
ESA UNCLASSIFIED – For ESA Official Use Only

Prepared by Jaime Fernández Diz

Document Type MAN - Manual / User Guide / Handbook

Reference CITGCV

Issue/Revision 1 1.

Date of Issue 11/05/2022

Status Draft

COMET INTERCEPTOR TRAJECTORY GENERATOR FOR

COSMOGRAPHIA VISUALIZATION.

ESA UNCLASSIFIED – For ESA Official Use Only

Page 2/12

APPROVAL

Title Comet interceptor trajectory generator for cosmographia visualization.

Issue Number 1 Revision Number

Author Jaime Fernández Diz Date 11/05/2022

Approved By Date of Approval

CHANGE LOG

Reason for change Issue Nr Revision Number Date

Initial release 1 1 11/05/2022

CHANGE RECORD

Issue Number 1 Revision Number

Reason for change Date Pages Paragraph(s)

DISTRIBUTION

Name/Organisational Unit

ESA UNCLASSIFIED – For ESA Official Use Only

Page 3/12

Table of Contents

List of tables ... 3

List of figures ... 3

1. Introduction .. 4

2. Set up .. 4

3. User guide ... 5

4. Algorithms and conventions ... 7

4.1. Comet interceptor A trajectory. ... 7

4.2. Comet interceptor B1 and B2 trajectory. ... 10

5. Suggested improvements .. 12

List of tables

Table 1: Inputs required for the program.. 6

List of figures

Figure 1: Remove “_local” from line 5 in this file. ... 4

Figure 2: In line 9, substitute the two dots with the full path to the kernels folder. 5

Figure 3: Default velocity for a closest approach not aligned with X. 8

Figure 4. Default velocity for a closest approach aligned with X. ... 8

Figure 5: Geometry for B1 and B2 closest approach ... 11

ESA UNCLASSIFIED – For ESA Official Use Only

Page 4/12

1. INTRODUCTION

In the framework of the Comet Interceptor mission, a parametric trajectory generator for

Cosmographia is developed. This document aims to explain the main functionalities of the

current version of said software, as well as the algorithm and conventions taken for its

development, and suggestions on future improvements to implement.

2. SET UP

To visualize pre-generated trajectories on Cosmographia, two elements are needed: Spice

Enhanced Cosmographia, and the cosmos repository for the Comet Interceptor mission.

Cosmographia can be downloaded from this webpage, and the repository of Comet Interceptor

from this one. If the parametric trajectory generator is going to be used, python 3 is also

needed, and the mkspk app provided by naif here (choose the proper operative system).

Once all the elements are downloaded, some modifications have to be done to the git

repository:

• In comet-interceptor/misc/cosmo/spice_interceptor.json, change the “spiceKernels”

variable to “../../kernels/mk/interceptor_study_v02.tm” (remove the _local part of the

name).

Figure 1: Remove “_local” from line 5 in this file.

• In comet-interceptor/kernels/mk/interceptor_study_v02.tm and comet-

interceptor/kernels/mk/interceptor_study_parametric.tm, change the PATH_VALUES to

the absolute path to the kernels folder.

https://naif.jpl.nasa.gov/naif/cosmographia_components.html
https://repos.cosmos.esa.int/socci/projects/SPICE_KERNELS/repos/comet-interceptor/browse
https://naif.jpl.nasa.gov/naif/utilities.html

ESA UNCLASSIFIED – For ESA Official Use Only

Page 5/12

Figure 2: In line 9, substitute the two dots with the full path to the kernels folder.

Now the setup is finished. To see the predefined trajectories of the spacecrafts, in

cosmographia the file load_interceptor_001.json, located in comet-interceptor/misc/cosmo

should be loaded. For generating a new trajectory, the inputs of the

trajectory_generator_v02.py should be updated in the source code according to the user’s

needs and the code should be run. In order to see the last user defined trajectory, the file

load_interceptor_parametric.json can be imported like for predefined trajectories.

3. USER GUIDE

The goal of the program is to generate a trajectory for the Comet Interceptor Spacecraft A and

B1 and B2 probes.

The central body must be the comet 8P (it is not possible to simulate a heliocentric trajectory

with this code). The reference frame on which the trajectory is defined is the

“INTERCEPTOR_TUTTLE_ION”, a reference frame defined for Comet Interceptor mission,

whose z axis points towards the Sun, the x axis is the component of the velocity of the comet

with regard to the Sun orthogonal to the z axis, and the y axis completes the right handed

frame.

The program takes 14 inputs for trajectory generation and 9 more for selecting the observation

dates of each instrument. The inputs are explained in the table below:

ESA UNCLASSIFIED – For ESA Official Use Only

Page 6/12

Input Type Description

relative_velocity Scalar Velocity of the spacecraft A relative to 8P during

the closest approach in Km/h. It is assumed

constant during all the simulation.

date_range Tuple (2) Beginning and end dates of the simulation.

B1_separation_date String Date when B1 is released from A in ISO format.

B2_separation_date String Date when B2 is released from A in ISO format.

Closest_approach_A_date String Date of closest approach of A probe to 8P in

ISO format.

Closest_approach_B1_date String Date of closest approach of B1 probe to 8P in

ISO format.

Closest_approach_B2_date String Date of closest approach of B2 probe to 8P in

ISO format.

Closest_approach_A_v_dir NumPy array (3) Direction of the velocity of Spacecraft A during

the flyby, expressed in the

Interceptor_tuttle_ion reference frame.

Closest_approach_A_dist Scalar Distance between A and 8P at the closest

approach in Km.

Closest_approach_A_angle Scalar Angular position of the closest approach

location of A around the comet. See 4.1 for

details.

Closest_approach_B1_dist Scalar Distance between B1 and 8P at the closest

approach in Km.

Closest_approach_B2_dist Scalar Distance between B2 and 8P at the closest

approach in Km.

Closest_approach_B1_angle Scalar Angle in radians between the real and default

trajectory of B1. See 4.2 for details.

Closest_approach_B2_angle Scalar Angle in radians between the real and default

trajectory of B2. See 4.2 for details.

<INS>_OBS_range Pandas series Beginning and end dates of the observations of

each instrument in ISO format.

Table 1: Inputs required for the program.

ESA UNCLASSIFIED – For ESA Official Use Only

Page 7/12

When run, the program will modify the file obs_interceptor.json according to the inputs given

in <INS>_OBS_range.

After that, the trajectory of the three spacecrafts is generated and plotted in three 3D diagrams,

showing the whole trajectory and the closest approach to the comet.

This done, the program detects and deletes old input and spk files and creates the new ones, and

finally, it launches Cosmographia with the kernels loaded.

4. ALGORITHMS AND CONVENTIONS

The goal of the algorithms of the program are to calculate the trajectory that accomplishes the

closest approach conditions imposed by the user.

Two algorithms are required, one for spacecraft A, where the only restriction is the closest

approach position, and other for B1 and B2, where there is an initial condition derived from

their separation date and the previously calculated trajectory of A, so only a closest approach

distance can be imposed.

Both algorithms are explained in this section.

4.1. Comet interceptor A trajectory.

The inputs taken for this calculation are the velocity vector, the closest approach distance and

the trajectory angle. For the vector to be really the closest approach of the spacecraft to the

comet, the velocity of the spacecraft in that point should be perpendicular to the position, or

the trajectory should be perpendicular to the closest approach vector. Given the direction of

the velocity vector and the closest approach distance, there is not a point, but a whole

circumference where the closest approach position can be. The default point for the closest

approach is defined according to the following convention: the trajectory should intersect the z

axis in its positive side, unless the direction is parallel to the z axis, in which case the closest

approach vector is contained in the x axis.

ESA UNCLASSIFIED – For ESA Official Use Only

Page 8/12

Figure 3: Default velocity for a closest approach not aligned with X.

Figure 4. Default velocity for a closest approach aligned with X.

ESA UNCLASSIFIED – For ESA Official Use Only

Page 9/12

The closest approach vector in the first case is calculated as:

𝑢𝑟⃗⃗⃗⃗ =

𝑢𝑣⃗⃗⃗⃗ × (𝑢𝑣⃗⃗⃗⃗ ×
(𝑢𝑣⃗⃗⃗⃗ × �⃗�)

|(𝑢𝑣⃗⃗⃗⃗ × �⃗�)|
)

𝑛𝑜𝑟𝑚(𝑢𝑣⃗⃗⃗⃗ × (𝑢𝑣⃗⃗⃗⃗ ×
(𝑢𝑣⃗⃗⃗⃗ × �⃗�)

|(𝑢𝑣⃗⃗⃗⃗ × �⃗�)|
))

Where 𝑢𝑟⃗⃗⃗⃗ is the unitary vector in the direction of the closest approach position, �⃗� the unitary

vector in the z direction and 𝑢𝑣⃗⃗⃗⃗ the unitary vector in the direction of the velocity relative to the

comet.

In the second case, the closest approach vector is just:

𝑢𝑟⃗⃗⃗⃗ = 𝑖

With 𝑖 being the unitary vector in the x direction.

 After that, the closest approach vector is rotated the angle defined by the user in

“Closest_approach_A_angle”, around the direction vector, following the “right hand rule”.

On the code, the rotation is performed with the function “rotate_around_axis”, whose output is

the same vector if it is aligned with the rotation axis, or the rotated vector if not, calculated as

follows:

𝑟 ′ = 𝑟 𝑝𝑎𝑟 + cos 𝜃 × 𝑟 𝑝𝑒𝑟𝑝 + sin 𝜃 × 𝑧

𝑧 = �⃗� 𝑎𝑥 × 𝑣 𝑝𝑒𝑟𝑝

In this expression, 𝑟 𝑝𝑎𝑟 is the component of the vector parallel to the rotation axis, 𝑟 𝑝𝑒𝑟𝑝 the

component perpendicular to the rotation axis, theta the angle of rotation and �⃗� 𝑎𝑥 the unitary

vector in the direction of the rotation axis, which coincides with the unitary vector in the direction

of the velocity.

ESA UNCLASSIFIED – For ESA Official Use Only

Page 10/12

With this rotated velocity 𝑟 ′, the trajectory is propagated. As the velocity is considered constant

for this simulation, this results in a straight line, perpendicular to the closest approach vector.

The propagation is done with a gauss method, as follows:

𝑟 = 𝑟 𝑎𝑝 + (𝑡 − 𝑡𝑎𝑝) ∗ 𝑣

Where 𝑟 is the position of the spacecraft in each instant of time, 𝑟 𝑎𝑝 and 𝑡𝑎𝑝 are the closest

approach position vector after the rotation and instant of the closest approach, and 𝑣 is the

velocity vector.

In summary:

• 1 – Check if the velocity vector is aligned with the Z direction.

o If it is, 𝑢𝑟⃗⃗⃗⃗ = 𝑖

o If it is not, 𝑢𝑟⃗⃗⃗⃗ is perpendicular to the velocity vector and makes the trajectory

intersect the Z axis in its positive side.

• 2 – The closest approach vector is rotated the angle specified by the user around the

axis defined by the velocity vector.

• 3 – With the boundary condition of the position and the velocity at a given time, the

trajectory is propagated forwards and backwards up to the limits of “date_range”.

4.2. Comet interceptor B1 and B2 trajectory.

In the case of B1 and B2 there is not a closest approach vector, but a distance and an initial

condition, so the problem is finding a vector with module equal to the closest approach distance

of the probes, whose perpendicular plane contains the point where the spacecrafts B1 and B2

are separated from A, and then proceed like in the previous case. In the code, this is done in

the function “find_r_approach_point”.

Again, there is not one but a whole family of vectors which have this property. The additional

constraint was arbitrarily defined as that the trajectory of the probes shall cross the Z axis, or

the X axis if the separation point is contained in the Z axis.

For the calculation of the closest approach vector, first an axis orthogonal to the separation

vector is defined:

ESA UNCLASSIFIED – For ESA Official Use Only

Page 11/12

�⃗� 𝑜 = �⃗� 𝑠 × (�⃗� 𝑠 × 𝑧)

If the separation point is contained in the z axis, instead:

�⃗� 𝑜 = �⃗� 𝑠 × (�⃗� 𝑠 × 𝑥)

The separation vector �⃗� 𝑠 is the position of the spacecraft A relative to the comet at the date of

separation of each of the probes, so it is obtained in the previous step.

With this definition of �⃗� 𝑜, it is contained in the same plane as the one defined by the separation

vector and the x or z axis, thus accomplishing the restriction that the trajectory should cross

one of those axis.

�⃗� 𝑜 and �⃗� 𝑟𝑠𝑒𝑝
define an orthogonal base for the closest approach distance vector of the probes.

Furthermore, the closest approach vector, the trajectory, and the position of the separation of

the probes define a rectangle triangle, with angle 𝜃 between the closest approach and

separation vectors, and 𝜑 the angle between the closest approach and �⃗� 𝑜. The geometry is

depicted in figure 3:

Figure 5: Geometry for B1 and B2 closest approach

The closest approach vector will be the value of the closest approach distance d, specified by

the user, projected along �⃗� 𝑜 and �⃗� 𝑟𝑠𝑒𝑝
 according to 𝜑. Once the vector is obtained, it can be

rotated around the axis defined by �⃗� 𝑟𝑠𝑒𝑝
 like in the previous case.

With the closest approach vector obtained, the velocity is calculated as the difference between

the separation and closest approach positions divided the time span between both, as:

�⃗� 𝑜

ESA UNCLASSIFIED – For ESA Official Use Only

Page 12/12

𝑣 =
𝑟 𝑎𝑝 − 𝑟 𝑠𝑒𝑝

𝑡𝑎𝑝 − 𝑡𝑠𝑒𝑝

With the velocity and the closest approach vector obtained, the trajectory is propagated with

the same method used for spacecraft A.

5. SUGGESTED IMPROVEMENTS

• Add the SpicePy library to manage different reference frames in the program without

need to go to the setup files.

• Create a GUI or other tool to allow typing the inputs without need to modify the source

code.

• Show the approach from the point of view of an instrument.

• Improving the comet tail visualization (check

https://github.com/isenberg/cosmographia_catalogs).

• Implementing the option of changing the target comet in the code, and create the

appropriate Cosmographia and spice files.

• Change the parametric trajectory generator so it creates new spks with version tracking

instead of deleting the previous trajectory.

• Add a warning if the velocity of the probes after separation and spacecraft A is bigger

than a certain threshold.

https://github.com/isenberg/cosmographia_catalogs

