------------------------- (1) +Zbase (4) +Zbase ^ +Zscan ^ | | +Zscan | Science |_~67deg .^ | ACS Deck | \ .' Science Deck ._____|___________. ._ACS_| .'________. +Xscan, +Xbase o-------> | +Xscan, +Xbase o-------> | ============o= +Ybase ========\===o= +Ybase SA+Z +Yscan_..--, SA+Z \ |__..--, | <-----o-..__| ME | \ <-----o-..__| ME | +Xsc || +Zsc | v +Xsc || +Zsc ._________________.| ._________+Yscan_.|| o-o|/| o-o|/| \|V +Ysc \|V +Ysc o | : o | : \ |/ \ |/ \| \| HGA HGA Scanner in 'space' position Scanner in 'black body' position --------------------------- -------------------------------- (2) +Zbase (3) +Zbase ^ ^ +Yscan ^ .-| / | +Zscan / | / Science | Science <-_~78deg|'ACS Deck ~180deg.-| ACS Deck .'---.|___________. ._/___|___________. +Xscan, +Xbase o-------> | <-------o-------> | ============o= +Ybase +Yscan=\===|====o= +Ybase SA+Z |__..--, SA+Z'._| |__..--, | <-----o-..__| ME | | <-----o-..__| ME | +Xsc || +Zsc | V +Xsc || +Zsc ._________________.| .___+Zscan_________.| o-o|/| o-o|/| \|V +Ysc \|V +Ysc o | : o | : \ |/ \ |/ \| \| HGA HGA +Zsc, +Xbase, and +Xscan are out of the page. Nominally the TGO_ACS_TIRVIM_SCAN_ROT frame is equivalent to the TGO_ACS_TIRVIM_BASE frame. These sets of keywords define the TIRVIM scanning mirror frame as a CK based frame and the TIRVIM scanning mirror rotation frame as a fixed-offset frame. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text.: \begindata FRAME_TGO_ACS_TIRVIM_SCAN_ROT = -143106 FRAME_-143106_NAME = 'TGO_ACS_TIRVIM_SCAN_ROT' FRAME_-143106_CLASS = 4 FRAME_-143106_CLASS_ID = -143106 FRAME_-143106_CENTER = -143100 TKFRAME_-143106_RELATIVE = 'TGO_ACS_TIRVIM_BASE' TKFRAME_-143106_SPEC = 'ANGLES' TKFRAME_-143106_UNITS = 'DEGREES' TKFRAME_-143106_AXES = ( 3, 2, 1 ) TKFRAME_-143106_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_TGO_ACS_TIRVIM_SCAN = -143107 FRAME_-143107_NAME = 'TGO_ACS_TIRVIM_SCAN' FRAME_-143107_CLASS = 3 FRAME_-143107_CLASS_ID = -143107 FRAME_-143107_CENTER = -143100 CK_-143107_SCLK = -143 CK_-143107_SPK = -143 \begintext ACS TIRVIM Detector Frames ~~~~~~~~~~~~~~~~~~~~~~~~~~ Since the TIRVIM detector receives radiation through the scanner and has a single pixel, its frame, TGO_ACS_TIRVIM is defined to be nominally co-aligned with the TIRVIM scanner frame TGO_ACS_TIRVIM_SCAN. This frame is introduced to allow incorporating into the TIRVIM frame chain any misalignment between the scanner boresight direction and the detector view directions. The following in-flight calibrated detector mounting misalignment assuming nominal alignment of the rotation axis, provided as the boresight in 'nadir' position was provided by A. Grigoriev on 10th May, 2017 [19]. Please note that the scanner channel in 'nadir' position was not measured, but inferred from an offset in the 'solar direction': ACS_TIRVIM Boresight: ( 0.0, -0.99905, -0.04362 ) The boresight is defined relative to the TGO_SPACECRAFT frame. Given the boresight the rotation from the TGO_ACS_TIRVIM_SCAN frame to the TGO_ACS_TIRVIM frames determined from the in-flight calibration data can be represented by the following rotation angles in degrees: nad M = |0.0| * |-2.5000306232819502| * |3.6615346000217E-15| base Z Y X This set of keywords define the TIRVIM frame as a fixed-offset frame. Since the SPICE frames subsystem calls for specifying the reverse transformation --going from the instrument or structure frame to the base frame-- as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_TGO_ACS_TIRVIM = -143110 FRAME_-143110_NAME = 'TGO_ACS_TIRVIM' FRAME_-143110_CLASS = 4 FRAME_-143110_CLASS_ID = -143110 FRAME_-143110_CENTER = -143100 TKFRAME_-143110_RELATIVE = 'TGO_ACS_TIRVIM_SCAN' TKFRAME_-143110_SPEC = 'ANGLES' TKFRAME_-143110_UNITS = 'DEGREES' TKFRAME_-143110_AXES = ( 3, 2, 1 ) TKFRAME_-143110_ANGLES = ( 0.0, 2.5000306232819502, 0.000000000000003661535 ) \begintext ACS TIRVIM fixed scanner position frames ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ACS TIRVIM scanning mirror can be used in several positions for external observations, being the most common 'nadir' and cold 'space.' In addition, and through the usage of an off-pointed periscope and an off-axis parabolic mirror, a solar 'occultation' observation can be performed in parallel to the use of the scanning mirror. For the solar 'occultation' position a boresight for the position of the best spectral resolution within the FoV is also provided. This boresight will be used for pointings driven by TIRVIM using the scanner channel. The 'black body' position of the scanning mirror is also considered. Therefore, for the ACS TIRVIM a set of 'fixed-mirror-position' frames -- 'nadir', 'solar occultation', 'solar occultation best spectral resolution', 'space' and 'black body' -- are defined as fixed-offset frames to allow computing these orientations without needing to use a CK: Frame Name Fixed-mirror-position ---------------------------- ------------------------------------------ TGO_ACS_TIRVIM_SCAN_BBY Black Body TGO_ACS_TIRVIM_SCAN_SPC Cold Space TGO_ACS_TIRVIM_SCAN_NAD Nadir TGO_ACS_TIRVIM_SCAN_OCC Solar Occultation TGO_ACS_TIRVIM_SCAN_OCC_BS Solar Occultation Best Spectral Resolution Each of these 'fixed-position' frames are defined as a fixed offset frame with respect to the corresponding base frame for each of the spectrometers as follows (from [9]): - +X axis is along the nominal spectrometer mirror rotation axis, and it is nominally co-aligned with the spectrometer base +X axis; - +Z axis is parallel to the scanning mirror boresight that defines the spectrometer boresight at a particular angle; - +Y axis completes the right-handed frame; - the origin of this frame is located at the intersection of the spectrometer scanning mirror rotation axis and mirror central axis. These diagrams illustrate fixed mirror pointing directions co-aligned with the +Z axis of the corresponding 'fixed-mirror-position' frame -- the 'solar occultation best spectral resolution' and 'black body' positions are not represented --: +Z S/C side view ---------------- +Z*base +Z*base ^ +Z*nad ^ | | +Z*occ | Science |_~67deg .^ | ACS Deck | \ .' Science Deck ._____|___________. ._ACS_| .'________. +Xnad, +Xbase o-------> | +Xocc, +Xbase o-------> | ============o= +Y*base ========\===o= +Y*base SA+Z +Y*nad.--, SA+Z \ |__..--, | <-----o-..__| ME | \ <-----o-..__| ME | +Xsc || +Zsc | v +Xsc || +Zsc ._________________.| .______+Y*occ_____.| o-o|/| o-o|/| \|V +Ysc \|V +Ysc o | : o | : \ |/ \ |/ \| \| HGA HGA +Zbase +Zbase ^ +Y*spc ^ +Y*bby | ^ | ~78deg.-| / Science | Science <-.__/ | / Deck ~180deg.-| ACS Deck +Z*spc.__'--|.__________. ._/___|___________. +Xspc, +Xbase o-------> | +Xbby, +Xbase o-------> | ============o= +Ybase ===\===|====o= +Ybase SA+Z |__..--, SA+Z'._| +Xsc |__..--, | ACS <-----o-..__| ME | | <-----o-..__| ME | +Xsc || +Zsc | v +Z*bby || +Zsc ._________________.| ._________________.| o-o|/| o-o|/| \|V +Ysc \|V +Ysc o | : o | : \ |/ \ |/ \| \| HGA HGA +Zsc, +Xbase, +X*nad, +X*occ, +X*bby and +X*spc are out of the page; ``*base'' corresponds to ``acs_tirvim_base''; ``*nad'' corresponds to ``acs_tirvim_scan_nad''; ``*occ'' corresponds to ``acs_tirvim_scan_occ''; ``*spc'' corresponds to ``acs_tirvim_scan_spc'' and ``*bby'' corresponds to ``acs_tirvim_scan_bby''. These 'fixed-position' frames are nominally rotated about the +X axis of the corresponding spectrometer base frames by the following angles: Frame name Rotation Angle, deg --------------------------- ------------------- TGO_ACS_TIRVIM_SCAN_BBY 180.00 TGO_ACS_TIRVIM_SCAN_SPC +78.00 TGO_ACS_TIRVIM_SCAN_NAD 0.00 TGO_ACS_TIRVIM_SCAN_OCC -63.76 TGO_ACS_TIRVIM_SCAN_OCC_BS -63.76 The following in-flight calibrated detector mounting misalignment assuming nominal alignment of the rotation axis, provided as the boresight in 'nadir' position was provided by A. Grigoriev on 10th May, 2017 [19]. Please note that the scanner channel in 'nadir' position was not measured, but inferred from an offset in the 'solar direction': ACS_TIRVIM_SCAN_NAD Boresight: ( 0.00000, -0.99905, -0.04362 ) ACS_TIRVIM_SCAN_OCC Boresight: ( -0.89699, -0.44081, -0.04362 ) ACS_TIRVIM_SCAN_OCC_BS Boresight: ( -0.90139, -0.43102, -0.04028 ) The boresights are defined relative to the TGO_SPACECRAFT frame. Given the boresight the rotation from the TGO_ACS_TIRVIM_BASE frame to the TGO_ACS_TIRVIM_SCAN_ROT frames determined from the in-flight calibration data can be represented by the following rotation angles in degrees: nad M = |0.0| * |-2.50003062| * |3.66153460E-15| base Z Y X occ M = |-5.07029818| * |-2.49902606| * |-63.82900027| base Z Y X bsr M = |-4.81530632| * |-2.30860866| * |-64.44415097| base Z Y X Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the angles associated to the inverse of the previous rotation matrices are implemented in the TKFRAME_*_ANGLES keyword. \begindata FRAME_TGO_ACS_TIRVIM_SCAN_BBY = -143131 FRAME_-143131_NAME = 'TGO_ACS_TIRVIM_SCAN_BBY' FRAME_-143131_CLASS = 4 FRAME_-143131_CLASS_ID = -143131 FRAME_-143131_CENTER = -143100 TKFRAME_-143131_RELATIVE = 'TGO_ACS_TIRVIM_BASE' TKFRAME_-143131_SPEC = 'ANGLES' TKFRAME_-143131_UNITS = 'DEGREES' TKFRAME_-143131_AXES = ( 3, 2, 1 ) TKFRAME_-143131_ANGLES = ( 0.0 -2.50003062 -180.00 ) FRAME_TGO_ACS_TIRVIM_SCAN_SPC = -143132 FRAME_-143132_NAME = 'TGO_ACS_TIRVIM_SCAN_SPC' FRAME_-143132_CLASS = 4 FRAME_-143132_CLASS_ID = -143132 FRAME_-143132_CENTER = -143100 TKFRAME_-143132_RELATIVE = 'TGO_ACS_TIRVIM_BASE' TKFRAME_-143132_SPEC = 'ANGLES' TKFRAME_-143132_UNITS = 'DEGREES' TKFRAME_-143132_AXES = ( 3, 2, 1 ) TKFRAME_-143132_ANGLES = ( 2.44546602 0.5196278 -78.01109099 ) FRAME_TGO_ACS_TIRVIM_SCAN_NAD = -143133 FRAME_-143133_NAME = 'TGO_ACS_TIRVIM_SCAN_NAD' FRAME_-143133_CLASS = 4 FRAME_-143133_CLASS_ID = -143133 FRAME_-143133_CENTER = -143100 TKFRAME_-143133_RELATIVE = 'TGO_ACS_TIRVIM_BASE' TKFRAME_-143133_SPEC = 'ANGLES' TKFRAME_-143133_UNITS = 'DEGREES' TKFRAME_-143133_AXES = ( 3, 2, 1 ) TKFRAME_-143133_ANGLES = ( 2.20905573e-32 2.50003062e+00 -3.65804955e-15 ) FRAME_TGO_ACS_TIRVIM_SCAN_OCC = -143134 FRAME_-143134_NAME = 'TGO_ACS_TIRVIM_SCAN_OCC' FRAME_-143134_CLASS = 4 FRAME_-143134_CLASS_ID = -143134 FRAME_-143134_CENTER = -143100 TKFRAME_-143134_RELATIVE = 'TGO_ACS_TIRVIM_BASE' TKFRAME_-143134_SPEC = 'ANGLES' TKFRAME_-143134_UNITS = 'DEGREES' TKFRAME_-143134_AXES = ( 3, 2, 1 ) TKFRAME_-143134_ANGLES = ( 4.45570512e-16 5.65126024e+00 6.37183369e+01 ) FRAME_TGO_ACS_TIRVIM_SCAN_OCC_BS = -143135 FRAME_-143135_NAME = 'TGO_ACS_TIRVIM_SCAN_OCC_BS' FRAME_-143135_CLASS = 4 FRAME_-143135_CLASS_ID = -143135 FRAME_-143135_CENTER = -143100 TKFRAME_-143135_RELATIVE = 'TGO_ACS_TIRVIM_BASE' TKFRAME_-143135_SPEC = 'ANGLES' TKFRAME_-143135_UNITS = 'DEGREES' TKFRAME_-143135_AXES = ( 3, 2, 1 ) TKFRAME_-143135_ANGLES = ( -4.42963194e-16 5.33894122e+00 6.43470696e+01 ) \begintext ACS TIRVIM Sun Channel frames ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ACS TIRVIM instrument has a Sun Channel for which two reference frames are defined: the ACS TIRVIM Sun Channel frame that is defined by the center of the FoV and the ACS TIRVIM Sun Channel Best Spectral Resolution -- TGO_ACS_TIRVIM_SUN_BSR and TGO_ACS_TIRVIM_SUN -- which is defined by a boresight to be used for pointings driven by TIRVIM (using the Sun channel) that corresponds to the pixel of best spectral resolution of the slit. Note that the sensitivity is not uniform within the FOV and peaks close to the MIR slit. Each of these frames are defined as a fixed offset frame with respect to the corresponding base frame for each of the spectrometers as follows (from [9]): - +X axis is nominally co-aligned with the spectrometer base +X axis; - +Z axis is parallel to the Sun Channel boresight (the nominal and the BSR one respectively); - +Y axis completes the right-handed frame; - the origin of this frame is located at the intersection of the spectrometer scanning mirror rotation axis and mirror central axis. These diagram illustrates fixed mirror pointing directions co-aligned with the +Z axis of the corresponding 'fixed-mirror-position' frame: +Z S/C side view ---------------- +Z*base ^ | +Zsun |_~67deg .^ | \ .' Science Deck ._ACS_| .'________. +Xsun, +Xbase o-------> | ========\===o= +Y*base SA+Z \ |__..--, | \ <-----o-..__| ME | v +Xsc || +Zsc ._______+Ysun______.| o-o|/| \|V +Ysc o | : +Zsc, +Xsun and +Xbase \ |/ are out of the page. \| HGA Nominally, a rotation of 90 degrees about +X spacecraft axis and then a rotation of -67.07 degrees about the +Y resulting axis are required to align the TGO_SPACECRAFT to the TGO_ACS_MIR frames. The following in-flight calibrated misalignment boresight was provided by A. Grigoriev on April 25 and 27, 2017 [19]: ACS_TIRVIM_SUN Boresight: ( -0.92070, -0.39000, -0.01420 ) ACS_TIRVIM_SUN_BSR Boresight: ( -0.92169, -0.38739, -0.02042 ) These boresights are defined relative to the TGO_SPACECRAFT frame. Given these boresights the rotation from the TGO_ACS_TIRVIM_BASE frame to the TGO_ACS_TIRVIM_SUN and TGO_ACS_TIRVIM_SUN_BSR frames determined from the in-flight calibration data can be represented by the following rotation angles in degrees: sun M = |-1.92001247| * |-0.81363143| * |-67.04293382| base Z Y X bsr M = |-2.78146366| * |-1.17006088| * |-67.20278943| base Z Y X Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_TGO_ACS_TIRVIM_SUN = -143140 FRAME_-143140_NAME = 'TGO_ACS_TIRVIM_SUN' FRAME_-143140_CLASS = 4 FRAME_-143140_CLASS_ID = -143140 FRAME_-143140_CENTER = -143100 TKFRAME_-143140_RELATIVE = 'TGO_ACS_TIRVIM_BASE' TKFRAME_-143140_SPEC = 'ANGLES' TKFRAME_-143140_UNITS = 'DEGREES' TKFRAME_-143140_AXES = ( 3, 2, 1 ) TKFRAME_-143140_ANGLES = ( -2.16048015e-16 2.08523288e+00 6.70292997e+01 ) FRAME_TGO_ACS_TIRVIM_SUN_BSR = -143141 FRAME_-143141_NAME = 'TGO_ACS_TIRVIM_SUN_BSR' FRAME_-143141_CLASS = 4 FRAME_-143141_CLASS_ID = -143141 FRAME_-143141_CENTER = -143100 TKFRAME_-143141_RELATIVE = 'TGO_ACS_TIRVIM_BASE' TKFRAME_-143141_SPEC = 'ANGLES' TKFRAME_-143141_UNITS = 'DEGREES' TKFRAME_-143141_AXES = ( 3, 2, 1 ) TKFRAME_-143141_ANGLES = ( 0. 3.01736755 67.17438215 ) \begintext ACS Near Infrared (NIR) Base ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ACS Near Infrared (NIR) spectrometer is rigidly mounted on the spacecraft Science Deck. Therefore, the base frame associated with it -- the ACS NIR Base frame, TGO_ACS_NIR_BASE -- is specified as a fixed offset frame with its orientation given relative to the TGO_SPACECRAFT frame. The ACS NIR Base frame is defined as follows (from [9]): - +X axis is along the nominal spectrometer boresight, and it is nominally co-aligned with the spacecraft +Z axis; - +Z axis is co-aligned with the -Y spacecraft axis and it is along the spectrometer boresight in "nadir" position; - +Y axis completes the right-handed frame; - the origin of this frame is located at geometrical centre of the first folding mirror at the entry optics of the spectrometer. These diagrams illustrate the nominal TGO_ACS_NIR_BASE frame with respect to the spacecraft frame. -X S/C side (Main Engine side) view: ------------------------------------ ^ | toward Mars | | ^ +Zacs_nir_base | Science deck | .___________|_. .__ _______________. | <-------o +Yacs_nir_base_______ ___. | \ \ \ | +Xacs_nir_base / \ \ | | / / \ | ___ | / / / | | \ \ +Zsc | / _ +Xsc | .' \ \ | | / / <--------x) |o | / / | | \ \ .' | \_|_/ | `. \ \ | | / / / | | | \ / / | .__\ \_______________/ | | | \_______________\ \__. +Z Solar Array ._____ v +Ysc . -Z Solar Array ._____. .' `. / \ . `. .' . +Xsc is into the page; . | . +Yacs_nir_base is out \ | / of the page. `. .' HGA ` --- ' -Y S/C side (Science Deck side) view: ------------------------------------- _____ / \ EDM | | ._____________. |+Xacs_nir_base | <------o | +Zacs_nir_base +Zsc | '__|_| o==/ /==================o<| | |>o==================/ /==o +Z Solar Array | | | -Z Solar Array | v +Yacs_nir_base | +Xsc | | ^ | | | | | | | +Zsc .______|______. +Ysc is into the <-------x `. ME page; /______+Ysc \ +Zacs_nir_base HGA `.|.' is out of the page. Nominally, a rotation of -90 degrees about +Y spacecraft axis and then a rotation of 90 degrees about the +X resulting axis are required to align the TGO_SPACECRAFT to the TGO_ACS_NIR_BASE frame. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_TGO_ACS_NIR_BASE = -143100 FRAME_-143100_NAME = 'TGO_ACS_NIR_BASE' FRAME_-143100_CLASS = 4 FRAME_-143100_CLASS_ID = -143100 FRAME_-143100_CENTER = -143100 TKFRAME_-143100_RELATIVE = 'TGO_SPACECRAFT' TKFRAME_-143100_SPEC = 'ANGLES' TKFRAME_-143100_UNITS = 'DEGREES' TKFRAME_-143100_AXES = ( 3, 2, 1 ) TKFRAME_-143100_ANGLES = ( 0.0, 90.0, -90.0 ) \begintext ACS NIR nadir and occultation position frames ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ACS NIR spectrometer is capable of performing parallel nadir and limb/solar occultation measurements (see [11]) using the two periscope apertures (one of them "looking" nadir) and an off-axis parabolic mirror that defines the NIR occultation boresight to be at 67.07 degrees from -Y spacecraft axis towards the -X spacecraft axis in the XY plane, therefore two frames -- TGO_ACS_NIR_NAD and TGO_ACS_NIR_OCC -- are defined as fixed-offset frames to allow computing the orientation of the ACS NIR field-of-view in both cases. Each of these 'fixed-position' frames is defined as a fixed offset frame with respect to the corresponding base frame for each of the spectrometers as follows (from [9]): - +X axis is along the nominal spectrometer boresight, and it is nominally co-aligned with the spectrometer base +X axis; - +Z axis is parallel to the spectrometer detector array's lines; - +Y axis completes the right-handed frame; - the origin of this frame is located at geometrical centre of the first folding mirror at the entry optics of the spectrometer. These diagram illustrates fixed mirror pointing directions co-aligned with the +Z axis of the corresponding 'fixed-mirror-position' frame: +Z S/C side view ---------------- +Z*base +Z*base ^ +Z*nad ^ | | +Z*occ | Science |_~67deg .^ | ACS Deck | \ .' Science Deck ._____|___________. ._ACS_| .'________. +X*nad, +X*base o-------> | +X*occ, +X*base o-------> | ============o= +Y*base ========\===o= +Y*base SA+Z +Y*nad.--, SA+Z \ |__..--, | <-----o-..__| ME | \ <-----o-..__| ME | +Xsc || +Zsc | v +Xsc || +Zsc ._________________.| .______+Y*occ_____.| o-o|/| o-o|/| \|V +Ysc \|V +Ysc o | : o | : \ |/ \ |/ \| \| HGA HGA +Zsc, +X*base, +X*nad and +X*occ are out of the page. ``*base'' corresponds to ``acs_nir_base''; ``*nad'' corresponds to ``acs_nir_nad''; and ``*occ'' corresponds to ``acs_nir_occ''. These 'fixed-position' frames are nominally rotated about the +X axis of the corresponding spectrometer base frames by the following angles: Frame name Rotation Angle, deg ---------------------- ------------------- TGO_ACS_NIR_NAD 0.00 TGO_ACS_NIR_OCC -67.07 The following in-flight calibrated misalignment boresights were provided by A. Trokhimovskiy on June 13, 2016 [17]. The boresight vector is provided as is and the the cross vector, that completes the reference frame is defined as the composition of the boresight and the reference vector: : ACS_NIR_OCC Boresight: ( -0.9231, -0.3845, -0.0069 ) ACS_NIR_OCC Reference Vector: ( -0.9220, -0.3860, 0.0025 ) This boresight is relative to the TGO_SPACECRAFT frame. Given this boresight the rotation from the TGO_ACS_NIR_BASE frame to the TGO_ACS_NIR_OCC frame determined from the in-flight calibration data can be represented by the following rotation angles in degrees: occ M = |-10.888905099180327| * |-0.3953437251552117| * |-67.38674625597875| base Z Y X The TGO_ACS_NIR_NAD misalignment will updated during the Science phase. For the time being the available measurements are not sufficient to determine the boresight reliably according to Alexander Trokhimovskiy on 29th June 2017. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_TGO_ACS_NIR_NAD = -143111 FRAME_-143111_NAME = 'TGO_ACS_NIR_NAD' FRAME_-143111_CLASS = 4 FRAME_-143111_CLASS_ID = -143111 FRAME_-143111_CENTER = -143100 TKFRAME_-143111_RELATIVE = 'TGO_ACS_NIR_BASE' TKFRAME_-143111_SPEC = 'ANGLES' TKFRAME_-143111_UNITS = 'DEGREES' TKFRAME_-143111_AXES = ( 3, 2, 1 ) TKFRAME_-143111_ANGLES = ( 0.0, 0.0, 0.0 ) FRAME_TGO_ACS_NIR_OCC = -143112 FRAME_-143112_NAME = 'TGO_ACS_NIR_OCC' FRAME_-143112_CLASS = 4 FRAME_-143112_CLASS_ID = -143112 FRAME_-143112_CENTER = -143100 TKFRAME_-143112_RELATIVE = 'TGO_ACS_NIR_BASE' TKFRAME_-143112_SPEC = 'ANGLES' TKFRAME_-143112_UNITS = 'DEGREES' TKFRAME_-143112_AXES = ( 1, 2, 3 ) TKFRAME_-143112_ANGLES = ( +67.38674625597875, +0.3953437251552117, +10.888905099180327 ) \begintext ACS High Resolution Middle Infrared Spectrometer (MIR) frame: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ACS High Resolution Middle Infrared Spectrometer (MIR) is rigidly mounted on the spacecraft Science Deck. Therefore, the frame associated with it -- the ACS MIR frame, TGO_ACS_MIR -- is specified as a fixed offset frame with its orientation given relative to the TGO_SPACECRAFT frame. The ACS MIR spectrometer operates in occultation mode only and its boresight is pointing +67.07 deg from the spacecraft -Y axis to the -X in the XY plane. Therefore, the ACS MIR frame is defined as follows (from [9]): - +Z axis is parallel to the spectrometer boresight, pointing at +67.07 degrees from the spacecraft -Y axis towards the -X axis in the XY plane; - +Y axis is parallel to the spectrometer detector array's lines, and it is nominally co-aligned with the spacecraft +Z axis; - +X axis completes the right handed-frame - the origin of this frame is located at geometrical centre of the first folding mirror at the entry optics of the spectrometer. This diagrams illustrates the nominal TGO_ACS_MIR frame with respect to the spacecraft frame. +Z S/C side view ---------------- 'Nadir' Towards Mars ^ +Xmir ^ | +Zmir \ |_~67deg .^ \ | \ .' Science Deck ._ACS\| .'________. | o +Ymir | ============o======= SA+Z |__..--, | <-----o-..__| ME | +Xsc || +Zsc ._________________.| o-o|/| \|V +Ysc o | : \ |/ \| HGA +Zsc and +Ymir are out of the page. Nominally, a rotation of 90 degrees about +X spacecraft axis and then a rotation of -67.07 degrees about the +Y resulting axis are required to align the TGO_SPACECRAFT to the TGO_ACS_MIR frames. The following in-flight calibrated misalignment boresight was provided by A. Trokhimovskiy on May 10, 2017 [19]: ACS_MIR Boresight: ( -0.9215, -0.3884, -0.0003 ) This boresight is relative to the TGO_SPACECRAFT frame. Given this boresight the rotation from the TGO_SPACECRAFT frame to the TGO_ACS_MIR frame determined from the in-flight calibration data can be represented by the following rotation angles in degrees: mir M = |0.0| * |-67.14521755516077| * |90.0442552276922| base Z Y X Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_TGO_ACS_MIR = -143120 FRAME_-143120_NAME = 'TGO_ACS_MIR' FRAME_-143120_CLASS = 4 FRAME_-143120_CLASS_ID = -143120 FRAME_-143120_CENTER = -143100 TKFRAME_-143120_RELATIVE = 'TGO_SPACECRAFT' TKFRAME_-143120_SPEC = 'ANGLES' TKFRAME_-143120_UNITS = 'DEGREES' TKFRAME_-143120_AXES = ( 1, 2, 3 ) TKFRAME_-143120_ANGLES = ( -90.0442552276922, +67.14521755516077, +0.000000000000000 ) \begintext FREND Frames ------------------------------------------------------------------------ This section of the file contains the definitions of the Fine-Resolution Epithermal Neutron Detector (FREND) instrument frames. FREND Frame Tree ~~~~~~~~~~~~~~~~ The diagram below shows the FREND frame hierarchy. "J2000" INERTIAL +-----------------------------------------------------+ | | | |<-pck | |<-pck | | | V | V "IAU_MARS" | "IAU_EARTH" MARS BODY-FIXED |<-ck EARTH BODY-FIXED --------------- | ---------------- V "TGO_SPACECRAFT" ---------------- | |<-fixed | V "TGO_FREND" ----------- FREND base frame ~~~~~~~~~~~~~~~~ The Fine-Resolution Epithermal Neutron Detector (FREND) is rigidly mounted on the spacecraft Science Deck. The base frame -- TGO_FREND, associated to it, maps the TGO spacecraft reference axis defined in the mechanical drawings and it is specified as a fixed-offset frame with its orientation aligned to the TGO_SPACECRAFT frame in order to simplify the science operations and commanding of the instrument, as requested by the FREND Instrument Team (see [8]). The FREND base frame is defined by the detector design and its mounting on the spacecraft as follows (from [8]): - -Y axis is along the nominal FREND 3He counters and stilbene-based scintillator boresights; and it is nominally co-aligned with the spacecraft -Y axis; - +Z axis is nominally co-aligned with the spacecraft +Z axis; - +X axis completes the right-handed frame; - the origin of the frame is located at the geometrical center of the FREND stilbene scintillator detector. These diagrams illustrate the TGO_FREND frame with respect to the TGO_SPACECRAFT frame: -X S/C side (HGA side) view: ---------------------------- ^ | toward Mars | Science deck ._____________. .__ _______________ | <-------x|+Xfrend_____________ ___. | \ \ \ | +Zfrend || / \ \ | | / / \ | ___ || / / / | | \ \ `. | / _+Xsc || .' \ \ | | / / +Zsc <--------x) | v|o | / / | | \ \ .' | \_|_+Yfrend`. \ \ | | / / / | | | \ / / | .__\ \_______________/ | | | \_______________\ \__. +Z Solar Array ._____ v +Ysc . -Z Solar Array .' `. / \ . `. .' . +Xsc and +Xfrend | `o' | are into the page. . | . \ | / `. .' HGA ` --- ' -Y S/C side (Science Deck side) view: ------------------------------------- _____ / \ EDM | | ._____________. | | | ^|+Xfrend +Zsc | || o==/ /==================o | | >o==================/ /==o +Z Solar Array | .-|| -Z Solar Array +Zfrend <--------x|+Yfrend | +Xsc | | ^ | | | | | | | +Zsc .______|______. <-------x `. ME /______+Ysc \ +Ysc and +Yfrend HGA `.|.' are into the page. -Y FREND side (spacecraft Science Deck) view: --------------------------------------------- +Ysc .-----------. X---------> | Dosimeter | | +Zsc | | | .---------------------------------------------. | | _____________________________ | | +Xsc | .' '. | v | .' . --- . . --- . '. | | / / \ / \ \ | | . . . . . . | | | | | | | | | | | . . . . | | | | \ / \ / | | | | . ___ . . - . . ___ . | | | | / \ +Zfrend | | | | +Yfrend x---------> | | | | \ | / | | | | . --- . . | . . --- . | | | | / \ | / \ | | | | . . | . . | | | | | | v | | | | | . . . +Xfrend . . | | \ \ / \ / / | | . . ___ . . ___ . . | | '. .' | | '---------------------------' | '---------------------------------------------' +Ysc and +Yfrend are into the page. Nominally, the TGO_FREND and the TGO_SPACECRAFT frames are co-aligned. \begindata FRAME_TGO_FREND = -143200 FRAME_-143200_NAME = 'TGO_FREND' FRAME_-143200_CLASS = 4 FRAME_-143200_CLASS_ID = -143200 FRAME_-143200_CENTER = -143200 TKFRAME_-143200_RELATIVE = 'TGO_SPACECRAFT' TKFRAME_-143200_SPEC = 'ANGLES' TKFRAME_-143200_UNITS = 'DEGREES' TKFRAME_-143200_AXES = ( 1, 2, 3 ) TKFRAME_-143200_ANGLES = ( 0.0, 0.0, 0.0 ) \begintext NOMAD Frames ------------------------------------------------------------------------ This section of the file contains the definitions of the Nadir and Occultation for MArs Discovery (NOMAD) instrument frames. NOMAD Frame Tree ~~~~~~~~~~~~~~~~ The diagram below shows the NOMAD frame hierarchy. "J2000" INERTIAL +-----------------------------------------------------+ | | | |<-pck |<-ck |<-pck | | | V | V "IAU_MARS" | "IAU_EARTH" MARS BODY-FIXED | EARTH BODY-FIXED --------------- | ---------------- V "TGO_SPACECRAFT" +---------------------------+ | | | |<-fixed |<-fixed | | | | | V | | "TGO_NOMAD_SO" | | -------------- | v | "TGO_NOMAD_LNO_BASE" | +------------------------+ | | | | | |<-fixed |<-ck |<-fixed | | | | | V | V | "TGO_NOMAD_LNO_OPS_NAD" | "TGO_NOMAD_LNO_OPS_OCC" | ----------------------- | ---------------------- | | | v |<-fixed "TGO_NOMAD_LNO_FMM" | -------------------- v | "TGO_NOMAD_UVIS_BASE" |<-fixed +-----------------------+ | | | v | | "TGO_NOMAD_LNO" |<-fixed |<-fixed --------------- | | v v "TGO_NOMAD_UVIS_NAD" "TGO_NOMAD_UVIS_OCC" -------------------- -------------------- NOMAD LNO Base Frame ~~~~~~~~~~~~~~~~~~~~ The NOMAD Limb Nadir and Occultation (LNO) spectrometer is rigidly mounted on the spacecraft Science Deck. Therefore, the base frame associated with it -- the NOMAD LNO Base frame, TGO_NOMAD_LNO_BASE -- is specified as a fixed offset frame with its orientation given relative to the TGO_SPACECRAFT frame. The NOMAD LNO Base frame is defined as follows (from [10]): - +Y axis is along the nominal spectrometer flip mirror rotation axis, and it is nominally co-aligned with the spacecraft +Z axis; - +Z axis is co-aligned with the -Y spacecraft axis and it is along the spectrometer boresight in "zero" scanning position; - +X axis completes the right-handed frame, and it is parallel to the detector array lines and the wide side of the slit; - the origin of this frame is located at the intersection of the spectrometer flip mirror rotation axis and mirror central axis. These diagrams illustrate the nominal TGO_NOMAD_LNO_BASE and the TGO_NOMAD_UVIS_BASE frame with respect to the spacecraft frame. -X S/C side (Main Engine side) view: ------------------------------------ ^ | toward Mars | +Znomad_lno_base ^ | | | Science deck +Ynomad_lno_base .|____________. .__ _____________<--------x | _______________ ___. | \ \ \ +Xnomad_lno_base| / \ \ | | / / \ | ___ | / / / | | \ \ `. | / _+Xsc | .' \ \ | | / / +Zsc <--------x) | |o | / / | | \ \ .' | \_|_/ | `. \ \ | | / / / | | | \ / / | .__\ \_______________/ | | | \_______________\ \__. +Z Solar Array ._____ v +Ysc . -Z Solar Array .' `. / \ . `. .' . +Xsc and | `o' | +Xnomad_lno_base . | . are into the page. \ | / `. .' HGA ` --- ' -Y S/C side (Science Deck side) view: ------------------------------------- _____ +Xnomad_lno_base ^ / \ EDM || | ._|___________. +Ynomad_lno_base | | | | <------o | | |__+Znomad_lno_base o==/ /==================o<| |>o==================/ /==o +Z Solar Array | | -Z Solar Array | | | +Xsc | | ^ | | | | | | | +Zsc .______|______. +Ysc is into the <-------x `. ME page; /______+Ysc \ +Znomad_lno_base is HGA `.|.' out of the page. Nominally, a single rotation of 90 degrees about +X spacecraft axis is required to align the TGO_SPACECRAFT to the TGO_NOMAD_LNO_BASE frame. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_TGO_NOMAD_LNO_BASE = -143300 FRAME_-143300_NAME = 'TGO_NOMAD_LNO_BASE' FRAME_-143300_CLASS = 4 FRAME_-143300_CLASS_ID = -143300 FRAME_-143300_CENTER = -143300 TKFRAME_-143300_RELATIVE = 'TGO_SPACECRAFT' TKFRAME_-143300_SPEC = 'ANGLES' TKFRAME_-143300_UNITS = 'DEGREES' TKFRAME_-143300_AXES = ( 3, 2, 1 ) TKFRAME_-143300_ANGLES = ( 0.0, 0.0, -90.0 ) \begintext NOMAD UVIS Base Frame ~~~~~~~~~~~~~~~~~~~~~ The NOMAD Ultraviolet and Visible Spectrometer (UVIS) is rigidly mounted on the spacecraft Science Deck. Therefore, the base frames associated with it -- the NOMAD UVIS Base frame, TGO_NOMAD_UVIS_BASE -- are specified as a fixed offset frame with its orientation given relative to the TGO_SPACECRAFT frame. The NOMAD UVIS Base frame is defined as follows (from [10]): - +Y axis is along the nominal spectrometer fibre optic switch rotation axis, and it is nominally co-aligned with the spacecraft +Z axis; - +Z axis is co-aligned with the -Y spacecraft axis and it is along the spectrometer boresight in "zero" scanning position; - +X axis completes the right-handed frame, and it is parallel to the detector array lines and the wide side of the slit; - the origin of this frame is located at the intersection of the spectrometer fibre optic switch rotation axis and mirror central axis. These diagrams illustrate the nominal TGO_NOMAD_UVIS_BASE frame with respect to the spacecraft frame. -X S/C side (HGA side) view: ---------------------------- ^ | toward Mars | +Znomad_uvis_base ^ | | | Science deck +Ynomad_uvis_base .|____________. .__ _____________<--------x | _______________ ___. | \ \ \ +Xnomad_uvis_base / \ \ | | / / \ | ___ | / / / | | \ \ `. | / _+Xsc | .' \ \ | | / / +Zsc <--------x) | |o | / / | | \ \ .' | \_|_/ | `. \ \ | | / / / | | | \ / / | .__\ \_______________/ | | | \_______________\ \__. +Z Solar Array ._____ v +Ysc . -Z Solar Array .' `. / \ . `. .' . +Xsc and | `o' | +Xnomad_uvis_base . | . are into the page. \ | / `. .' HGA ` --- ' -Y S/C side (Science Deck side) view: ------------------------------------- _____ +Xnomad_uvis_base ^ / \ EDM || | ._|___________. +Ynomad_uvis_base | | | | <------o | | |___'+Znomad_uvis_base o==/ /==================o<| |>o==================/ /==o +Z Solar Array | | -Z Solar Array | | | +Xsc | | ^ | | | | | | | +Zsc .______|______. +Ysc is into the <-------x `. ME page; /______+Ysc \ +Znomad_uvis_base is HGA `.|.' out of the page. Nominally, a single rotation of 90 degrees about +X spacecraft axis is required to align the TGO_SPACECRAFT to the TGO_NOMAD_UVIS_BASE frame. Since the SPICE frames subsystem calls for specifying the reverse transformation -- going from the instrument or structure frame to the base frame -- as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_TGO_NOMAD_UVIS_BASE = -143330 FRAME_-143330_NAME = 'TGO_NOMAD_UVIS_BASE' FRAME_-143330_CLASS = 4 FRAME_-143330_CLASS_ID = -143330 FRAME_-143330_CENTER = -143300 TKFRAME_-143330_RELATIVE = 'TGO_SPACECRAFT' TKFRAME_-143330_SPEC = 'ANGLES' TKFRAME_-143330_UNITS = 'DEGREES' TKFRAME_-143330_AXES = ( 3, 2, 1 ) TKFRAME_-143330_ANGLES = ( 0.0, 0.0, -90.0 ) \begintext NOMAD LNO flip mirror mechanism frame ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The NOMAD Limb Nadir and Occultation (LNO) spectrometer has a flip mirror that provides the possibility of observation in both nadir and solar occultation modes. Since this flip mirror rotates with respect to the LNO base, the TGO_NOMAD_LNO_FMM frame is defined as a CK frame with its orientation provided in a CK file relative to the TGO_NOMAD_LNO_BASE frames. The NOMAD LNO flip mirror mechanism frame -- TGO_NOMAD_LNO_FMM -- is defined as (from [10]): - +Y axis is along the nominal spectrometer flip mirror rotation axis, and it is nominally co-aligned with the spectrometer base +Y axis; - +Z axis is parallel to the flip mirror boresight that defines the spectrometer boresight; in 'nadir' flip mirror position is co-aligned with the -Y spacecraft axis; - +X axis completes the right-handed frame; and it is parallel to the detector array lines and the wide side of the slit; - the origin of this frame is located at the intersection of the spectrometer flip mirror rotation axis and mirror central axis. These diagrams illustrate the TGO_NOMAD_LNO_FMM frame for flip mirror positions 'nadir' ( 0.0 degrees) and solar 'occultation' (+67.07 deg from the spacecraft -Y axis to the -X in the XY plane). Both diagrams are +Z S/C side view: Flip mirror in 'nadir' position Flip mirror in 'occultation' position ------------------------------- ------------------------------------- +Zfmm +Zbase ^ +Zbase ^ | +Xfmm ^ | +Zfmm | Science \ |_~67deg .^ | NOMAD Deck NOMAD \ | \ .' Science Deck . _____|___________. . _____\| .'________. +Xfmm <-------o +Yfmm, +Ybase <-------o +Yfmm, +Ybase +Xbase ============o======== +Xbase ==========o======== SA+Z |__..--, SA+Z |__..--, | <-----o-..__| ME | <-----o-..__| ME | +Xsc || +Zsc | +Xsc || +Zsc ._________________.| .___________________.| o-o|/| o-o|/| \|V +Ysc \|V +Ysc o | : o | : \ |/ \ |/ \| \| HGA HGA +Zsc, +Ybase, and +Yfmm are out of the page; These sets of keywords define the NOMAD LNO flip mirror frames: \begindata FRAME_TGO_NOMAD_LNO_FMM = -143305 FRAME_-143305_NAME = 'TGO_NOMAD_LNO_FMM' FRAME_-143305_CLASS = 3 FRAME_-143305_CLASS_ID = -143305 FRAME_-143305_CENTER = -143300 CK_-143305_SCLK = -143 CK_-143305_SPK = -143 \begintext NOMAD LNO Detector Frame ~~~~~~~~~~~~~~~~~~~~~~~~~ Since the LNO detector receives radiation through the flip mirror, its frame TGO_NOMAD_LNO is defined to be nominally co-aligned with the LNO flip mirror frame TGO_NOMAD_LNO_FMM. This frame is introduced to allow incorporating into the LNO frame chain any misalignment between the flip mirror boresight direction and the detector view directions. Currently no misalignment data are available, and, therefore, the set of keywords below makes these frames co-aligned with their reference. \begindata FRAME_TGO_NOMAD_LNO = -143310 FRAME_-143310_NAME = 'TGO_NOMAD_LNO' FRAME_-143310_CLASS = 4 FRAME_-143310_CLASS_ID = -143310 FRAME_-143310_CENTER = -143300 TKFRAME_-143310_RELATIVE = 'TGO_NOMAD_LNO_FMM' TKFRAME_-143310_SPEC = 'ANGLES' TKFRAME_-143310_UNITS = 'DEGREES' TKFRAME_-143310_AXES = ( 1, 2, 3 ) TKFRAME_-143310_ANGLES = ( 0.0, 0.0, 0.0 ) \begintext NOMAD LNO nadir and occultation science operations frames ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Because the NOMAD LNO flip mirrors can be rotated to only a limited number of positions for external observations -- 'nadir' and 'occultation' -- a fixed frame co-aligned with the flip mirror frame in each of these positions is defined to allow computing mirror orientation without needing to use CK. IMPORTANT: Please note that using these frames will not reflect the behaviour of the LNO Detector and therefore these frames should only be used for science operations purposes. Each of these 'fixed-mirror-position science operations' frames is defined as a fixed offset frame with respect to the corresponding base frame for each of the spectrometers as follows (from [10]): - +Y axis is along the nominal spectrometer flip mirror rotation axis, and it is nominally co-aligned with the spectrometer base +Y axis; - +Z axis is parallel to the flip mirror boresight that defines the spectrometer boresight at a particular angle; - +X axis completes the right-handed frame; and it is parallel to the detector array lines and the wide side of the slit; - the origin of this frame is located at the intersection of the spectrometer flip mirror rotation axis and mirror central axis. These diagrams illustrate fixed mirror pointing directions co-aligned with the +Z axis of the corresponding 'fixed-mirror-position' frame: +Z S/C side view ---------------- +Z*nad ^ +Z*base ^ +Z*base | +X*occ ^ | +Z*occ | Science \ |_~67deg .^ | NOMAD Deck NOMAD \ | \ .' Science Deck ._____|___________. .____\| .'________. +X*nad <-------o +Y*nad, +Y*base <-------o +Y*occ, +Y*base +X*base ============o======== +X*base =========o======== SA+Z |__..--, SA+Z |__..--, | <-----o-..__| ME | <-----o-..__| ME | +Xsc || +Zsc | +Xsc || +Zsc ._________________.| ._________________.| o-o|/| o-o|/| \|V +Ysc \|V +Ysc o | : o | : \ |/ \ |/ \| \| HGA HGA +Zsc, +Y*base, +Y*nad and +Y*occ are out of the page; ``*base'' corresponds to ``nomad_lno_base''; ``*nad'' corresponds to ``nomad_lno_ops_nad''; and ``*occ'' corresponds to ``nomad_lno_ops_occ''. These 'fixed-mirror-position operations' frames are nominally rotated about the +Y axis of the corresponding spectrometer base frames by the following angles: Frame name Rotation Angle, deg ---------------------- ------------------- TGO_NOMAD_LNO_OPS_NAD 0.00 TGO_NOMAD_LNO_OPS_OCC -67.07 The following in-flight calibrated misalignment boresight was provided by Ian Thomas on July 26, 2016 [15] and on May 16, 2017 [19]: NOMAD_LNO_OPS_NAD Boresight: ( -0.001047198, -0.9999786, 0.006457718 ) NOMAD_LNO_OPS_OCC Boresight: ( -0.92148, -0.38838, 0.00628 ) These boresights are relative to the TGO_SPACECRAFT frame. Given these boresights the rotation from the TGO_NOMAD_LNO_BASE frame to the TGO_NOMAD_LNO_NAD and TGO_NOMAD_LNO_NAD frames determined from the in-flight calibration data can be represented by the following rotation angles in degrees: nad M |0.0| * |-0.06000003670468607| * |-0.37000276139181304| base Z Y X occ M = |0.0| * |-67.1431540428917| * |-0.9263765923679103| base Z Y X Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_TGO_NOMAD_LNO_OPS_NAD = -143311 FRAME_-143311_NAME = 'TGO_NOMAD_LNO_OPS_NAD' FRAME_-143311_CLASS = 4 FRAME_-143311_CLASS_ID = -143311 FRAME_-143311_CENTER = -143300 TKFRAME_-143311_RELATIVE = 'TGO_NOMAD_LNO_BASE' TKFRAME_-143311_SPEC = 'ANGLES' TKFRAME_-143311_UNITS = 'DEGREES' TKFRAME_-143311_AXES = ( 1, 2, 3 ) TKFRAME_-143311_ANGLES = ( +0.37000276139181304, +0.06000003670468607, +0.00000000000000000 ) FRAME_TGO_NOMAD_LNO_OPS_OCC = -143312 FRAME_-143312_NAME = 'TGO_NOMAD_LNO_OPS_OCC' FRAME_-143312_CLASS = 4 FRAME_-143312_CLASS_ID = -143312 FRAME_-143312_CENTER = -143300 TKFRAME_-143312_RELATIVE = 'TGO_NOMAD_LNO_BASE' TKFRAME_-143312_SPEC = 'ANGLES' TKFRAME_-143312_UNITS = 'DEGREES' TKFRAME_-143312_AXES = ( 1, 2, 3 ) TKFRAME_-143312_ANGLES = ( +0.9263765923679103, +67.1431540428917, +0.0000000000000000 ) \begintext NOMAD UVIS nadir and occultation frames ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Because the NOMAD LNO UVIS fibre optic switch can only adopt a limited number of positions for external observations -- 'nadir' and 'occultation' -- a fixed frame co-aligned with the fibre optic switch frame in each of these positions is defined to allow computing mirror orientation without needing to use CK. Each of these 'fixed-switch-position' frames is defined as a fixed offset frame with respect to the corresponding base frame for each of the spectrometers as follows (from [10]): - +Y axis is along the nominal spectrometer fibre optic switch rotation axis, and it is nominally co-aligned with the spectrometer base +Y axis; - +Z axis is parallel to the fibre optic switch boresight that defines the spectrometer boresight at a particular angle; - +X axis completes the right-handed frame; and it is parallel to the detector array lines and the wide side of the slit; - the origin of this frame is located at the intersection of the spectrometer optic fibre switch rotation axis and mirror central axis. These diagram illustrates fixed mirror pointing directions co-aligned with the +Z axis of the corresponding 'fixed-mirror-position' frame: +Z S/C side view ---------------- +Z*nad ^ +Z*base ^ +Z*base | +X*occ ^ | +Z*occ | Science \ |_~67deg .^ | NOMAD Deck NOMAD \ | \ .' Science Deck ._____|___________. .____\| .'________. +X*nad <-------o +Y*nad, +Y*base <-------o +Y*occ, +Y*base +X*base ============o======== +X*base =========o======== SA+Z |__..--, SA+Z |__..--, | <-----o-..__| ME | <-----o-..__| ME | +Xsc || +Zsc | +Xsc || +Zsc ._________________.| ._________________.| o-o|/| o-o|/| \|V +Ysc \|V +Ysc o | : o | : \ |/ \ |/ \| \| HGA HGA +Zsc, +Y*base, +Y*nad and +Y*occ are out of the page; ``*base'' corresponds to ``nomad_uvis_base''; ``*nad'' corresponds to ``nomad_uvis_nad''; and ``*occ'' corresponds to ``nomad_uvis_occ''. These 'fixed-mirror-position' frames are nominally rotated about the +Y axis of the corresponding spectrometer base frames by the following angles: Frame name Rotation Angle, deg ---------------------- ------------------- TGO_NOMAD_UVIS_NAD 0.00 TGO_NOMAD_UVIS_OCC -67.07 The following in-flight calibrated misalignment boresights were provided by Ian Thomas on July 26, 2016 [15]; September 16, 2016 [18]; May 16, 2017 [19] and on June 13 2018 [22]: NOMAD_UVIS_NAD: ( -0.002312108759, -0.999990516156, 0.003690765731 ) NOMAD_UVIS_OCC: ( -0.922221097920913,-0.386613383297695,0.006207330031467 ) These boresights are relative to the TGO_SPACECRAFT frame. Given these boresights the rotation from the TGO_NOMAD_UVIS_BASE frame to the TGO_NOMAD_UVIS_NAD and TGO_NOMAD_UVIS_NAD frames determined from the in-flight calibration data can be represented by the following rotation angles in degrees: nad M = |0.0| * |-0.13247419169719835| * |-0.21146634488534072| base Z Y X occ M = |0.0| * |-67.25296897005113| * |-0.9198420756243424| base Z Y X Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_TGO_NOMAD_UVIS_NAD = -143331 FRAME_-143331_NAME = 'TGO_NOMAD_UVIS_NAD' FRAME_-143331_CLASS = 4 FRAME_-143331_CLASS_ID = -143331 FRAME_-143331_CENTER = -143300 TKFRAME_-143331_RELATIVE = 'TGO_NOMAD_UVIS_BASE' TKFRAME_-143331_SPEC = 'ANGLES' TKFRAME_-143331_UNITS = 'DEGREES' TKFRAME_-143331_AXES = ( 1, 2, 3 ) TKFRAME_-143331_ANGLES = ( +0.21146634488534072, +0.13247419169719835, +0.00000000000000000 ) FRAME_TGO_NOMAD_UVIS_OCC = -143332 FRAME_-143332_NAME = 'TGO_NOMAD_UVIS_OCC' FRAME_-143332_CLASS = 4 FRAME_-143332_CLASS_ID = -143332 FRAME_-143332_CENTER = -143300 TKFRAME_-143332_RELATIVE = 'TGO_NOMAD_UVIS_BASE' TKFRAME_-143332_SPEC = 'ANGLES' TKFRAME_-143332_UNITS = 'DEGREES' TKFRAME_-143332_AXES = ( 1, 2, 3 ) TKFRAME_-143332_ANGLES = ( +0.9198420756243424, +67.252968970051130, +0.0000000000000000 ) \begintext NOMAD Solar Occultation (SO) spectrometer frame: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The NOMAD Solar Occultation (SO) spectrometer is rigidly mounted on the spacecraft Science Deck. Therefore, the frame associated with it -- the NOMAD SO frame, TGO_NOMAD_SO -- is specified as a fixed offset frame with its orientation given relative to the TGO_SPACECRAFT frame. The NOMAD SO spectrometer operates in occultation mode only and its boresight is pointing approximately +67.07 deg from the spacecraft -Y axis to the -X in the XY plane. Therefore, the NOMAD SO frame is defined as follows (from [10]): - +Z axis is parallel to the spectrometer boresight, pointing approximately at +67.07 degrees from the spacecraft -Y axis towards the -X axis in the XY plane; - +X axis is parallel to the spectrometer detector array's lines, and it is approximately at +67.07 degrees from the spacecraft +X axis; - +Y axis completes the right-handed frame and it is nominally aligned with the spacecraft +Z axis; - the origin of this frame is located at geometrical centre of the first folding mirror at the entry optics of the spectrometer. This diagrams illustrates the nominal TGO_NOMAD_SO frame with respect to the spacecraft frame. +Z S/C side view ---------------- 'Nadir' Towards Mars ^ +Xso ^ | +Zso \ |_~67deg .^ NOMAD \ | \ .' Science Deck ._____\| .'________. | o +Yso | ============o======= SA+Z |__..--, | <-----o-..__| ME | +Xsc || +Zsc ._________________.| +Zsc and +Yso are o-o|/| out of the page. \|V +Ysc o | : \ |/ \| HGA Nominally, a rotation of 90 degrees about +X spacecraft axis and then a rotation of -67.07 degrees about the +Y spacecraft axis are required to align the TGO_SPACECRAFT to the TGO_NOMAD_SO frames. The following in-flight calibrated misalignment boresight was provided by Ian Thomas on July 26, 2016 [15] and June 13, 2018 [22]: NOMAD_SO Boresight: ( -0.9218973, -0.38738526, 0.00616719 ) This boresight is relative to the TGO_SPACECRAFT frame. Given this boresight the rotation from the TGO_SPACECRAFT frame to the TGO_NOMAD_SO frame determined from the in-flight calibration data can be represented by the following rotation angles in degrees: so M = |0.0| * |-67.20504912816348| * |89.0879257751404| sc Z Y X Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_TGO_NOMAD_SO = -143320 FRAME_-143320_NAME = 'TGO_NOMAD_SO' FRAME_-143320_CLASS = 4 FRAME_-143320_CLASS_ID = -143320 FRAME_-143320_CENTER = -143300 TKFRAME_-143320_RELATIVE = 'TGO_SPACECRAFT' TKFRAME_-143320_SPEC = 'ANGLES' TKFRAME_-143320_UNITS = 'DEGREES' TKFRAME_-143320_AXES = ( 1, 2, 3 ) TKFRAME_-143320_ANGLES = ( -89.08792577514040 +67.20504912816348, +0.000000000000000 ) \begintext CaSSIS Frames ------------------------------------------------------------------------ This section of the file contains the definitions of the Colour and Stereo Surface Imaging System (CaSSIS) instrument frames. CaSSIS Frame Tree ~~~~~~~~~~~~~~~~~ The diagram below shows the CaSSIS frame hierarchy. "J2000" INERTIAL +-----------------------------------------------------+ | | | |<-pck | |<-pck | | | V | V "IAU_MARS" | "IAU_EARTH" MARS BODY-FIXED |<-ck EARTH BODY-FIXED --------------- | ---------------- V "TGO_SPACECRAFT" ---------------- | |<-fixed | V "TGO_CASSIS_CRU" ---------------- | |<-ck | V "TGO_CASSIS_TEL" ---------------- | |<-fixed | "TGO_CASSIS_FSA" ---------------- CaSSIS Camera Rotation Unit frame ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The CaSSIS Camera Rotation Unit (CRU) is rigidly mounted on the spacecraft Science Deck. Therefore, the frame associated with it -- the CaSSIS CRU frame, TGO_CASSIS_CRU -- is specified as a fixed offset frame relative with its orientation given relative to the TGO_SPACECRAFT frame. The CaSSIS CRU frame is defined by the camera rotation unit design and its mounting on the spacecraft as follows (from [5]): - +Y axis is along the nominal CaSSIS CRU rotation axis, and it is nominally co-aligned with the spacecraft -Y axis - +Z axis is co-aligned with the +Z spacecraft axis; - +X axis completes the right-handed frame; - the origin of the frame is located at the center of the CaSSIS reference hole (RH) at the instrument's interface plane, i.e. the unit mounting plane to the spacecraft. Any misalignment between the nominal and actual CaSSIS CRU rotation axis measured pre-launch or during in-flight calibration should be incorporated into the definition of this frame. These diagrams illustrate the nominal TGO_CASSIS_CRU frame with respect to the spacecraft frame. -X S/C side (Main Engine side) view: ------------------------------------ ^ | toward Mars +Ycru ^ | | Science deck +Zcru .|____________. .__ _____________<--------o | .______________ ___. | \ \ \ +Xcru | / \ \ | | / / \ | ___ | / / / | | \ \ `. | / _+Xsc | .' \ \ | | / / +Zsc <--------x) | |o | / / | | \ \ .' | \_|_/ | `. \ \ | | / / / | | | \ / / | .__\ \_______________/ | | | \_______________\ \__. +Z Solar Array ._____ v +Ysc . -Z Solar Array .' `. / \ . `. .' . +Xsc is into | `o' | the page and +Xcru . | . is out of the page. \ | / `. .' HGA ` --- ' -Y S/C side (Science Deck side) view: ------------------------------------- _____ / \ EDM | | ._____________. | | | | | | o==/ /==================o<| |>o==================/ /==o +Z Solar Array |--. | -Z Solar Array <--------o|+Ycru | +Zcru |-|' | | | ^ +Xsc | | | | | +Xcru v | | +Ysc is into the +Zsc .______|______. page; +Ycru is out <-------x `. ME of the page /______+Ysc \ HGA `.|.' +Z CaSSIS Rotation Unit side view (motor in "Launch" position: 180 deg): ---------------------------------------------------------------------------- <-------x +Zsc +Xcru +Ysc | ^ | | | | +Xsc v .-|. . |.|| . ' / ||| ______________ . ' / /-|-. .-| ___ ____ ' \ , /' | | | | / \ / '. '.\ / / | | | | || || ' ' .' .-----. | | | | || || '. '. /___, ,| | | | || || '. '. / / | | |= | | \___/ \_____________/ '. +Ycru / \ | x---------------------------------------------> / '+Zcru| |.| / | | rotation axis | | | / | | '-'_._____| |_______' '________' | | / | | | | .--- .------. '-' / '----| | | , -- . '. \ \_.-. / | | | | '. '. \ | | /__________________| '-'_ | '. . | | | || |.--.| \ \______________. | | || || || \ .-------------------------'-' .-----''-------------''--''--------. \| | | '----------------------------------' +Zsc and +Zcru are into the page. Nominally, a single rotation of 180 degrees about +Z axis is required to co-align the TGO_CASSIS_CRU and the TGO_SPACECRAFT frames. The current rotation is derived form Mars Commissioning data and data from MTP000 (MCO, bands misalignment is <2 pixel) 21]. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_TGO_CASSIS_CRU = -143400 FRAME_-143400_NAME = 'TGO_CASSIS_CRU' FRAME_-143400_CLASS = 4 FRAME_-143400_CLASS_ID = -143400 FRAME_-143400_CENTER = -143400 TKFRAME_-143400_RELATIVE = 'TGO_SPACECRAFT' TKFRAME_-143400_SPEC = 'ANGLES' TKFRAME_-143400_UNITS = 'DEGREES' TKFRAME_-143400_AXES = ( 1, 2, 3 ) TKFRAME_-143400_ANGLES = ( 0.021, 0.120, -179.881 ) \begintext CaSSIS Telescope frame ~~~~~~~~~~~~~~~~~~~~~~ The CaSSIS telescope rotates counterclockwise around the +Y CaSSIS Camera Rotation Unit by an angle commanded from ground which ranges from 0 degrees in the homing position to 360.0 degrees at the end of the range. The CaSSIS Telescope frame is defined by the camera rotation unit design as follows (from [5]): - +Y axis is along the nominal CaSSIS CRU rotation axis, and it is 'zero' position is co-aligned with the TGO_CASSIS_CRU +Y axis - +Z axis is co-aligned with the TGO_CASSIS_CRU +Z axis, when the motor is in its 'zero' position; - +X axis completes the right-handed frame; - the origin of the frame is located at the focal point of the CaSSIS telescope. This diagram illustrates the TGO_CASSIS_TEL frame with respect to the TGO_CASSIS_CRU frame for different motor rotations. +Y CaSSIS Camera Rotation Unit view: ------------------------------------ ^ +Xtel ^ +Xcru 0 deg | | position | | ....|.... | .' | `. | +Zcru .' | `. o---------> ' | ' +Ycru . | . . | . 90 deg ---- . o--------------> +Ztel position . +Ytel . . . .-'. .'-. ' . . ' 120 deg `. .' 240 deg position ` ......... ' position | | 180 deg position ^ +Xsc | | +Ytel and +Ycru are out of | the page; +Ysc is into | the page. <--------x +Zsc +Ysc For an arbitrary scanner angle, the TGO_CASSIS_TEL frame is rotated by this angle about the +Y axis with respect to the TGO_CASSIS_CRU frame. This set of keywords define the CaSSIS Telescope frame: \begindata FRAME_TGO_CASSIS_TEL = -143410 FRAME_-143410_NAME = 'TGO_CASSIS_TEL' FRAME_-143410_CLASS = 3 FRAME_-143410_CLASS_ID = -143410 FRAME_-143410_CENTER = -143300 CK_-143410_SCLK = -143 CK_-143410_SPK = -143 \begintext CaSSIS Filter Strip Assembly (FSA) frame: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The CaSSIS Camera Rotation Unit is designed to support quasi-simultaneous stereo imaging by aligning the image columns to the orbital track (see [6]). Above the detector surface, a filter strip is placed in order providing images in 4 different wavelength bands. The CaSSIS Filter Strip Assembly -- TGO_CASSIS_FSA frame is defined based on the telescope pointing axis and the detector surface orientation as follows: - +Z axis points along the telescope optical boresight; - +X axis is aligned to the detector rows; and it is nominally aligned to the +Ztel axis. - +Y axis is aligned to the detector columns; - the origin of the frame is located at the focal point of the CaSSIS telescope. The CaSSIS telescope optical boresight nominally points 10 degrees off from the CaSSIS rotation axis -- TGO_CASSIS_TEL +Y axis, towards the + X TGO_CASSIS_TEL axis. This diagram illustrates the TGO_CASSIS_FSA frame with respect to the TGO_CASSIS_TEL frame. +Z CaSSIS Rotation Unit side view: ---------------------------------- ^ +Ytel (rotation axis) ^ | towards Mars \ | +Zfsa \ | .---------. \ .----|-. .---------| .> +Ysfa \ '----|-'.' .-. | .' .. \ / | .' | .' \ `. \ .. |-. .' .'.'| \ `. / \/ | | | | .'.' | \ `/ /\ | | | | .'.' . | \ / / \| | | |.'.' .' | | \/ / \ | | .' .' | | / / |\ |.'.' | | | | | | \|.' . | | | | | | o +Xfsa | | | | | |' | | | | | \___.' | | | | | | ____ | | | | | | / \ | | | | | | | | |----' '-----' '__ | | | |---. .' +Ztel and +Xfsa | | | | | .' are out of the page | | | | |.________' | \____/ |---'|'------' '____________|____' '-----------|---' +Xtel o--------------------------> +Ztel Nominally, the off-pointing from the CaSSIS Filter Strip Assembly boresight and the CaSSIS Telescope rotation axis is 10 degrees towards the -X CaSSIS Telescope axis. During the geometrical measurements performed before the integration on the spacecraft, the angle between the rotation axis and the instrument optical boresight at 5 different positions (see p.34 of [6]) was: alpha = 9.89 +/- 0.1 degrees Therefore, in order to transform the CaSSIS Telescope frame into the CaSSIS Filter Strip Assembly frame, first an initial rotation of -90 degrees about the +Y axis is required, followed by a -80.11 degrees rotation about the resulting +X axis. Later on as a result from the Mars Commissioning and MTP000 science data it the rotations have been adjusted [21]. Since the SPICE frames subsystem calls for specifying the reverse transformation--going from the instrument or structure frame to the base frame--as compared to the description given above, the order of rotations assigned to the TKFRAME_*_AXES keyword is also reversed compared to the above text, and the signs associated with the rotation angles assigned to the TKFRAME_*_ANGLES keyword are the opposite from what is written in the above text. \begindata FRAME_TGO_CASSIS_FSA = -143420 FRAME_-143420_NAME = 'TGO_CASSIS_FSA' FRAME_-143420_CLASS = 4 FRAME_-143420_CLASS_ID = -143420 FRAME_-143420_CENTER = -143400 TKFRAME_-143420_RELATIVE = 'TGO_CASSIS_TEL' TKFRAME_-143420_SPEC = 'ANGLES' TKFRAME_-143420_UNITS = 'DEGREES' TKFRAME_-143420_AXES = ( 2, 1, 3 ) TKFRAME_-143420_ANGLES = ( 89.714, 80.005, 0.168 ) \begintext TGO NAIF ID Codes -- Definitions =============================================================================== This section contains name to NAIF ID mappings for the ExoMars 2016 mission. Once the contents of this file is loaded into the KERNEL POOL, these mappings become available within SPICE, making it possible to use names instead of ID code in the high level SPICE routine calls. Name ID Synonyms --------------------- ------- ----------------------- Spacecraft: ----------- TGO -143 TRACE GAS ORBITER EXOMARS 2016 TGO EXOMARS TGO TGO_SPACECRAFT -143000 TGO_SPACECRAFT_C1 -143501 TGO_SPACECRAFT_C2 -143502 TGO_SPACECRAFT_C3 -143503 TGO_SPACECRAFT_C4 -143504 TGO_SPACECRAFT_C5 -143505 TGO_SPACECRAFT_C6 -143506 TGO_SPACECRAFT_C7 -143507 TGO_SPACECRAFT_C8 -143508 TGO_SPACECRAFT_C9 -143509 TGO_SPACECRAFT_C10 -143510 TGO_SPACECRAFT_C11 -143511 TGO_SPACECRAFT_C12 -143512 TGO_HGA_STOWED -143020 TGO_HGA_APM -143022 TGO_HGA -143025 TGO_LGA+Z -143031 TGO_LGA-Z -143032 TGO_LGA+X -143033 TGO_STR-1 -143041 TGO_STR-2 -143042 TGO_SA+Z_GIMBAL -143060 TGO_SA+Z_C1 -143061 TGO_SA+Z_C2 -143062 TGO_SA+Z_C3 -143063 TGO_SA+Z_C4 -143064 TGO_SA-Z_GIMBAL -143070 TGO_SA-Z_C1 -143071 TGO_SA-Z_C2 -143072 TGO_SA-Z_C3 -143073 TGO_SA-Z_C4 -143074 ACS: ---- TGO_ACS -143100 TGO_ACS_NIR_NAD -143111 TGO_ACS_NIR_OCC -143112 TGO_ACS_MIR -143120 TGO_ACS_TIRVIM -143130 TGO_ACS_TIRVIM_SCAN_BBY -143131 TGO_ACS_TIRVIM_SCAN_SPC -143132 TGO_ACS_TIRVIM_SCAN_NAD -143133 TGO_ACS_TIRVIM_SCAN_OCC -143134 TGO_ACS_TIRVIM_SUN -143140 TGO_ACS_TIRVIM_SUN_BSR -143141 FREND: ------ TGO_FREND -143200 TGO_FREND_HE -143210 TGO_FREND_SC -143220 NOMAD: ------ TGO_NOMAD -143300 TGO_NOMAD_LNO -143310 TGO_NOMAD_LNO_OPS_NAD -143311 TGO_NOMAD_LNO_OPS_OCC -143312 TGO_NOMAD_SO -143320 TGO_NOMAD_UVIS_NAD -143331 TGO_NOMAD_UVIS_OCC -143332 CaSSIS: ------- TGO_CASSIS -143400 TGO_CASSIS_PAN -143421 TGO_CASSIS_RED -143422 TGO_CASSIS_NIR -143423 TGO_CASSIS_BLU -143424 The mappings summarized in this table are implemented by the keywords below. \begindata NAIF_BODY_NAME += ( 'TRACE GAS ORBITER' ) NAIF_BODY_CODE += ( -143 ) NAIF_BODY_NAME += ( 'EXOMARS TGO' ) NAIF_BODY_CODE += ( -143 ) NAIF_BODY_NAME += ( 'EXOMARS 2016 TGO' ) NAIF_BODY_CODE += ( -143 ) NAIF_BODY_NAME += ( 'TGO' ) NAIF_BODY_CODE += ( -143 ) NAIF_BODY_NAME += ( 'TGO_PLAN' ) NAIF_BODY_CODE += ( -143999 ) NAIF_BODY_NAME += ( 'TGO PLAN' ) NAIF_BODY_CODE += ( -143999 ) NAIF_BODY_NAME += ( 'TGO_SPACECRAFT' ) NAIF_BODY_CODE += ( -143000 ) NAIF_BODY_NAME += ( 'TGO_SPACECRAFT_C1' ) NAIF_BODY_CODE += ( -143501 ) NAIF_BODY_NAME += ( 'TGO_SPACECRAFT_C2' ) NAIF_BODY_CODE += ( -143502 ) NAIF_BODY_NAME += ( 'TGO_SPACECRAFT_C3' ) NAIF_BODY_CODE += ( -143503 ) NAIF_BODY_NAME += ( 'TGO_SPACECRAFT_C4' ) NAIF_BODY_CODE += ( -143504 ) NAIF_BODY_NAME += ( 'TGO_SPACECRAFT_C5' ) NAIF_BODY_CODE += ( -143505 ) NAIF_BODY_NAME += ( 'TGO_SPACECRAFT_C6' ) NAIF_BODY_CODE += ( -143506 ) NAIF_BODY_NAME += ( 'TGO_SPACECRAFT_C7' ) NAIF_BODY_CODE += ( -143507 ) NAIF_BODY_NAME += ( 'TGO_SPACECRAFT_C8' ) NAIF_BODY_CODE += ( -143508 ) NAIF_BODY_NAME += ( 'TGO_SPACECRAFT_C9' ) NAIF_BODY_CODE += ( -143509 ) NAIF_BODY_NAME += ( 'TGO_SPACECRAFT_C10' ) NAIF_BODY_CODE += ( -143510 ) NAIF_BODY_NAME += ( 'TGO_SPACECRAFT_C11' ) NAIF_BODY_CODE += ( -143511 ) NAIF_BODY_NAME += ( 'TGO_SPACECRAFT_C12' ) NAIF_BODY_CODE += ( -143512 ) NAIF_BODY_NAME += ( 'TGO_HGA_STOWED' ) NAIF_BODY_CODE += ( -143020 ) NAIF_BODY_NAME += ( 'TGO_HGA_APM' ) NAIF_BODY_CODE += ( -143022 ) NAIF_BODY_NAME += ( 'TGO_HGA' ) NAIF_BODY_CODE += ( -143025 ) NAIF_BODY_NAME += ( 'TGO_LGA+Z' ) NAIF_BODY_CODE += ( -143031 ) NAIF_BODY_NAME += ( 'TGO_LGA-Z' ) NAIF_BODY_CODE += ( -143032 ) NAIF_BODY_NAME += ( 'TGO_LGA+X' ) NAIF_BODY_CODE += ( -143033 ) NAIF_BODY_NAME += ( 'TGO_STR-1' ) NAIF_BODY_CODE += ( -143041 ) NAIF_BODY_NAME += ( 'TGO_STR-2' ) NAIF_BODY_CODE += ( -143042 ) NAIF_BODY_NAME += ( 'TGO_SA+Z_GIMBAL' ) NAIF_BODY_CODE += ( -143060 ) NAIF_BODY_NAME += ( 'TGO_SA+Z' ) NAIF_BODY_CODE += ( -143011 ) NAIF_BODY_NAME += ( 'TGO_SA+Z_C1' ) NAIF_BODY_CODE += ( -143061 ) NAIF_BODY_NAME += ( 'TGO_SA+Z_C2' ) NAIF_BODY_CODE += ( -143062 ) NAIF_BODY_NAME += ( 'TGO_SA+Z_C3' ) NAIF_BODY_CODE += ( -143063 ) NAIF_BODY_NAME += ( 'TGO_SA+Z_C4' ) NAIF_BODY_CODE += ( -143064 ) NAIF_BODY_NAME += ( 'TGO_SA-Z_GIMBAL' ) NAIF_BODY_CODE += ( -143070 ) NAIF_BODY_NAME += ( 'TGO_SA-Z' ) NAIF_BODY_CODE += ( -143013 ) NAIF_BODY_NAME += ( 'TGO_SA-Z_C1' ) NAIF_BODY_CODE += ( -143071 ) NAIF_BODY_NAME += ( 'TGO_SA-Z_C2' ) NAIF_BODY_CODE += ( -143072 ) NAIF_BODY_NAME += ( 'TGO_SA-Z_C3' ) NAIF_BODY_CODE += ( -143073 ) NAIF_BODY_NAME += ( 'TGO_SA-Z_C4' ) NAIF_BODY_CODE += ( -143074 ) NAIF_BODY_NAME += ( 'TGO_ACS' ) NAIF_BODY_CODE += ( -143100 ) NAIF_BODY_NAME += ( 'TGO_ACS_NIR_NAD' ) NAIF_BODY_CODE += ( -143111 ) NAIF_BODY_NAME += ( 'TGO_ACS_NIR_OCC' ) NAIF_BODY_CODE += ( -143112 ) NAIF_BODY_NAME += ( 'TGO_ACS_MIR' ) NAIF_BODY_CODE += ( -143120 ) NAIF_BODY_NAME += ( 'TGO_ACS_TIRVIM' ) NAIF_BODY_CODE += ( -143130 ) NAIF_BODY_NAME += ( 'TGO_ACS_TIRVIM_SCAN_BBY' ) NAIF_BODY_CODE += ( -143131 ) NAIF_BODY_NAME += ( 'TGO_ACS_TIRVIM_SCAN_SPC' ) NAIF_BODY_CODE += ( -143132 ) NAIF_BODY_NAME += ( 'TGO_ACS_TIRVIM_SCAN_NAD' ) NAIF_BODY_CODE += ( -143133 ) NAIF_BODY_NAME += ( 'TGO_ACS_TIRVIM_SCAN_OCC' ) NAIF_BODY_CODE += ( -143134 ) NAIF_BODY_NAME += ( 'TGO_ACS_TIRVIM_SCAN_OCC_BS' ) NAIF_BODY_CODE += ( -143135 ) NAIF_BODY_NAME += ( 'TGO_ACS_TIRVIM_SUN' ) NAIF_BODY_CODE += ( -143140 ) NAIF_BODY_NAME += ( 'TGO_ACS_TIRVIM_SUN_BSR' ) NAIF_BODY_CODE += ( -143141 ) NAIF_BODY_NAME += ( 'TGO_FREND' ) NAIF_BODY_CODE += ( -143200 ) NAIF_BODY_NAME += ( 'TGO_FREND_HE' ) NAIF_BODY_CODE += ( -143210 ) NAIF_BODY_NAME += ( 'TGO_FREND_SC' ) NAIF_BODY_CODE += ( -143220 ) NAIF_BODY_NAME += ( 'TGO_NOMAD' ) NAIF_BODY_CODE += ( -143300 ) NAIF_BODY_NAME += ( 'TGO_NOMAD_LNO' ) NAIF_BODY_CODE += ( -143310 ) NAIF_BODY_NAME += ( 'TGO_NOMAD_LNO_OPS_NAD' ) NAIF_BODY_CODE += ( -143311 ) NAIF_BODY_NAME += ( 'TGO_NOMAD_LNO_OPS_OCC' ) NAIF_BODY_CODE += ( -143312 ) NAIF_BODY_NAME += ( 'TGO_NOMAD_SO' ) NAIF_BODY_CODE += ( -143320 ) NAIF_BODY_NAME += ( 'TGO_NOMAD_UVIS_NAD' ) NAIF_BODY_CODE += ( -143331 ) NAIF_BODY_NAME += ( 'TGO_NOMAD_UVIS_OCC' ) NAIF_BODY_CODE += ( -143332 ) NAIF_BODY_NAME += ( 'TGO_CASSIS' ) NAIF_BODY_CODE += ( -143400 ) NAIF_BODY_NAME += ( 'TGO_CASSIS_PAN' ) NAIF_BODY_CODE += ( -143421 ) NAIF_BODY_NAME += ( 'TGO_CASSIS_RED' ) NAIF_BODY_CODE += ( -143422 ) NAIF_BODY_NAME += ( 'TGO_CASSIS_NIR' ) NAIF_BODY_CODE += ( -143423 ) NAIF_BODY_NAME += ( 'TGO_CASSIS_BLU' ) NAIF_BODY_CODE += ( -143424 ) \begintext End of FK file.